1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the generic AliasAnalysis interface, which is used as the
11// common interface used by all clients of alias analysis information, and
12// implemented by all alias analysis implementations.  Mod/Ref information is
13// also captured by this interface.
14//
15// Implementations of this interface must implement the various virtual methods,
16// which automatically provides functionality for the entire suite of client
17// APIs.
18//
19// This API identifies memory regions with the MemoryLocation class. The pointer
20// component specifies the base memory address of the region. The Size specifies
21// the maximum size (in address units) of the memory region, or
22// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
23// identifies the "type" of the memory reference; see the
24// TypeBasedAliasAnalysis class for details.
25//
26// Some non-obvious details include:
27//  - Pointers that point to two completely different objects in memory never
28//    alias, regardless of the value of the Size component.
29//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
30//    is two pointers to constant memory. Even if they are equal, constant
31//    memory is never stored to, so there will never be any dependencies.
32//    In this and other situations, the pointers may be both NoAlias and
33//    MustAlias at the same time. The current API can only return one result,
34//    though this is rarely a problem in practice.
35//
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
39#define LLVM_ANALYSIS_ALIASANALYSIS_H
40
41#include "llvm/ADT/None.h"
42#include "llvm/ADT/Optional.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/Analysis/MemoryLocation.h"
45#include "llvm/Analysis/TargetLibraryInfo.h"
46#include "llvm/IR/CallSite.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/PassManager.h"
51#include "llvm/Pass.h"
52#include <cstdint>
53#include <functional>
54#include <memory>
55#include <vector>
56
57namespace llvm {
58
59class AnalysisUsage;
60class BasicAAResult;
61class BasicBlock;
62class DominatorTree;
63class OrderedBasicBlock;
64class Value;
65
66/// The possible results of an alias query.
67///
68/// These results are always computed between two MemoryLocation objects as
69/// a query to some alias analysis.
70///
71/// Note that these are unscoped enumerations because we would like to support
72/// implicitly testing a result for the existence of any possible aliasing with
73/// a conversion to bool, but an "enum class" doesn't support this. The
74/// canonical names from the literature are suffixed and unique anyways, and so
75/// they serve as global constants in LLVM for these results.
76///
77/// See docs/AliasAnalysis.html for more information on the specific meanings
78/// of these values.
79enum AliasResult {
80  /// The two locations do not alias at all.
81  ///
82  /// This value is arranged to convert to false, while all other values
83  /// convert to true. This allows a boolean context to convert the result to
84  /// a binary flag indicating whether there is the possibility of aliasing.
85  NoAlias = 0,
86  /// The two locations may or may not alias. This is the least precise result.
87  MayAlias,
88  /// The two locations alias, but only due to a partial overlap.
89  PartialAlias,
90  /// The two locations precisely alias each other.
91  MustAlias,
92};
93
94/// Flags indicating whether a memory access modifies or references memory.
95///
96/// This is no access at all, a modification, a reference, or both
97/// a modification and a reference. These are specifically structured such that
98/// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
99/// of the possible values.
100enum ModRefInfo {
101  /// The access neither references nor modifies the value stored in memory.
102  MRI_NoModRef = 0,
103  /// The access references the value stored in memory.
104  MRI_Ref = 1,
105  /// The access modifies the value stored in memory.
106  MRI_Mod = 2,
107  /// The access both references and modifies the value stored in memory.
108  MRI_ModRef = MRI_Ref | MRI_Mod
109};
110
111/// The locations at which a function might access memory.
112///
113/// These are primarily used in conjunction with the \c AccessKind bits to
114/// describe both the nature of access and the locations of access for a
115/// function call.
116enum FunctionModRefLocation {
117  /// Base case is no access to memory.
118  FMRL_Nowhere = 0,
119  /// Access to memory via argument pointers.
120  FMRL_ArgumentPointees = 4,
121  /// Memory that is inaccessible via LLVM IR.
122  FMRL_InaccessibleMem = 8,
123  /// Access to any memory.
124  FMRL_Anywhere = 16 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
125};
126
127/// Summary of how a function affects memory in the program.
128///
129/// Loads from constant globals are not considered memory accesses for this
130/// interface. Also, functions may freely modify stack space local to their
131/// invocation without having to report it through these interfaces.
132enum FunctionModRefBehavior {
133  /// This function does not perform any non-local loads or stores to memory.
134  ///
135  /// This property corresponds to the GCC 'const' attribute.
136  /// This property corresponds to the LLVM IR 'readnone' attribute.
137  /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
138  FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
139
140  /// The only memory references in this function (if it has any) are
141  /// non-volatile loads from objects pointed to by its pointer-typed
142  /// arguments, with arbitrary offsets.
143  ///
144  /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
145  FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
146
147  /// The only memory references in this function (if it has any) are
148  /// non-volatile loads and stores from objects pointed to by its
149  /// pointer-typed arguments, with arbitrary offsets.
150  ///
151  /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
152  FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
153
154  /// The only memory references in this function (if it has any) are
155  /// references of memory that is otherwise inaccessible via LLVM IR.
156  ///
157  /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
158  FMRB_OnlyAccessesInaccessibleMem = FMRL_InaccessibleMem | MRI_ModRef,
159
160  /// The function may perform non-volatile loads and stores of objects
161  /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
162  /// it may also perform loads and stores of memory that is otherwise
163  /// inaccessible via LLVM IR.
164  ///
165  /// This property corresponds to the LLVM IR
166  /// inaccessiblemem_or_argmemonly attribute.
167  FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
168                                          FMRL_ArgumentPointees | MRI_ModRef,
169
170  /// This function does not perform any non-local stores or volatile loads,
171  /// but may read from any memory location.
172  ///
173  /// This property corresponds to the GCC 'pure' attribute.
174  /// This property corresponds to the LLVM IR 'readonly' attribute.
175  /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
176  FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
177
178  // This function does not read from memory anywhere, but may write to any
179  // memory location.
180  //
181  // This property corresponds to the LLVM IR 'writeonly' attribute.
182  // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
183  FMRB_DoesNotReadMemory = FMRL_Anywhere | MRI_Mod,
184
185  /// This indicates that the function could not be classified into one of the
186  /// behaviors above.
187  FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
188};
189
190class AAResults {
191public:
192  // Make these results default constructable and movable. We have to spell
193  // these out because MSVC won't synthesize them.
194  AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
195  AAResults(AAResults &&Arg);
196  ~AAResults();
197
198  /// Register a specific AA result.
199  template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
200    // FIXME: We should use a much lighter weight system than the usual
201    // polymorphic pattern because we don't own AAResult. It should
202    // ideally involve two pointers and no separate allocation.
203    AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
204  }
205
206  /// Register a function analysis ID that the results aggregation depends on.
207  ///
208  /// This is used in the new pass manager to implement the invalidation logic
209  /// where we must invalidate the results aggregation if any of our component
210  /// analyses become invalid.
211  void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
212
213  /// Handle invalidation events in the new pass manager.
214  ///
215  /// The aggregation is invalidated if any of the underlying analyses is
216  /// invalidated.
217  bool invalidate(Function &F, const PreservedAnalyses &PA,
218                  FunctionAnalysisManager::Invalidator &Inv);
219
220  //===--------------------------------------------------------------------===//
221  /// \name Alias Queries
222  /// @{
223
224  /// The main low level interface to the alias analysis implementation.
225  /// Returns an AliasResult indicating whether the two pointers are aliased to
226  /// each other. This is the interface that must be implemented by specific
227  /// alias analysis implementations.
228  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
229
230  /// A convenience wrapper around the primary \c alias interface.
231  AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
232                    uint64_t V2Size) {
233    return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
234  }
235
236  /// A convenience wrapper around the primary \c alias interface.
237  AliasResult alias(const Value *V1, const Value *V2) {
238    return alias(V1, MemoryLocation::UnknownSize, V2,
239                 MemoryLocation::UnknownSize);
240  }
241
242  /// A trivial helper function to check to see if the specified pointers are
243  /// no-alias.
244  bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
245    return alias(LocA, LocB) == NoAlias;
246  }
247
248  /// A convenience wrapper around the \c isNoAlias helper interface.
249  bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
250                 uint64_t V2Size) {
251    return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
252  }
253
254  /// A convenience wrapper around the \c isNoAlias helper interface.
255  bool isNoAlias(const Value *V1, const Value *V2) {
256    return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
257  }
258
259  /// A trivial helper function to check to see if the specified pointers are
260  /// must-alias.
261  bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
262    return alias(LocA, LocB) == MustAlias;
263  }
264
265  /// A convenience wrapper around the \c isMustAlias helper interface.
266  bool isMustAlias(const Value *V1, const Value *V2) {
267    return alias(V1, 1, V2, 1) == MustAlias;
268  }
269
270  /// Checks whether the given location points to constant memory, or if
271  /// \p OrLocal is true whether it points to a local alloca.
272  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
273
274  /// A convenience wrapper around the primary \c pointsToConstantMemory
275  /// interface.
276  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
277    return pointsToConstantMemory(MemoryLocation(P), OrLocal);
278  }
279
280  /// @}
281  //===--------------------------------------------------------------------===//
282  /// \name Simple mod/ref information
283  /// @{
284
285  /// Get the ModRef info associated with a pointer argument of a callsite. The
286  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
287  /// that these bits do not necessarily account for the overall behavior of
288  /// the function, but rather only provide additional per-argument
289  /// information.
290  ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
291
292  /// Return the behavior of the given call site.
293  FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
294
295  /// Return the behavior when calling the given function.
296  FunctionModRefBehavior getModRefBehavior(const Function *F);
297
298  /// Checks if the specified call is known to never read or write memory.
299  ///
300  /// Note that if the call only reads from known-constant memory, it is also
301  /// legal to return true. Also, calls that unwind the stack are legal for
302  /// this predicate.
303  ///
304  /// Many optimizations (such as CSE and LICM) can be performed on such calls
305  /// without worrying about aliasing properties, and many calls have this
306  /// property (e.g. calls to 'sin' and 'cos').
307  ///
308  /// This property corresponds to the GCC 'const' attribute.
309  bool doesNotAccessMemory(ImmutableCallSite CS) {
310    return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
311  }
312
313  /// Checks if the specified function is known to never read or write memory.
314  ///
315  /// Note that if the function only reads from known-constant memory, it is
316  /// also legal to return true. Also, function that unwind the stack are legal
317  /// for this predicate.
318  ///
319  /// Many optimizations (such as CSE and LICM) can be performed on such calls
320  /// to such functions without worrying about aliasing properties, and many
321  /// functions have this property (e.g. 'sin' and 'cos').
322  ///
323  /// This property corresponds to the GCC 'const' attribute.
324  bool doesNotAccessMemory(const Function *F) {
325    return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
326  }
327
328  /// Checks if the specified call is known to only read from non-volatile
329  /// memory (or not access memory at all).
330  ///
331  /// Calls that unwind the stack are legal for this predicate.
332  ///
333  /// This property allows many common optimizations to be performed in the
334  /// absence of interfering store instructions, such as CSE of strlen calls.
335  ///
336  /// This property corresponds to the GCC 'pure' attribute.
337  bool onlyReadsMemory(ImmutableCallSite CS) {
338    return onlyReadsMemory(getModRefBehavior(CS));
339  }
340
341  /// Checks if the specified function is known to only read from non-volatile
342  /// memory (or not access memory at all).
343  ///
344  /// Functions that unwind the stack are legal for this predicate.
345  ///
346  /// This property allows many common optimizations to be performed in the
347  /// absence of interfering store instructions, such as CSE of strlen calls.
348  ///
349  /// This property corresponds to the GCC 'pure' attribute.
350  bool onlyReadsMemory(const Function *F) {
351    return onlyReadsMemory(getModRefBehavior(F));
352  }
353
354  /// Checks if functions with the specified behavior are known to only read
355  /// from non-volatile memory (or not access memory at all).
356  static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
357    return !(MRB & MRI_Mod);
358  }
359
360  /// Checks if functions with the specified behavior are known to only write
361  /// memory (or not access memory at all).
362  static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
363    return !(MRB & MRI_Ref);
364  }
365
366  /// Checks if functions with the specified behavior are known to read and
367  /// write at most from objects pointed to by their pointer-typed arguments
368  /// (with arbitrary offsets).
369  static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
370    return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
371  }
372
373  /// Checks if functions with the specified behavior are known to potentially
374  /// read or write from objects pointed to be their pointer-typed arguments
375  /// (with arbitrary offsets).
376  static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
377    return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
378  }
379
380  /// Checks if functions with the specified behavior are known to read and
381  /// write at most from memory that is inaccessible from LLVM IR.
382  static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
383    return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
384  }
385
386  /// Checks if functions with the specified behavior are known to potentially
387  /// read or write from memory that is inaccessible from LLVM IR.
388  static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
389    return (MRB & MRI_ModRef) && (MRB & FMRL_InaccessibleMem);
390  }
391
392  /// Checks if functions with the specified behavior are known to read and
393  /// write at most from memory that is inaccessible from LLVM IR or objects
394  /// pointed to by their pointer-typed arguments (with arbitrary offsets).
395  static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
396    return !(MRB & FMRL_Anywhere &
397             ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
398  }
399
400  /// getModRefInfo (for call sites) - Return information about whether
401  /// a particular call site modifies or reads the specified memory location.
402  ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
403
404  /// getModRefInfo (for call sites) - A convenience wrapper.
405  ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
406                           uint64_t Size) {
407    return getModRefInfo(CS, MemoryLocation(P, Size));
408  }
409
410  /// getModRefInfo (for calls) - Return information about whether
411  /// a particular call modifies or reads the specified memory location.
412  ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
413    return getModRefInfo(ImmutableCallSite(C), Loc);
414  }
415
416  /// getModRefInfo (for calls) - A convenience wrapper.
417  ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
418    return getModRefInfo(C, MemoryLocation(P, Size));
419  }
420
421  /// getModRefInfo (for invokes) - Return information about whether
422  /// a particular invoke modifies or reads the specified memory location.
423  ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
424    return getModRefInfo(ImmutableCallSite(I), Loc);
425  }
426
427  /// getModRefInfo (for invokes) - A convenience wrapper.
428  ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
429    return getModRefInfo(I, MemoryLocation(P, Size));
430  }
431
432  /// getModRefInfo (for loads) - Return information about whether
433  /// a particular load modifies or reads the specified memory location.
434  ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
435
436  /// getModRefInfo (for loads) - A convenience wrapper.
437  ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
438    return getModRefInfo(L, MemoryLocation(P, Size));
439  }
440
441  /// getModRefInfo (for stores) - Return information about whether
442  /// a particular store modifies or reads the specified memory location.
443  ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
444
445  /// getModRefInfo (for stores) - A convenience wrapper.
446  ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
447    return getModRefInfo(S, MemoryLocation(P, Size));
448  }
449
450  /// getModRefInfo (for fences) - Return information about whether
451  /// a particular store modifies or reads the specified memory location.
452  ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
453
454  /// getModRefInfo (for fences) - A convenience wrapper.
455  ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
456    return getModRefInfo(S, MemoryLocation(P, Size));
457  }
458
459  /// getModRefInfo (for cmpxchges) - Return information about whether
460  /// a particular cmpxchg modifies or reads the specified memory location.
461  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
462                           const MemoryLocation &Loc);
463
464  /// getModRefInfo (for cmpxchges) - A convenience wrapper.
465  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
466                           unsigned Size) {
467    return getModRefInfo(CX, MemoryLocation(P, Size));
468  }
469
470  /// getModRefInfo (for atomicrmws) - Return information about whether
471  /// a particular atomicrmw modifies or reads the specified memory location.
472  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
473
474  /// getModRefInfo (for atomicrmws) - A convenience wrapper.
475  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
476                           unsigned Size) {
477    return getModRefInfo(RMW, MemoryLocation(P, Size));
478  }
479
480  /// getModRefInfo (for va_args) - Return information about whether
481  /// a particular va_arg modifies or reads the specified memory location.
482  ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
483
484  /// getModRefInfo (for va_args) - A convenience wrapper.
485  ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
486    return getModRefInfo(I, MemoryLocation(P, Size));
487  }
488
489  /// getModRefInfo (for catchpads) - Return information about whether
490  /// a particular catchpad modifies or reads the specified memory location.
491  ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
492
493  /// getModRefInfo (for catchpads) - A convenience wrapper.
494  ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
495                           uint64_t Size) {
496    return getModRefInfo(I, MemoryLocation(P, Size));
497  }
498
499  /// getModRefInfo (for catchrets) - Return information about whether
500  /// a particular catchret modifies or reads the specified memory location.
501  ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
502
503  /// getModRefInfo (for catchrets) - A convenience wrapper.
504  ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
505                           uint64_t Size) {
506    return getModRefInfo(I, MemoryLocation(P, Size));
507  }
508
509  /// Check whether or not an instruction may read or write the optionally
510  /// specified memory location.
511  ///
512  ///
513  /// An instruction that doesn't read or write memory may be trivially LICM'd
514  /// for example.
515  ///
516  /// For function calls, this delegates to the alias-analysis specific
517  /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
518  /// helpers above.
519  ModRefInfo getModRefInfo(const Instruction *I,
520                           const Optional<MemoryLocation> &OptLoc) {
521    if (OptLoc == None) {
522      if (auto CS = ImmutableCallSite(I)) {
523        auto MRB = getModRefBehavior(CS);
524        if ((MRB & MRI_ModRef) == MRI_ModRef)
525          return MRI_ModRef;
526        if (MRB & MRI_Ref)
527          return MRI_Ref;
528        if (MRB & MRI_Mod)
529          return MRI_Mod;
530        return MRI_NoModRef;
531      }
532    }
533
534    const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
535
536    switch (I->getOpcode()) {
537    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
538    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
539    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
540    case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
541    case Instruction::AtomicCmpXchg:
542      return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
543    case Instruction::AtomicRMW:
544      return getModRefInfo((const AtomicRMWInst*)I, Loc);
545    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
546    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
547    case Instruction::CatchPad:
548      return getModRefInfo((const CatchPadInst *)I, Loc);
549    case Instruction::CatchRet:
550      return getModRefInfo((const CatchReturnInst *)I, Loc);
551    default:
552      return MRI_NoModRef;
553    }
554  }
555
556  /// A convenience wrapper for constructing the memory location.
557  ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
558                           uint64_t Size) {
559    return getModRefInfo(I, MemoryLocation(P, Size));
560  }
561
562  /// Return information about whether a call and an instruction may refer to
563  /// the same memory locations.
564  ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
565
566  /// Return information about whether two call sites may refer to the same set
567  /// of memory locations. See the AA documentation for details:
568  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
569  ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
570
571  /// \brief Return information about whether a particular call site modifies
572  /// or reads the specified memory location \p MemLoc before instruction \p I
573  /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
574  /// instruction ordering queries inside the BasicBlock containing \p I.
575  ModRefInfo callCapturesBefore(const Instruction *I,
576                                const MemoryLocation &MemLoc, DominatorTree *DT,
577                                OrderedBasicBlock *OBB = nullptr);
578
579  /// \brief A convenience wrapper to synthesize a memory location.
580  ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
581                                uint64_t Size, DominatorTree *DT,
582                                OrderedBasicBlock *OBB = nullptr) {
583    return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
584  }
585
586  /// @}
587  //===--------------------------------------------------------------------===//
588  /// \name Higher level methods for querying mod/ref information.
589  /// @{
590
591  /// Check if it is possible for execution of the specified basic block to
592  /// modify the location Loc.
593  bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
594
595  /// A convenience wrapper synthesizing a memory location.
596  bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
597                           uint64_t Size) {
598    return canBasicBlockModify(BB, MemoryLocation(P, Size));
599  }
600
601  /// Check if it is possible for the execution of the specified instructions
602  /// to mod\ref (according to the mode) the location Loc.
603  ///
604  /// The instructions to consider are all of the instructions in the range of
605  /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
606  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
607                                 const MemoryLocation &Loc,
608                                 const ModRefInfo Mode);
609
610  /// A convenience wrapper synthesizing a memory location.
611  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
612                                 const Value *Ptr, uint64_t Size,
613                                 const ModRefInfo Mode) {
614    return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
615  }
616
617private:
618  class Concept;
619
620  template <typename T> class Model;
621
622  template <typename T> friend class AAResultBase;
623
624  const TargetLibraryInfo &TLI;
625
626  std::vector<std::unique_ptr<Concept>> AAs;
627
628  std::vector<AnalysisKey *> AADeps;
629};
630
631/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
632/// pointer or reference.
633using AliasAnalysis = AAResults;
634
635/// A private abstract base class describing the concept of an individual alias
636/// analysis implementation.
637///
638/// This interface is implemented by any \c Model instantiation. It is also the
639/// interface which a type used to instantiate the model must provide.
640///
641/// All of these methods model methods by the same name in the \c
642/// AAResults class. Only differences and specifics to how the
643/// implementations are called are documented here.
644class AAResults::Concept {
645public:
646  virtual ~Concept() = 0;
647
648  /// An update API used internally by the AAResults to provide
649  /// a handle back to the top level aggregation.
650  virtual void setAAResults(AAResults *NewAAR) = 0;
651
652  //===--------------------------------------------------------------------===//
653  /// \name Alias Queries
654  /// @{
655
656  /// The main low level interface to the alias analysis implementation.
657  /// Returns an AliasResult indicating whether the two pointers are aliased to
658  /// each other. This is the interface that must be implemented by specific
659  /// alias analysis implementations.
660  virtual AliasResult alias(const MemoryLocation &LocA,
661                            const MemoryLocation &LocB) = 0;
662
663  /// Checks whether the given location points to constant memory, or if
664  /// \p OrLocal is true whether it points to a local alloca.
665  virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
666                                      bool OrLocal) = 0;
667
668  /// @}
669  //===--------------------------------------------------------------------===//
670  /// \name Simple mod/ref information
671  /// @{
672
673  /// Get the ModRef info associated with a pointer argument of a callsite. The
674  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
675  /// that these bits do not necessarily account for the overall behavior of
676  /// the function, but rather only provide additional per-argument
677  /// information.
678  virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
679                                      unsigned ArgIdx) = 0;
680
681  /// Return the behavior of the given call site.
682  virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;
683
684  /// Return the behavior when calling the given function.
685  virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
686
687  /// getModRefInfo (for call sites) - Return information about whether
688  /// a particular call site modifies or reads the specified memory location.
689  virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
690                                   const MemoryLocation &Loc) = 0;
691
692  /// Return information about whether two call sites may refer to the same set
693  /// of memory locations. See the AA documentation for details:
694  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
695  virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
696                                   ImmutableCallSite CS2) = 0;
697
698  /// @}
699};
700
701/// A private class template which derives from \c Concept and wraps some other
702/// type.
703///
704/// This models the concept by directly forwarding each interface point to the
705/// wrapped type which must implement a compatible interface. This provides
706/// a type erased binding.
707template <typename AAResultT> class AAResults::Model final : public Concept {
708  AAResultT &Result;
709
710public:
711  explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
712    Result.setAAResults(&AAR);
713  }
714  ~Model() override = default;
715
716  void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
717
718  AliasResult alias(const MemoryLocation &LocA,
719                    const MemoryLocation &LocB) override {
720    return Result.alias(LocA, LocB);
721  }
722
723  bool pointsToConstantMemory(const MemoryLocation &Loc,
724                              bool OrLocal) override {
725    return Result.pointsToConstantMemory(Loc, OrLocal);
726  }
727
728  ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
729    return Result.getArgModRefInfo(CS, ArgIdx);
730  }
731
732  FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
733    return Result.getModRefBehavior(CS);
734  }
735
736  FunctionModRefBehavior getModRefBehavior(const Function *F) override {
737    return Result.getModRefBehavior(F);
738  }
739
740  ModRefInfo getModRefInfo(ImmutableCallSite CS,
741                           const MemoryLocation &Loc) override {
742    return Result.getModRefInfo(CS, Loc);
743  }
744
745  ModRefInfo getModRefInfo(ImmutableCallSite CS1,
746                           ImmutableCallSite CS2) override {
747    return Result.getModRefInfo(CS1, CS2);
748  }
749};
750
751/// A CRTP-driven "mixin" base class to help implement the function alias
752/// analysis results concept.
753///
754/// Because of the nature of many alias analysis implementations, they often
755/// only implement a subset of the interface. This base class will attempt to
756/// implement the remaining portions of the interface in terms of simpler forms
757/// of the interface where possible, and otherwise provide conservatively
758/// correct fallback implementations.
759///
760/// Implementors of an alias analysis should derive from this CRTP, and then
761/// override specific methods that they wish to customize. There is no need to
762/// use virtual anywhere, the CRTP base class does static dispatch to the
763/// derived type passed into it.
764template <typename DerivedT> class AAResultBase {
765  // Expose some parts of the interface only to the AAResults::Model
766  // for wrapping. Specifically, this allows the model to call our
767  // setAAResults method without exposing it as a fully public API.
768  friend class AAResults::Model<DerivedT>;
769
770  /// A pointer to the AAResults object that this AAResult is
771  /// aggregated within. May be null if not aggregated.
772  AAResults *AAR;
773
774  /// Helper to dispatch calls back through the derived type.
775  DerivedT &derived() { return static_cast<DerivedT &>(*this); }
776
777  /// A setter for the AAResults pointer, which is used to satisfy the
778  /// AAResults::Model contract.
779  void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
780
781protected:
782  /// This proxy class models a common pattern where we delegate to either the
783  /// top-level \c AAResults aggregation if one is registered, or to the
784  /// current result if none are registered.
785  class AAResultsProxy {
786    AAResults *AAR;
787    DerivedT &CurrentResult;
788
789  public:
790    AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
791        : AAR(AAR), CurrentResult(CurrentResult) {}
792
793    AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
794      return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
795    }
796
797    bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
798      return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
799                 : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
800    }
801
802    ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
803      return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
804    }
805
806    FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
807      return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
808    }
809
810    FunctionModRefBehavior getModRefBehavior(const Function *F) {
811      return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
812    }
813
814    ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
815      return AAR ? AAR->getModRefInfo(CS, Loc)
816                 : CurrentResult.getModRefInfo(CS, Loc);
817    }
818
819    ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
820      return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
821    }
822  };
823
824  explicit AAResultBase() = default;
825
826  // Provide all the copy and move constructors so that derived types aren't
827  // constrained.
828  AAResultBase(const AAResultBase &Arg) {}
829  AAResultBase(AAResultBase &&Arg) {}
830
831  /// Get a proxy for the best AA result set to query at this time.
832  ///
833  /// When this result is part of a larger aggregation, this will proxy to that
834  /// aggregation. When this result is used in isolation, it will just delegate
835  /// back to the derived class's implementation.
836  ///
837  /// Note that callers of this need to take considerable care to not cause
838  /// performance problems when they use this routine, in the case of a large
839  /// number of alias analyses being aggregated, it can be expensive to walk
840  /// back across the chain.
841  AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
842
843public:
844  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
845    return MayAlias;
846  }
847
848  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
849    return false;
850  }
851
852  ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
853    return MRI_ModRef;
854  }
855
856  FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
857    return FMRB_UnknownModRefBehavior;
858  }
859
860  FunctionModRefBehavior getModRefBehavior(const Function *F) {
861    return FMRB_UnknownModRefBehavior;
862  }
863
864  ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
865    return MRI_ModRef;
866  }
867
868  ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
869    return MRI_ModRef;
870  }
871};
872
873/// Return true if this pointer is returned by a noalias function.
874bool isNoAliasCall(const Value *V);
875
876/// Return true if this is an argument with the noalias attribute.
877bool isNoAliasArgument(const Value *V);
878
879/// Return true if this pointer refers to a distinct and identifiable object.
880/// This returns true for:
881///    Global Variables and Functions (but not Global Aliases)
882///    Allocas
883///    ByVal and NoAlias Arguments
884///    NoAlias returns (e.g. calls to malloc)
885///
886bool isIdentifiedObject(const Value *V);
887
888/// Return true if V is umabigously identified at the function-level.
889/// Different IdentifiedFunctionLocals can't alias.
890/// Further, an IdentifiedFunctionLocal can not alias with any function
891/// arguments other than itself, which is not necessarily true for
892/// IdentifiedObjects.
893bool isIdentifiedFunctionLocal(const Value *V);
894
895/// A manager for alias analyses.
896///
897/// This class can have analyses registered with it and when run, it will run
898/// all of them and aggregate their results into single AA results interface
899/// that dispatches across all of the alias analysis results available.
900///
901/// Note that the order in which analyses are registered is very significant.
902/// That is the order in which the results will be aggregated and queried.
903///
904/// This manager effectively wraps the AnalysisManager for registering alias
905/// analyses. When you register your alias analysis with this manager, it will
906/// ensure the analysis itself is registered with its AnalysisManager.
907class AAManager : public AnalysisInfoMixin<AAManager> {
908public:
909  using Result = AAResults;
910
911  /// Register a specific AA result.
912  template <typename AnalysisT> void registerFunctionAnalysis() {
913    ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
914  }
915
916  /// Register a specific AA result.
917  template <typename AnalysisT> void registerModuleAnalysis() {
918    ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
919  }
920
921  Result run(Function &F, FunctionAnalysisManager &AM) {
922    Result R(AM.getResult<TargetLibraryAnalysis>(F));
923    for (auto &Getter : ResultGetters)
924      (*Getter)(F, AM, R);
925    return R;
926  }
927
928private:
929  friend AnalysisInfoMixin<AAManager>;
930
931  static AnalysisKey Key;
932
933  SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
934                       AAResults &AAResults),
935              4> ResultGetters;
936
937  template <typename AnalysisT>
938  static void getFunctionAAResultImpl(Function &F,
939                                      FunctionAnalysisManager &AM,
940                                      AAResults &AAResults) {
941    AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
942    AAResults.addAADependencyID(AnalysisT::ID());
943  }
944
945  template <typename AnalysisT>
946  static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
947                                    AAResults &AAResults) {
948    auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
949    auto &MAM = MAMProxy.getManager();
950    if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
951      AAResults.addAAResult(*R);
952      MAMProxy
953          .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
954    }
955  }
956};
957
958/// A wrapper pass to provide the legacy pass manager access to a suitably
959/// prepared AAResults object.
960class AAResultsWrapperPass : public FunctionPass {
961  std::unique_ptr<AAResults> AAR;
962
963public:
964  static char ID;
965
966  AAResultsWrapperPass();
967
968  AAResults &getAAResults() { return *AAR; }
969  const AAResults &getAAResults() const { return *AAR; }
970
971  bool runOnFunction(Function &F) override;
972
973  void getAnalysisUsage(AnalysisUsage &AU) const override;
974};
975
976FunctionPass *createAAResultsWrapperPass();
977
978/// A wrapper pass around a callback which can be used to populate the
979/// AAResults in the AAResultsWrapperPass from an external AA.
980///
981/// The callback provided here will be used each time we prepare an AAResults
982/// object, and will receive a reference to the function wrapper pass, the
983/// function, and the AAResults object to populate. This should be used when
984/// setting up a custom pass pipeline to inject a hook into the AA results.
985ImmutablePass *createExternalAAWrapperPass(
986    std::function<void(Pass &, Function &, AAResults &)> Callback);
987
988/// A helper for the legacy pass manager to create a \c AAResults
989/// object populated to the best of our ability for a particular function when
990/// inside of a \c ModulePass or a \c CallGraphSCCPass.
991///
992/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
993/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
994/// getAnalysisUsage.
995AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
996
997/// A helper for the legacy pass manager to populate \p AU to add uses to make
998/// sure the analyses required by \p createLegacyPMAAResults are available.
999void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1000
1001} // end namespace llvm
1002
1003#endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1004