1//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an abstract sparse conditional propagation algorithm,
11// modeled after SCCP, but with a customizable lattice function.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
16#define LLVM_ANALYSIS_SPARSEPROPAGATION_H
17
18#include "llvm/IR/Instructions.h"
19#include "llvm/Support/Debug.h"
20#include <set>
21
22#define DEBUG_TYPE "sparseprop"
23
24namespace llvm {
25
26/// A template for translating between LLVM Values and LatticeKeys. Clients must
27/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
28template <class LatticeKey> struct LatticeKeyInfo {
29  // static inline Value *getValueFromLatticeKey(LatticeKey Key);
30  // static inline LatticeKey getLatticeKeyFromValue(Value *V);
31};
32
33template <class LatticeKey, class LatticeVal,
34          class KeyInfo = LatticeKeyInfo<LatticeKey>>
35class SparseSolver;
36
37/// AbstractLatticeFunction - This class is implemented by the dataflow instance
38/// to specify what the lattice values are and how they handle merges etc.  This
39/// gives the client the power to compute lattice values from instructions,
40/// constants, etc.  The current requirement is that lattice values must be
41/// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
42/// lattice keys must be able to be used as keys of a mapping data structure.
43/// Internally, the generic solver currently uses a DenseMap to map lattice keys
44/// to lattice values.  If the lattice key is a non-standard type, a
45/// specialization of DenseMapInfo must be provided.
46template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
47private:
48  LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
49
50public:
51  AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
52                          LatticeVal untrackedVal) {
53    UndefVal = undefVal;
54    OverdefinedVal = overdefinedVal;
55    UntrackedVal = untrackedVal;
56  }
57
58  virtual ~AbstractLatticeFunction() = default;
59
60  LatticeVal getUndefVal()       const { return UndefVal; }
61  LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
62  LatticeVal getUntrackedVal()   const { return UntrackedVal; }
63
64  /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
65  /// to the analysis (i.e., it would always return UntrackedVal), this
66  /// function can return true to avoid pointless work.
67  virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
68
69  /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
70  /// given LatticeKey.
71  virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
72    return getOverdefinedVal();
73  }
74
75  /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
76  /// one that the we want to handle through ComputeInstructionState.
77  virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
78
79  /// MergeValues - Compute and return the merge of the two specified lattice
80  /// values.  Merging should only move one direction down the lattice to
81  /// guarantee convergence (toward overdefined).
82  virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
83    return getOverdefinedVal(); // always safe, never useful.
84  }
85
86  /// ComputeInstructionState - Compute the LatticeKeys that change as a result
87  /// of executing instruction \p I. Their associated LatticeVals are store in
88  /// \p ChangedValues.
89  virtual void
90  ComputeInstructionState(Instruction &I,
91                          DenseMap<LatticeKey, LatticeVal> &ChangedValues,
92                          SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
93
94  /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
95  virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
96
97  /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
98  virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
99
100  /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
101  /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
102  /// returned value must have the same type. This function is used by the
103  /// generic solver in attempting to resolve branch and switch conditions.
104  virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
105    return nullptr;
106  }
107};
108
109/// SparseSolver - This class is a general purpose solver for Sparse Conditional
110/// Propagation with a programmable lattice function.
111template <class LatticeKey, class LatticeVal, class KeyInfo>
112class SparseSolver {
113
114  /// LatticeFunc - This is the object that knows the lattice and how to
115  /// compute transfer functions.
116  AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
117
118  /// ValueState - Holds the LatticeVals associated with LatticeKeys.
119  DenseMap<LatticeKey, LatticeVal> ValueState;
120
121  /// BBExecutable - Holds the basic blocks that are executable.
122  SmallPtrSet<BasicBlock *, 16> BBExecutable;
123
124  /// ValueWorkList - Holds values that should be processed.
125  SmallVector<Value *, 64> ValueWorkList;
126
127  /// BBWorkList - Holds basic blocks that should be processed.
128  SmallVector<BasicBlock *, 64> BBWorkList;
129
130  using Edge = std::pair<BasicBlock *, BasicBlock *>;
131
132  /// KnownFeasibleEdges - Entries in this set are edges which have already had
133  /// PHI nodes retriggered.
134  std::set<Edge> KnownFeasibleEdges;
135
136public:
137  explicit SparseSolver(
138      AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
139      : LatticeFunc(Lattice) {}
140  SparseSolver(const SparseSolver &) = delete;
141  SparseSolver &operator=(const SparseSolver &) = delete;
142
143  /// Solve - Solve for constants and executable blocks.
144  void Solve();
145
146  void Print(raw_ostream &OS) const;
147
148  /// getExistingValueState - Return the LatticeVal object corresponding to the
149  /// given value from the ValueState map. If the value is not in the map,
150  /// UntrackedVal is returned, unlike the getValueState method.
151  LatticeVal getExistingValueState(LatticeKey Key) const {
152    auto I = ValueState.find(Key);
153    return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
154  }
155
156  /// getValueState - Return the LatticeVal object corresponding to the given
157  /// value from the ValueState map. If the value is not in the map, its state
158  /// is initialized.
159  LatticeVal getValueState(LatticeKey Key);
160
161  /// isEdgeFeasible - Return true if the control flow edge from the 'From'
162  /// basic block to the 'To' basic block is currently feasible.  If
163  /// AggressiveUndef is true, then this treats values with unknown lattice
164  /// values as undefined.  This is generally only useful when solving the
165  /// lattice, not when querying it.
166  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
167                      bool AggressiveUndef = false);
168
169  /// isBlockExecutable - Return true if there are any known feasible
170  /// edges into the basic block.  This is generally only useful when
171  /// querying the lattice.
172  bool isBlockExecutable(BasicBlock *BB) const {
173    return BBExecutable.count(BB);
174  }
175
176  /// MarkBlockExecutable - This method can be used by clients to mark all of
177  /// the blocks that are known to be intrinsically live in the processed unit.
178  void MarkBlockExecutable(BasicBlock *BB);
179
180private:
181  /// UpdateState - When the state of some LatticeKey is potentially updated to
182  /// the given LatticeVal, this function notices and adds the LLVM value
183  /// corresponding the key to the work list, if needed.
184  void UpdateState(LatticeKey Key, LatticeVal LV);
185
186  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
187  /// work list if it is not already executable.
188  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
189
190  /// getFeasibleSuccessors - Return a vector of booleans to indicate which
191  /// successors are reachable from a given terminator instruction.
192  void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs,
193                             bool AggressiveUndef);
194
195  void visitInst(Instruction &I);
196  void visitPHINode(PHINode &I);
197  void visitTerminatorInst(TerminatorInst &TI);
198};
199
200//===----------------------------------------------------------------------===//
201//                  AbstractLatticeFunction Implementation
202//===----------------------------------------------------------------------===//
203
204template <class LatticeKey, class LatticeVal>
205void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
206    LatticeVal V, raw_ostream &OS) {
207  if (V == UndefVal)
208    OS << "undefined";
209  else if (V == OverdefinedVal)
210    OS << "overdefined";
211  else if (V == UntrackedVal)
212    OS << "untracked";
213  else
214    OS << "unknown lattice value";
215}
216
217template <class LatticeKey, class LatticeVal>
218void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
219    LatticeKey Key, raw_ostream &OS) {
220  OS << "unknown lattice key";
221}
222
223//===----------------------------------------------------------------------===//
224//                          SparseSolver Implementation
225//===----------------------------------------------------------------------===//
226
227template <class LatticeKey, class LatticeVal, class KeyInfo>
228LatticeVal
229SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
230  auto I = ValueState.find(Key);
231  if (I != ValueState.end())
232    return I->second; // Common case, in the map
233
234  if (LatticeFunc->IsUntrackedValue(Key))
235    return LatticeFunc->getUntrackedVal();
236  LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
237
238  // If this value is untracked, don't add it to the map.
239  if (LV == LatticeFunc->getUntrackedVal())
240    return LV;
241  return ValueState[Key] = LV;
242}
243
244template <class LatticeKey, class LatticeVal, class KeyInfo>
245void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
246                                                                LatticeVal LV) {
247  auto I = ValueState.find(Key);
248  if (I != ValueState.end() && I->second == LV)
249    return; // No change.
250
251  // Update the state of the given LatticeKey and add its corresponding LLVM
252  // value to the work list.
253  ValueState[Key] = LV;
254  if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
255    ValueWorkList.push_back(V);
256}
257
258template <class LatticeKey, class LatticeVal, class KeyInfo>
259void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
260    BasicBlock *BB) {
261  if (!BBExecutable.insert(BB).second)
262    return;
263  DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
264  BBWorkList.push_back(BB); // Add the block to the work list!
265}
266
267template <class LatticeKey, class LatticeVal, class KeyInfo>
268void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
269    BasicBlock *Source, BasicBlock *Dest) {
270  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
271    return; // This edge is already known to be executable!
272
273  DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> "
274               << Dest->getName() << "\n");
275
276  if (BBExecutable.count(Dest)) {
277    // The destination is already executable, but we just made an edge
278    // feasible that wasn't before.  Revisit the PHI nodes in the block
279    // because they have potentially new operands.
280    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
281      visitPHINode(*cast<PHINode>(I));
282  } else {
283    MarkBlockExecutable(Dest);
284  }
285}
286
287template <class LatticeKey, class LatticeVal, class KeyInfo>
288void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
289    TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
290  Succs.resize(TI.getNumSuccessors());
291  if (TI.getNumSuccessors() == 0)
292    return;
293
294  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
295    if (BI->isUnconditional()) {
296      Succs[0] = true;
297      return;
298    }
299
300    LatticeVal BCValue;
301    if (AggressiveUndef)
302      BCValue =
303          getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
304    else
305      BCValue = getExistingValueState(
306          KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
307
308    if (BCValue == LatticeFunc->getOverdefinedVal() ||
309        BCValue == LatticeFunc->getUntrackedVal()) {
310      // Overdefined condition variables can branch either way.
311      Succs[0] = Succs[1] = true;
312      return;
313    }
314
315    // If undefined, neither is feasible yet.
316    if (BCValue == LatticeFunc->getUndefVal())
317      return;
318
319    Constant *C =
320        dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
321            BCValue, BI->getCondition()->getType()));
322    if (!C || !isa<ConstantInt>(C)) {
323      // Non-constant values can go either way.
324      Succs[0] = Succs[1] = true;
325      return;
326    }
327
328    // Constant condition variables mean the branch can only go a single way
329    Succs[C->isNullValue()] = true;
330    return;
331  }
332
333  if (TI.isExceptional()) {
334    Succs.assign(Succs.size(), true);
335    return;
336  }
337
338  if (isa<IndirectBrInst>(TI)) {
339    Succs.assign(Succs.size(), true);
340    return;
341  }
342
343  SwitchInst &SI = cast<SwitchInst>(TI);
344  LatticeVal SCValue;
345  if (AggressiveUndef)
346    SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
347  else
348    SCValue = getExistingValueState(
349        KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
350
351  if (SCValue == LatticeFunc->getOverdefinedVal() ||
352      SCValue == LatticeFunc->getUntrackedVal()) {
353    // All destinations are executable!
354    Succs.assign(TI.getNumSuccessors(), true);
355    return;
356  }
357
358  // If undefined, neither is feasible yet.
359  if (SCValue == LatticeFunc->getUndefVal())
360    return;
361
362  Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
363      SCValue, SI.getCondition()->getType()));
364  if (!C || !isa<ConstantInt>(C)) {
365    // All destinations are executable!
366    Succs.assign(TI.getNumSuccessors(), true);
367    return;
368  }
369  SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
370  Succs[Case.getSuccessorIndex()] = true;
371}
372
373template <class LatticeKey, class LatticeVal, class KeyInfo>
374bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
375    BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
376  SmallVector<bool, 16> SuccFeasible;
377  TerminatorInst *TI = From->getTerminator();
378  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
379
380  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
381    if (TI->getSuccessor(i) == To && SuccFeasible[i])
382      return true;
383
384  return false;
385}
386
387template <class LatticeKey, class LatticeVal, class KeyInfo>
388void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminatorInst(
389    TerminatorInst &TI) {
390  SmallVector<bool, 16> SuccFeasible;
391  getFeasibleSuccessors(TI, SuccFeasible, true);
392
393  BasicBlock *BB = TI.getParent();
394
395  // Mark all feasible successors executable...
396  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
397    if (SuccFeasible[i])
398      markEdgeExecutable(BB, TI.getSuccessor(i));
399}
400
401template <class LatticeKey, class LatticeVal, class KeyInfo>
402void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
403  // The lattice function may store more information on a PHINode than could be
404  // computed from its incoming values.  For example, SSI form stores its sigma
405  // functions as PHINodes with a single incoming value.
406  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
407    DenseMap<LatticeKey, LatticeVal> ChangedValues;
408    LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
409    for (auto &ChangedValue : ChangedValues)
410      if (ChangedValue.second != LatticeFunc->getUntrackedVal())
411        UpdateState(ChangedValue.first, ChangedValue.second);
412    return;
413  }
414
415  LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
416  LatticeVal PNIV = getValueState(Key);
417  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
418
419  // If this value is already overdefined (common) just return.
420  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
421    return; // Quick exit
422
423  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
424  // and slow us down a lot.  Just mark them overdefined.
425  if (PN.getNumIncomingValues() > 64) {
426    UpdateState(Key, Overdefined);
427    return;
428  }
429
430  // Look at all of the executable operands of the PHI node.  If any of them
431  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
432  // transfer function to give us the merge of the incoming values.
433  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
434    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
435    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
436      continue;
437
438    // Merge in this value.
439    LatticeVal OpVal =
440        getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
441    if (OpVal != PNIV)
442      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
443
444    if (PNIV == Overdefined)
445      break; // Rest of input values don't matter.
446  }
447
448  // Update the PHI with the compute value, which is the merge of the inputs.
449  UpdateState(Key, PNIV);
450}
451
452template <class LatticeKey, class LatticeVal, class KeyInfo>
453void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
454  // PHIs are handled by the propagation logic, they are never passed into the
455  // transfer functions.
456  if (PHINode *PN = dyn_cast<PHINode>(&I))
457    return visitPHINode(*PN);
458
459  // Otherwise, ask the transfer function what the result is.  If this is
460  // something that we care about, remember it.
461  DenseMap<LatticeKey, LatticeVal> ChangedValues;
462  LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
463  for (auto &ChangedValue : ChangedValues)
464    if (ChangedValue.second != LatticeFunc->getUntrackedVal())
465      UpdateState(ChangedValue.first, ChangedValue.second);
466
467  if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
468    visitTerminatorInst(*TI);
469}
470
471template <class LatticeKey, class LatticeVal, class KeyInfo>
472void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
473  // Process the work lists until they are empty!
474  while (!BBWorkList.empty() || !ValueWorkList.empty()) {
475    // Process the value work list.
476    while (!ValueWorkList.empty()) {
477      Value *V = ValueWorkList.back();
478      ValueWorkList.pop_back();
479
480      DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
481
482      // "V" got into the work list because it made a transition. See if any
483      // users are both live and in need of updating.
484      for (User *U : V->users())
485        if (Instruction *Inst = dyn_cast<Instruction>(U))
486          if (BBExecutable.count(Inst->getParent())) // Inst is executable?
487            visitInst(*Inst);
488    }
489
490    // Process the basic block work list.
491    while (!BBWorkList.empty()) {
492      BasicBlock *BB = BBWorkList.back();
493      BBWorkList.pop_back();
494
495      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
496
497      // Notify all instructions in this basic block that they are newly
498      // executable.
499      for (Instruction &I : *BB)
500        visitInst(I);
501    }
502  }
503}
504
505template <class LatticeKey, class LatticeVal, class KeyInfo>
506void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
507    raw_ostream &OS) const {
508  if (ValueState.empty())
509    return;
510
511  LatticeKey Key;
512  LatticeVal LV;
513
514  OS << "ValueState:\n";
515  for (auto &Entry : ValueState) {
516    std::tie(Key, LV) = Entry;
517    if (LV == LatticeFunc->getUntrackedVal())
518      continue;
519    OS << "\t";
520    LatticeFunc->PrintLatticeVal(LV, OS);
521    OS << ": ";
522    LatticeFunc->PrintLatticeKey(Key, OS);
523    OS << "\n";
524  }
525}
526} // end namespace llvm
527
528#undef DEBUG_TYPE
529
530#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
531