1//===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides an interface for customizing the standard MachineScheduler
11// pass. Note that the entire pass may be replaced as follows:
12//
13// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
14//   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
15//   ...}
16//
17// The MachineScheduler pass is only responsible for choosing the regions to be
18// scheduled. Targets can override the DAG builder and scheduler without
19// replacing the pass as follows:
20//
21// ScheduleDAGInstrs *<Target>PassConfig::
22// createMachineScheduler(MachineSchedContext *C) {
23//   return new CustomMachineScheduler(C);
24// }
25//
26// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
27// scheduling while updating the instruction stream, register pressure, and live
28// intervals. Most targets don't need to override the DAG builder and list
29// scheduler, but subtargets that require custom scheduling heuristics may
30// plugin an alternate MachineSchedStrategy. The strategy is responsible for
31// selecting the highest priority node from the list:
32//
33// ScheduleDAGInstrs *<Target>PassConfig::
34// createMachineScheduler(MachineSchedContext *C) {
35//   return new ScheduleDAGMILive(C, CustomStrategy(C));
36// }
37//
38// The DAG builder can also be customized in a sense by adding DAG mutations
39// that will run after DAG building and before list scheduling. DAG mutations
40// can adjust dependencies based on target-specific knowledge or add weak edges
41// to aid heuristics:
42//
43// ScheduleDAGInstrs *<Target>PassConfig::
44// createMachineScheduler(MachineSchedContext *C) {
45//   ScheduleDAGMI *DAG = createGenericSchedLive(C);
46//   DAG->addMutation(new CustomDAGMutation(...));
47//   return DAG;
48// }
49//
50// A target that supports alternative schedulers can use the
51// MachineSchedRegistry to allow command line selection. This can be done by
52// implementing the following boilerplate:
53//
54// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
55//  return new CustomMachineScheduler(C);
56// }
57// static MachineSchedRegistry
58// SchedCustomRegistry("custom", "Run my target's custom scheduler",
59//                     createCustomMachineSched);
60//
61//
62// Finally, subtargets that don't need to implement custom heuristics but would
63// like to configure the GenericScheduler's policy for a given scheduler region,
64// including scheduling direction and register pressure tracking policy, can do
65// this:
66//
67// void <SubTarget>Subtarget::
68// overrideSchedPolicy(MachineSchedPolicy &Policy,
69//                     unsigned NumRegionInstrs) const {
70//   Policy.<Flag> = true;
71// }
72//
73//===----------------------------------------------------------------------===//
74
75#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
76#define LLVM_CODEGEN_MACHINESCHEDULER_H
77
78#include "llvm/ADT/ArrayRef.h"
79#include "llvm/ADT/BitVector.h"
80#include "llvm/ADT/STLExtras.h"
81#include "llvm/ADT/SmallVector.h"
82#include "llvm/ADT/StringRef.h"
83#include "llvm/ADT/Twine.h"
84#include "llvm/Analysis/AliasAnalysis.h"
85#include "llvm/CodeGen/MachineBasicBlock.h"
86#include "llvm/CodeGen/MachinePassRegistry.h"
87#include "llvm/CodeGen/RegisterPressure.h"
88#include "llvm/CodeGen/ScheduleDAG.h"
89#include "llvm/CodeGen/ScheduleDAGInstrs.h"
90#include "llvm/CodeGen/ScheduleDAGMutation.h"
91#include "llvm/CodeGen/TargetSchedule.h"
92#include "llvm/Support/CommandLine.h"
93#include "llvm/Support/ErrorHandling.h"
94#include <algorithm>
95#include <cassert>
96#include <memory>
97#include <string>
98#include <vector>
99
100namespace llvm {
101
102extern cl::opt<bool> ForceTopDown;
103extern cl::opt<bool> ForceBottomUp;
104
105class LiveIntervals;
106class MachineDominatorTree;
107class MachineFunction;
108class MachineInstr;
109class MachineLoopInfo;
110class RegisterClassInfo;
111class SchedDFSResult;
112class ScheduleHazardRecognizer;
113class TargetInstrInfo;
114class TargetPassConfig;
115class TargetRegisterInfo;
116
117/// MachineSchedContext provides enough context from the MachineScheduler pass
118/// for the target to instantiate a scheduler.
119struct MachineSchedContext {
120  MachineFunction *MF = nullptr;
121  const MachineLoopInfo *MLI = nullptr;
122  const MachineDominatorTree *MDT = nullptr;
123  const TargetPassConfig *PassConfig = nullptr;
124  AliasAnalysis *AA = nullptr;
125  LiveIntervals *LIS = nullptr;
126
127  RegisterClassInfo *RegClassInfo;
128
129  MachineSchedContext();
130  virtual ~MachineSchedContext();
131};
132
133/// MachineSchedRegistry provides a selection of available machine instruction
134/// schedulers.
135class MachineSchedRegistry : public MachinePassRegistryNode {
136public:
137  using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *);
138
139  // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
140  using FunctionPassCtor = ScheduleDAGCtor;
141
142  static MachinePassRegistry Registry;
143
144  MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
145    : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
146    Registry.Add(this);
147  }
148
149  ~MachineSchedRegistry() { Registry.Remove(this); }
150
151  // Accessors.
152  //
153  MachineSchedRegistry *getNext() const {
154    return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
155  }
156
157  static MachineSchedRegistry *getList() {
158    return (MachineSchedRegistry *)Registry.getList();
159  }
160
161  static void setListener(MachinePassRegistryListener *L) {
162    Registry.setListener(L);
163  }
164};
165
166class ScheduleDAGMI;
167
168/// Define a generic scheduling policy for targets that don't provide their own
169/// MachineSchedStrategy. This can be overriden for each scheduling region
170/// before building the DAG.
171struct MachineSchedPolicy {
172  // Allow the scheduler to disable register pressure tracking.
173  bool ShouldTrackPressure = false;
174  /// Track LaneMasks to allow reordering of independent subregister writes
175  /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
176  bool ShouldTrackLaneMasks = false;
177
178  // Allow the scheduler to force top-down or bottom-up scheduling. If neither
179  // is true, the scheduler runs in both directions and converges.
180  bool OnlyTopDown = false;
181  bool OnlyBottomUp = false;
182
183  // Disable heuristic that tries to fetch nodes from long dependency chains
184  // first.
185  bool DisableLatencyHeuristic = false;
186
187  MachineSchedPolicy() = default;
188};
189
190/// MachineSchedStrategy - Interface to the scheduling algorithm used by
191/// ScheduleDAGMI.
192///
193/// Initialization sequence:
194///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
195class MachineSchedStrategy {
196  virtual void anchor();
197
198public:
199  virtual ~MachineSchedStrategy() = default;
200
201  /// Optionally override the per-region scheduling policy.
202  virtual void initPolicy(MachineBasicBlock::iterator Begin,
203                          MachineBasicBlock::iterator End,
204                          unsigned NumRegionInstrs) {}
205
206  virtual void dumpPolicy() const {}
207
208  /// Check if pressure tracking is needed before building the DAG and
209  /// initializing this strategy. Called after initPolicy.
210  virtual bool shouldTrackPressure() const { return true; }
211
212  /// Returns true if lanemasks should be tracked. LaneMask tracking is
213  /// necessary to reorder independent subregister defs for the same vreg.
214  /// This has to be enabled in combination with shouldTrackPressure().
215  virtual bool shouldTrackLaneMasks() const { return false; }
216
217  // If this method returns true, handling of the scheduling regions
218  // themselves (in case of a scheduling boundary in MBB) will be done
219  // beginning with the topmost region of MBB.
220  virtual bool doMBBSchedRegionsTopDown() const { return false; }
221
222  /// Initialize the strategy after building the DAG for a new region.
223  virtual void initialize(ScheduleDAGMI *DAG) = 0;
224
225  /// Tell the strategy that MBB is about to be processed.
226  virtual void enterMBB(MachineBasicBlock *MBB) {};
227
228  /// Tell the strategy that current MBB is done.
229  virtual void leaveMBB() {};
230
231  /// Notify this strategy that all roots have been released (including those
232  /// that depend on EntrySU or ExitSU).
233  virtual void registerRoots() {}
234
235  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
236  /// schedule the node at the top of the unscheduled region. Otherwise it will
237  /// be scheduled at the bottom.
238  virtual SUnit *pickNode(bool &IsTopNode) = 0;
239
240  /// \brief Scheduler callback to notify that a new subtree is scheduled.
241  virtual void scheduleTree(unsigned SubtreeID) {}
242
243  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
244  /// instruction and updated scheduled/remaining flags in the DAG nodes.
245  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
246
247  /// When all predecessor dependencies have been resolved, free this node for
248  /// top-down scheduling.
249  virtual void releaseTopNode(SUnit *SU) = 0;
250
251  /// When all successor dependencies have been resolved, free this node for
252  /// bottom-up scheduling.
253  virtual void releaseBottomNode(SUnit *SU) = 0;
254};
255
256/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
257/// schedules machine instructions according to the given MachineSchedStrategy
258/// without much extra book-keeping. This is the common functionality between
259/// PreRA and PostRA MachineScheduler.
260class ScheduleDAGMI : public ScheduleDAGInstrs {
261protected:
262  AliasAnalysis *AA;
263  LiveIntervals *LIS;
264  std::unique_ptr<MachineSchedStrategy> SchedImpl;
265
266  /// Topo - A topological ordering for SUnits which permits fast IsReachable
267  /// and similar queries.
268  ScheduleDAGTopologicalSort Topo;
269
270  /// Ordered list of DAG postprocessing steps.
271  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
272
273  /// The top of the unscheduled zone.
274  MachineBasicBlock::iterator CurrentTop;
275
276  /// The bottom of the unscheduled zone.
277  MachineBasicBlock::iterator CurrentBottom;
278
279  /// Record the next node in a scheduled cluster.
280  const SUnit *NextClusterPred = nullptr;
281  const SUnit *NextClusterSucc = nullptr;
282
283#ifndef NDEBUG
284  /// The number of instructions scheduled so far. Used to cut off the
285  /// scheduler at the point determined by misched-cutoff.
286  unsigned NumInstrsScheduled = 0;
287#endif
288
289public:
290  ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
291                bool RemoveKillFlags)
292      : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
293        LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU) {}
294
295  // Provide a vtable anchor
296  ~ScheduleDAGMI() override;
297
298  /// If this method returns true, handling of the scheduling regions
299  /// themselves (in case of a scheduling boundary in MBB) will be done
300  /// beginning with the topmost region of MBB.
301  bool doMBBSchedRegionsTopDown() const override {
302    return SchedImpl->doMBBSchedRegionsTopDown();
303  }
304
305  // Returns LiveIntervals instance for use in DAG mutators and such.
306  LiveIntervals *getLIS() const { return LIS; }
307
308  /// Return true if this DAG supports VReg liveness and RegPressure.
309  virtual bool hasVRegLiveness() const { return false; }
310
311  /// Add a postprocessing step to the DAG builder.
312  /// Mutations are applied in the order that they are added after normal DAG
313  /// building and before MachineSchedStrategy initialization.
314  ///
315  /// ScheduleDAGMI takes ownership of the Mutation object.
316  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
317    if (Mutation)
318      Mutations.push_back(std::move(Mutation));
319  }
320
321  /// \brief True if an edge can be added from PredSU to SuccSU without creating
322  /// a cycle.
323  bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
324
325  /// \brief Add a DAG edge to the given SU with the given predecessor
326  /// dependence data.
327  ///
328  /// \returns true if the edge may be added without creating a cycle OR if an
329  /// equivalent edge already existed (false indicates failure).
330  bool addEdge(SUnit *SuccSU, const SDep &PredDep);
331
332  MachineBasicBlock::iterator top() const { return CurrentTop; }
333  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
334
335  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
336  /// region. This covers all instructions in a block, while schedule() may only
337  /// cover a subset.
338  void enterRegion(MachineBasicBlock *bb,
339                   MachineBasicBlock::iterator begin,
340                   MachineBasicBlock::iterator end,
341                   unsigned regioninstrs) override;
342
343  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
344  /// reorderable instructions.
345  void schedule() override;
346
347  void startBlock(MachineBasicBlock *bb) override;
348  void finishBlock() override;
349
350  /// Change the position of an instruction within the basic block and update
351  /// live ranges and region boundary iterators.
352  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
353
354  const SUnit *getNextClusterPred() const { return NextClusterPred; }
355
356  const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
357
358  void viewGraph(const Twine &Name, const Twine &Title) override;
359  void viewGraph() override;
360
361protected:
362  // Top-Level entry points for the schedule() driver...
363
364  /// Apply each ScheduleDAGMutation step in order. This allows different
365  /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
366  void postprocessDAG();
367
368  /// Release ExitSU predecessors and setup scheduler queues.
369  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
370
371  /// Update scheduler DAG and queues after scheduling an instruction.
372  void updateQueues(SUnit *SU, bool IsTopNode);
373
374  /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
375  void placeDebugValues();
376
377  /// \brief dump the scheduled Sequence.
378  void dumpSchedule() const;
379
380  // Lesser helpers...
381  bool checkSchedLimit();
382
383  void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
384                             SmallVectorImpl<SUnit*> &BotRoots);
385
386  void releaseSucc(SUnit *SU, SDep *SuccEdge);
387  void releaseSuccessors(SUnit *SU);
388  void releasePred(SUnit *SU, SDep *PredEdge);
389  void releasePredecessors(SUnit *SU);
390};
391
392/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
393/// machine instructions while updating LiveIntervals and tracking regpressure.
394class ScheduleDAGMILive : public ScheduleDAGMI {
395protected:
396  RegisterClassInfo *RegClassInfo;
397
398  /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
399  /// will be empty.
400  SchedDFSResult *DFSResult = nullptr;
401  BitVector ScheduledTrees;
402
403  MachineBasicBlock::iterator LiveRegionEnd;
404
405  /// Maps vregs to the SUnits of their uses in the current scheduling region.
406  VReg2SUnitMultiMap VRegUses;
407
408  // Map each SU to its summary of pressure changes. This array is updated for
409  // liveness during bottom-up scheduling. Top-down scheduling may proceed but
410  // has no affect on the pressure diffs.
411  PressureDiffs SUPressureDiffs;
412
413  /// Register pressure in this region computed by initRegPressure.
414  bool ShouldTrackPressure = false;
415  bool ShouldTrackLaneMasks = false;
416  IntervalPressure RegPressure;
417  RegPressureTracker RPTracker;
418
419  /// List of pressure sets that exceed the target's pressure limit before
420  /// scheduling, listed in increasing set ID order. Each pressure set is paired
421  /// with its max pressure in the currently scheduled regions.
422  std::vector<PressureChange> RegionCriticalPSets;
423
424  /// The top of the unscheduled zone.
425  IntervalPressure TopPressure;
426  RegPressureTracker TopRPTracker;
427
428  /// The bottom of the unscheduled zone.
429  IntervalPressure BotPressure;
430  RegPressureTracker BotRPTracker;
431
432  /// True if disconnected subregister components are already renamed.
433  /// The renaming is only done on demand if lane masks are tracked.
434  bool DisconnectedComponentsRenamed = false;
435
436public:
437  ScheduleDAGMILive(MachineSchedContext *C,
438                    std::unique_ptr<MachineSchedStrategy> S)
439      : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
440        RegClassInfo(C->RegClassInfo), RPTracker(RegPressure),
441        TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
442
443  ~ScheduleDAGMILive() override;
444
445  /// Return true if this DAG supports VReg liveness and RegPressure.
446  bool hasVRegLiveness() const override { return true; }
447
448  /// \brief Return true if register pressure tracking is enabled.
449  bool isTrackingPressure() const { return ShouldTrackPressure; }
450
451  /// Get current register pressure for the top scheduled instructions.
452  const IntervalPressure &getTopPressure() const { return TopPressure; }
453  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
454
455  /// Get current register pressure for the bottom scheduled instructions.
456  const IntervalPressure &getBotPressure() const { return BotPressure; }
457  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
458
459  /// Get register pressure for the entire scheduling region before scheduling.
460  const IntervalPressure &getRegPressure() const { return RegPressure; }
461
462  const std::vector<PressureChange> &getRegionCriticalPSets() const {
463    return RegionCriticalPSets;
464  }
465
466  PressureDiff &getPressureDiff(const SUnit *SU) {
467    return SUPressureDiffs[SU->NodeNum];
468  }
469
470  /// Compute a DFSResult after DAG building is complete, and before any
471  /// queue comparisons.
472  void computeDFSResult();
473
474  /// Return a non-null DFS result if the scheduling strategy initialized it.
475  const SchedDFSResult *getDFSResult() const { return DFSResult; }
476
477  BitVector &getScheduledTrees() { return ScheduledTrees; }
478
479  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
480  /// region. This covers all instructions in a block, while schedule() may only
481  /// cover a subset.
482  void enterRegion(MachineBasicBlock *bb,
483                   MachineBasicBlock::iterator begin,
484                   MachineBasicBlock::iterator end,
485                   unsigned regioninstrs) override;
486
487  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
488  /// reorderable instructions.
489  void schedule() override;
490
491  /// Compute the cyclic critical path through the DAG.
492  unsigned computeCyclicCriticalPath();
493
494protected:
495  // Top-Level entry points for the schedule() driver...
496
497  /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
498  /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
499  /// region, TopTracker and BottomTracker will be initialized to the top and
500  /// bottom of the DAG region without covereing any unscheduled instruction.
501  void buildDAGWithRegPressure();
502
503  /// Release ExitSU predecessors and setup scheduler queues. Re-position
504  /// the Top RP tracker in case the region beginning has changed.
505  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
506
507  /// Move an instruction and update register pressure.
508  void scheduleMI(SUnit *SU, bool IsTopNode);
509
510  // Lesser helpers...
511
512  void initRegPressure();
513
514  void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
515
516  void updateScheduledPressure(const SUnit *SU,
517                               const std::vector<unsigned> &NewMaxPressure);
518
519  void collectVRegUses(SUnit &SU);
520};
521
522//===----------------------------------------------------------------------===//
523///
524/// Helpers for implementing custom MachineSchedStrategy classes. These take
525/// care of the book-keeping associated with list scheduling heuristics.
526///
527//===----------------------------------------------------------------------===//
528
529/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
530/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
531/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
532///
533/// This is a convenience class that may be used by implementations of
534/// MachineSchedStrategy.
535class ReadyQueue {
536  unsigned ID;
537  std::string Name;
538  std::vector<SUnit*> Queue;
539
540public:
541  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
542
543  unsigned getID() const { return ID; }
544
545  StringRef getName() const { return Name; }
546
547  // SU is in this queue if it's NodeQueueID is a superset of this ID.
548  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
549
550  bool empty() const { return Queue.empty(); }
551
552  void clear() { Queue.clear(); }
553
554  unsigned size() const { return Queue.size(); }
555
556  using iterator = std::vector<SUnit*>::iterator;
557
558  iterator begin() { return Queue.begin(); }
559
560  iterator end() { return Queue.end(); }
561
562  ArrayRef<SUnit*> elements() { return Queue; }
563
564  iterator find(SUnit *SU) { return llvm::find(Queue, SU); }
565
566  void push(SUnit *SU) {
567    Queue.push_back(SU);
568    SU->NodeQueueId |= ID;
569  }
570
571  iterator remove(iterator I) {
572    (*I)->NodeQueueId &= ~ID;
573    *I = Queue.back();
574    unsigned idx = I - Queue.begin();
575    Queue.pop_back();
576    return Queue.begin() + idx;
577  }
578
579  void dump() const;
580};
581
582/// Summarize the unscheduled region.
583struct SchedRemainder {
584  // Critical path through the DAG in expected latency.
585  unsigned CriticalPath;
586  unsigned CyclicCritPath;
587
588  // Scaled count of micro-ops left to schedule.
589  unsigned RemIssueCount;
590
591  bool IsAcyclicLatencyLimited;
592
593  // Unscheduled resources
594  SmallVector<unsigned, 16> RemainingCounts;
595
596  SchedRemainder() { reset(); }
597
598  void reset() {
599    CriticalPath = 0;
600    CyclicCritPath = 0;
601    RemIssueCount = 0;
602    IsAcyclicLatencyLimited = false;
603    RemainingCounts.clear();
604  }
605
606  void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
607};
608
609/// Each Scheduling boundary is associated with ready queues. It tracks the
610/// current cycle in the direction of movement, and maintains the state
611/// of "hazards" and other interlocks at the current cycle.
612class SchedBoundary {
613public:
614  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
615  enum {
616    TopQID = 1,
617    BotQID = 2,
618    LogMaxQID = 2
619  };
620
621  ScheduleDAGMI *DAG = nullptr;
622  const TargetSchedModel *SchedModel = nullptr;
623  SchedRemainder *Rem = nullptr;
624
625  ReadyQueue Available;
626  ReadyQueue Pending;
627
628  ScheduleHazardRecognizer *HazardRec = nullptr;
629
630private:
631  /// True if the pending Q should be checked/updated before scheduling another
632  /// instruction.
633  bool CheckPending;
634
635  /// Number of cycles it takes to issue the instructions scheduled in this
636  /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
637  /// See getStalls().
638  unsigned CurrCycle;
639
640  /// Micro-ops issued in the current cycle
641  unsigned CurrMOps;
642
643  /// MinReadyCycle - Cycle of the soonest available instruction.
644  unsigned MinReadyCycle;
645
646  // The expected latency of the critical path in this scheduled zone.
647  unsigned ExpectedLatency;
648
649  // The latency of dependence chains leading into this zone.
650  // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
651  // For each cycle scheduled: DLat -= 1.
652  unsigned DependentLatency;
653
654  /// Count the scheduled (issued) micro-ops that can be retired by
655  /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
656  unsigned RetiredMOps;
657
658  // Count scheduled resources that have been executed. Resources are
659  // considered executed if they become ready in the time that it takes to
660  // saturate any resource including the one in question. Counts are scaled
661  // for direct comparison with other resources. Counts can be compared with
662  // MOps * getMicroOpFactor and Latency * getLatencyFactor.
663  SmallVector<unsigned, 16> ExecutedResCounts;
664
665  /// Cache the max count for a single resource.
666  unsigned MaxExecutedResCount;
667
668  // Cache the critical resources ID in this scheduled zone.
669  unsigned ZoneCritResIdx;
670
671  // Is the scheduled region resource limited vs. latency limited.
672  bool IsResourceLimited;
673
674  // Record the highest cycle at which each resource has been reserved by a
675  // scheduled instruction.
676  SmallVector<unsigned, 16> ReservedCycles;
677
678#ifndef NDEBUG
679  // Remember the greatest possible stall as an upper bound on the number of
680  // times we should retry the pending queue because of a hazard.
681  unsigned MaxObservedStall;
682#endif
683
684public:
685  /// Pending queues extend the ready queues with the same ID and the
686  /// PendingFlag set.
687  SchedBoundary(unsigned ID, const Twine &Name):
688    Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") {
689    reset();
690  }
691
692  ~SchedBoundary();
693
694  void reset();
695
696  void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
697            SchedRemainder *rem);
698
699  bool isTop() const {
700    return Available.getID() == TopQID;
701  }
702
703  /// Number of cycles to issue the instructions scheduled in this zone.
704  unsigned getCurrCycle() const { return CurrCycle; }
705
706  /// Micro-ops issued in the current cycle
707  unsigned getCurrMOps() const { return CurrMOps; }
708
709  // The latency of dependence chains leading into this zone.
710  unsigned getDependentLatency() const { return DependentLatency; }
711
712  /// Get the number of latency cycles "covered" by the scheduled
713  /// instructions. This is the larger of the critical path within the zone
714  /// and the number of cycles required to issue the instructions.
715  unsigned getScheduledLatency() const {
716    return std::max(ExpectedLatency, CurrCycle);
717  }
718
719  unsigned getUnscheduledLatency(SUnit *SU) const {
720    return isTop() ? SU->getHeight() : SU->getDepth();
721  }
722
723  unsigned getResourceCount(unsigned ResIdx) const {
724    return ExecutedResCounts[ResIdx];
725  }
726
727  /// Get the scaled count of scheduled micro-ops and resources, including
728  /// executed resources.
729  unsigned getCriticalCount() const {
730    if (!ZoneCritResIdx)
731      return RetiredMOps * SchedModel->getMicroOpFactor();
732    return getResourceCount(ZoneCritResIdx);
733  }
734
735  /// Get a scaled count for the minimum execution time of the scheduled
736  /// micro-ops that are ready to execute by getExecutedCount. Notice the
737  /// feedback loop.
738  unsigned getExecutedCount() const {
739    return std::max(CurrCycle * SchedModel->getLatencyFactor(),
740                    MaxExecutedResCount);
741  }
742
743  unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
744
745  // Is the scheduled region resource limited vs. latency limited.
746  bool isResourceLimited() const { return IsResourceLimited; }
747
748  /// Get the difference between the given SUnit's ready time and the current
749  /// cycle.
750  unsigned getLatencyStallCycles(SUnit *SU);
751
752  unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
753
754  bool checkHazard(SUnit *SU);
755
756  unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
757
758  unsigned getOtherResourceCount(unsigned &OtherCritIdx);
759
760  void releaseNode(SUnit *SU, unsigned ReadyCycle);
761
762  void bumpCycle(unsigned NextCycle);
763
764  void incExecutedResources(unsigned PIdx, unsigned Count);
765
766  unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
767
768  void bumpNode(SUnit *SU);
769
770  void releasePending();
771
772  void removeReady(SUnit *SU);
773
774  /// Call this before applying any other heuristics to the Available queue.
775  /// Updates the Available/Pending Q's if necessary and returns the single
776  /// available instruction, or NULL if there are multiple candidates.
777  SUnit *pickOnlyChoice();
778
779  void dumpScheduledState() const;
780};
781
782/// Base class for GenericScheduler. This class maintains information about
783/// scheduling candidates based on TargetSchedModel making it easy to implement
784/// heuristics for either preRA or postRA scheduling.
785class GenericSchedulerBase : public MachineSchedStrategy {
786public:
787  /// Represent the type of SchedCandidate found within a single queue.
788  /// pickNodeBidirectional depends on these listed by decreasing priority.
789  enum CandReason : uint8_t {
790    NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak,
791    RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
792    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
793
794#ifndef NDEBUG
795  static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
796#endif
797
798  /// Policy for scheduling the next instruction in the candidate's zone.
799  struct CandPolicy {
800    bool ReduceLatency = false;
801    unsigned ReduceResIdx = 0;
802    unsigned DemandResIdx = 0;
803
804    CandPolicy() = default;
805
806    bool operator==(const CandPolicy &RHS) const {
807      return ReduceLatency == RHS.ReduceLatency &&
808             ReduceResIdx == RHS.ReduceResIdx &&
809             DemandResIdx == RHS.DemandResIdx;
810    }
811    bool operator!=(const CandPolicy &RHS) const {
812      return !(*this == RHS);
813    }
814  };
815
816  /// Status of an instruction's critical resource consumption.
817  struct SchedResourceDelta {
818    // Count critical resources in the scheduled region required by SU.
819    unsigned CritResources = 0;
820
821    // Count critical resources from another region consumed by SU.
822    unsigned DemandedResources = 0;
823
824    SchedResourceDelta() = default;
825
826    bool operator==(const SchedResourceDelta &RHS) const {
827      return CritResources == RHS.CritResources
828        && DemandedResources == RHS.DemandedResources;
829    }
830    bool operator!=(const SchedResourceDelta &RHS) const {
831      return !operator==(RHS);
832    }
833  };
834
835  /// Store the state used by GenericScheduler heuristics, required for the
836  /// lifetime of one invocation of pickNode().
837  struct SchedCandidate {
838    CandPolicy Policy;
839
840    // The best SUnit candidate.
841    SUnit *SU;
842
843    // The reason for this candidate.
844    CandReason Reason;
845
846    // Whether this candidate should be scheduled at top/bottom.
847    bool AtTop;
848
849    // Register pressure values for the best candidate.
850    RegPressureDelta RPDelta;
851
852    // Critical resource consumption of the best candidate.
853    SchedResourceDelta ResDelta;
854
855    SchedCandidate() { reset(CandPolicy()); }
856    SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
857
858    void reset(const CandPolicy &NewPolicy) {
859      Policy = NewPolicy;
860      SU = nullptr;
861      Reason = NoCand;
862      AtTop = false;
863      RPDelta = RegPressureDelta();
864      ResDelta = SchedResourceDelta();
865    }
866
867    bool isValid() const { return SU; }
868
869    // Copy the status of another candidate without changing policy.
870    void setBest(SchedCandidate &Best) {
871      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
872      SU = Best.SU;
873      Reason = Best.Reason;
874      AtTop = Best.AtTop;
875      RPDelta = Best.RPDelta;
876      ResDelta = Best.ResDelta;
877    }
878
879    void initResourceDelta(const ScheduleDAGMI *DAG,
880                           const TargetSchedModel *SchedModel);
881  };
882
883protected:
884  const MachineSchedContext *Context;
885  const TargetSchedModel *SchedModel = nullptr;
886  const TargetRegisterInfo *TRI = nullptr;
887
888  SchedRemainder Rem;
889
890  GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {}
891
892  void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
893                 SchedBoundary *OtherZone);
894
895#ifndef NDEBUG
896  void traceCandidate(const SchedCandidate &Cand);
897#endif
898};
899
900/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
901/// the schedule.
902class GenericScheduler : public GenericSchedulerBase {
903public:
904  GenericScheduler(const MachineSchedContext *C):
905    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"),
906    Bot(SchedBoundary::BotQID, "BotQ") {}
907
908  void initPolicy(MachineBasicBlock::iterator Begin,
909                  MachineBasicBlock::iterator End,
910                  unsigned NumRegionInstrs) override;
911
912  void dumpPolicy() const override;
913
914  bool shouldTrackPressure() const override {
915    return RegionPolicy.ShouldTrackPressure;
916  }
917
918  bool shouldTrackLaneMasks() const override {
919    return RegionPolicy.ShouldTrackLaneMasks;
920  }
921
922  void initialize(ScheduleDAGMI *dag) override;
923
924  SUnit *pickNode(bool &IsTopNode) override;
925
926  void schedNode(SUnit *SU, bool IsTopNode) override;
927
928  void releaseTopNode(SUnit *SU) override {
929    if (SU->isScheduled)
930      return;
931
932    Top.releaseNode(SU, SU->TopReadyCycle);
933    TopCand.SU = nullptr;
934  }
935
936  void releaseBottomNode(SUnit *SU) override {
937    if (SU->isScheduled)
938      return;
939
940    Bot.releaseNode(SU, SU->BotReadyCycle);
941    BotCand.SU = nullptr;
942  }
943
944  void registerRoots() override;
945
946protected:
947  ScheduleDAGMILive *DAG = nullptr;
948
949  MachineSchedPolicy RegionPolicy;
950
951  // State of the top and bottom scheduled instruction boundaries.
952  SchedBoundary Top;
953  SchedBoundary Bot;
954
955  /// Candidate last picked from Top boundary.
956  SchedCandidate TopCand;
957  /// Candidate last picked from Bot boundary.
958  SchedCandidate BotCand;
959
960  void checkAcyclicLatency();
961
962  void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
963                     const RegPressureTracker &RPTracker,
964                     RegPressureTracker &TempTracker);
965
966  void tryCandidate(SchedCandidate &Cand,
967                    SchedCandidate &TryCand,
968                    SchedBoundary *Zone);
969
970  SUnit *pickNodeBidirectional(bool &IsTopNode);
971
972  void pickNodeFromQueue(SchedBoundary &Zone,
973                         const CandPolicy &ZonePolicy,
974                         const RegPressureTracker &RPTracker,
975                         SchedCandidate &Candidate);
976
977  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
978};
979
980/// PostGenericScheduler - Interface to the scheduling algorithm used by
981/// ScheduleDAGMI.
982///
983/// Callbacks from ScheduleDAGMI:
984///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
985class PostGenericScheduler : public GenericSchedulerBase {
986  ScheduleDAGMI *DAG;
987  SchedBoundary Top;
988  SmallVector<SUnit*, 8> BotRoots;
989
990public:
991  PostGenericScheduler(const MachineSchedContext *C):
992    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
993
994  ~PostGenericScheduler() override = default;
995
996  void initPolicy(MachineBasicBlock::iterator Begin,
997                  MachineBasicBlock::iterator End,
998                  unsigned NumRegionInstrs) override {
999    /* no configurable policy */
1000  }
1001
1002  /// PostRA scheduling does not track pressure.
1003  bool shouldTrackPressure() const override { return false; }
1004
1005  void initialize(ScheduleDAGMI *Dag) override;
1006
1007  void registerRoots() override;
1008
1009  SUnit *pickNode(bool &IsTopNode) override;
1010
1011  void scheduleTree(unsigned SubtreeID) override {
1012    llvm_unreachable("PostRA scheduler does not support subtree analysis.");
1013  }
1014
1015  void schedNode(SUnit *SU, bool IsTopNode) override;
1016
1017  void releaseTopNode(SUnit *SU) override {
1018    if (SU->isScheduled)
1019      return;
1020    Top.releaseNode(SU, SU->TopReadyCycle);
1021  }
1022
1023  // Only called for roots.
1024  void releaseBottomNode(SUnit *SU) override {
1025    BotRoots.push_back(SU);
1026  }
1027
1028protected:
1029  void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
1030
1031  void pickNodeFromQueue(SchedCandidate &Cand);
1032};
1033
1034/// Create the standard converging machine scheduler. This will be used as the
1035/// default scheduler if the target does not set a default.
1036/// Adds default DAG mutations.
1037ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C);
1038
1039/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
1040ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C);
1041
1042std::unique_ptr<ScheduleDAGMutation>
1043createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1044                             const TargetRegisterInfo *TRI);
1045
1046std::unique_ptr<ScheduleDAGMutation>
1047createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1048                              const TargetRegisterInfo *TRI);
1049
1050std::unique_ptr<ScheduleDAGMutation>
1051createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1052                               const TargetRegisterInfo *TRI);
1053
1054} // end namespace llvm
1055
1056#endif // LLVM_CODEGEN_MACHINESCHEDULER_H
1057