1//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_VALUETRACKING_H
16#define LLVM_ANALYSIS_VALUETRACKING_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/IR/CallSite.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/Instruction.h"
23#include "llvm/IR/Intrinsics.h"
24#include <cassert>
25#include <cstdint>
26
27namespace llvm {
28
29class AddOperator;
30class APInt;
31class AssumptionCache;
32class DataLayout;
33class DominatorTree;
34class GEPOperator;
35class IntrinsicInst;
36struct KnownBits;
37class Loop;
38class LoopInfo;
39class MDNode;
40class OptimizationRemarkEmitter;
41class StringRef;
42class TargetLibraryInfo;
43class Value;
44
45  /// Determine which bits of V are known to be either zero or one and return
46  /// them in the KnownZero/KnownOne bit sets.
47  ///
48  /// This function is defined on values with integer type, values with pointer
49  /// type, and vectors of integers.  In the case
50  /// where V is a vector, the known zero and known one values are the
51  /// same width as the vector element, and the bit is set only if it is true
52  /// for all of the elements in the vector.
53  void computeKnownBits(const Value *V, KnownBits &Known,
54                        const DataLayout &DL, unsigned Depth = 0,
55                        AssumptionCache *AC = nullptr,
56                        const Instruction *CxtI = nullptr,
57                        const DominatorTree *DT = nullptr,
58                        OptimizationRemarkEmitter *ORE = nullptr);
59
60  /// Returns the known bits rather than passing by reference.
61  KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
62                             unsigned Depth = 0, AssumptionCache *AC = nullptr,
63                             const Instruction *CxtI = nullptr,
64                             const DominatorTree *DT = nullptr,
65                             OptimizationRemarkEmitter *ORE = nullptr);
66
67  /// Compute known bits from the range metadata.
68  /// \p KnownZero the set of bits that are known to be zero
69  /// \p KnownOne the set of bits that are known to be one
70  void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
71                                         KnownBits &Known);
72
73  /// Return true if LHS and RHS have no common bits set.
74  bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
75                           const DataLayout &DL,
76                           AssumptionCache *AC = nullptr,
77                           const Instruction *CxtI = nullptr,
78                           const DominatorTree *DT = nullptr);
79
80  /// Return true if the given value is known to have exactly one bit set when
81  /// defined. For vectors return true if every element is known to be a power
82  /// of two when defined. Supports values with integer or pointer type and
83  /// vectors of integers. If 'OrZero' is set, then return true if the given
84  /// value is either a power of two or zero.
85  bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
86                              bool OrZero = false, unsigned Depth = 0,
87                              AssumptionCache *AC = nullptr,
88                              const Instruction *CxtI = nullptr,
89                              const DominatorTree *DT = nullptr);
90
91  bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
92
93  /// Return true if the given value is known to be non-zero when defined. For
94  /// vectors, return true if every element is known to be non-zero when
95  /// defined. For pointers, if the context instruction and dominator tree are
96  /// specified, perform context-sensitive analysis and return true if the
97  /// pointer couldn't possibly be null at the specified instruction.
98  /// Supports values with integer or pointer type and vectors of integers.
99  bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
100                      AssumptionCache *AC = nullptr,
101                      const Instruction *CxtI = nullptr,
102                      const DominatorTree *DT = nullptr);
103
104  /// Returns true if the give value is known to be non-negative.
105  bool isKnownNonNegative(const Value *V, const DataLayout &DL,
106                          unsigned Depth = 0,
107                          AssumptionCache *AC = nullptr,
108                          const Instruction *CxtI = nullptr,
109                          const DominatorTree *DT = nullptr);
110
111  /// Returns true if the given value is known be positive (i.e. non-negative
112  /// and non-zero).
113  bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
114                       AssumptionCache *AC = nullptr,
115                       const Instruction *CxtI = nullptr,
116                       const DominatorTree *DT = nullptr);
117
118  /// Returns true if the given value is known be negative (i.e. non-positive
119  /// and non-zero).
120  bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
121                       AssumptionCache *AC = nullptr,
122                       const Instruction *CxtI = nullptr,
123                       const DominatorTree *DT = nullptr);
124
125  /// Return true if the given values are known to be non-equal when defined.
126  /// Supports scalar integer types only.
127  bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
128                      AssumptionCache *AC = nullptr,
129                      const Instruction *CxtI = nullptr,
130                      const DominatorTree *DT = nullptr);
131
132  /// Return true if 'V & Mask' is known to be zero. We use this predicate to
133  /// simplify operations downstream. Mask is known to be zero for bits that V
134  /// cannot have.
135  ///
136  /// This function is defined on values with integer type, values with pointer
137  /// type, and vectors of integers.  In the case
138  /// where V is a vector, the mask, known zero, and known one values are the
139  /// same width as the vector element, and the bit is set only if it is true
140  /// for all of the elements in the vector.
141  bool MaskedValueIsZero(const Value *V, const APInt &Mask,
142                         const DataLayout &DL,
143                         unsigned Depth = 0, AssumptionCache *AC = nullptr,
144                         const Instruction *CxtI = nullptr,
145                         const DominatorTree *DT = nullptr);
146
147  /// Return the number of times the sign bit of the register is replicated into
148  /// the other bits. We know that at least 1 bit is always equal to the sign
149  /// bit (itself), but other cases can give us information. For example,
150  /// immediately after an "ashr X, 2", we know that the top 3 bits are all
151  /// equal to each other, so we return 3. For vectors, return the number of
152  /// sign bits for the vector element with the mininum number of known sign
153  /// bits.
154  unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
155                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
156                              const Instruction *CxtI = nullptr,
157                              const DominatorTree *DT = nullptr);
158
159  /// This function computes the integer multiple of Base that equals V. If
160  /// successful, it returns true and returns the multiple in Multiple. If
161  /// unsuccessful, it returns false. Also, if V can be simplified to an
162  /// integer, then the simplified V is returned in Val. Look through sext only
163  /// if LookThroughSExt=true.
164  bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
165                       bool LookThroughSExt = false,
166                       unsigned Depth = 0);
167
168  /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
169  /// intrinsics are treated as-if they were intrinsics.
170  Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
171                                        const TargetLibraryInfo *TLI);
172
173  /// Return true if we can prove that the specified FP value is never equal to
174  /// -0.0.
175  bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
176                            unsigned Depth = 0);
177
178  /// Return true if we can prove that the specified FP value is either NaN or
179  /// never less than -0.0.
180  ///
181  ///      NaN --> true
182  ///       +0 --> true
183  ///       -0 --> true
184  ///   x > +0 --> true
185  ///   x < -0 --> false
186  bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
187
188  /// Return true if the floating-point scalar value is not a NaN or if the
189  /// floating-point vector value has no NaN elements. Return false if a value
190  /// could ever be NaN.
191  bool isKnownNeverNaN(const Value *V);
192
193  /// Return true if we can prove that the specified FP value's sign bit is 0.
194  ///
195  ///      NaN --> true/false (depending on the NaN's sign bit)
196  ///       +0 --> true
197  ///       -0 --> false
198  ///   x > +0 --> true
199  ///   x < -0 --> false
200  bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
201
202  /// If the specified value can be set by repeating the same byte in memory,
203  /// return the i8 value that it is represented with. This is true for all i8
204  /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
205  /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
206  /// i16 0x1234), return null.
207  Value *isBytewiseValue(Value *V);
208
209  /// Given an aggregrate and an sequence of indices, see if the scalar value
210  /// indexed is already around as a register, for example if it were inserted
211  /// directly into the aggregrate.
212  ///
213  /// If InsertBefore is not null, this function will duplicate (modified)
214  /// insertvalues when a part of a nested struct is extracted.
215  Value *FindInsertedValue(Value *V,
216                           ArrayRef<unsigned> idx_range,
217                           Instruction *InsertBefore = nullptr);
218
219  /// Analyze the specified pointer to see if it can be expressed as a base
220  /// pointer plus a constant offset. Return the base and offset to the caller.
221  Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
222                                          const DataLayout &DL);
223  static inline const Value *
224  GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
225                                   const DataLayout &DL) {
226    return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset,
227                                            DL);
228  }
229
230  /// Returns true if the GEP is based on a pointer to a string (array of
231  // \p CharSize integers) and is indexing into this string.
232  bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
233                                   unsigned CharSize = 8);
234
235  /// Represents offset+length into a ConstantDataArray.
236  struct ConstantDataArraySlice {
237    /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
238    /// initializer, it just doesn't fit the ConstantDataArray interface).
239    const ConstantDataArray *Array;
240
241    /// Slice starts at this Offset.
242    uint64_t Offset;
243
244    /// Length of the slice.
245    uint64_t Length;
246
247    /// Moves the Offset and adjusts Length accordingly.
248    void move(uint64_t Delta) {
249      assert(Delta < Length);
250      Offset += Delta;
251      Length -= Delta;
252    }
253
254    /// Convenience accessor for elements in the slice.
255    uint64_t operator[](unsigned I) const {
256      return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
257    }
258  };
259
260  /// Returns true if the value \p V is a pointer into a ConstantDataArray.
261  /// If successful \p Slice will point to a ConstantDataArray info object
262  /// with an appropriate offset.
263  bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
264                                unsigned ElementSize, uint64_t Offset = 0);
265
266  /// This function computes the length of a null-terminated C string pointed to
267  /// by V. If successful, it returns true and returns the string in Str. If
268  /// unsuccessful, it returns false. This does not include the trailing null
269  /// character by default. If TrimAtNul is set to false, then this returns any
270  /// trailing null characters as well as any other characters that come after
271  /// it.
272  bool getConstantStringInfo(const Value *V, StringRef &Str,
273                             uint64_t Offset = 0, bool TrimAtNul = true);
274
275  /// If we can compute the length of the string pointed to by the specified
276  /// pointer, return 'len+1'.  If we can't, return 0.
277  uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
278
279  /// This method strips off any GEP address adjustments and pointer casts from
280  /// the specified value, returning the original object being addressed. Note
281  /// that the returned value has pointer type if the specified value does. If
282  /// the MaxLookup value is non-zero, it limits the number of instructions to
283  /// be stripped off.
284  Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
285                             unsigned MaxLookup = 6);
286  static inline const Value *GetUnderlyingObject(const Value *V,
287                                                 const DataLayout &DL,
288                                                 unsigned MaxLookup = 6) {
289    return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
290  }
291
292  /// \brief This method is similar to GetUnderlyingObject except that it can
293  /// look through phi and select instructions and return multiple objects.
294  ///
295  /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
296  /// accesses different objects in each iteration, we don't look through the
297  /// phi node. E.g. consider this loop nest:
298  ///
299  ///   int **A;
300  ///   for (i)
301  ///     for (j) {
302  ///        A[i][j] = A[i-1][j] * B[j]
303  ///     }
304  ///
305  /// This is transformed by Load-PRE to stash away A[i] for the next iteration
306  /// of the outer loop:
307  ///
308  ///   Curr = A[0];          // Prev_0
309  ///   for (i: 1..N) {
310  ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
311  ///     Curr = A[i];
312  ///     for (j: 0..N) {
313  ///        Curr[j] = Prev[j] * B[j]
314  ///     }
315  ///   }
316  ///
317  /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
318  /// should not assume that Curr and Prev share the same underlying object thus
319  /// it shouldn't look through the phi above.
320  void GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
321                            const DataLayout &DL, LoopInfo *LI = nullptr,
322                            unsigned MaxLookup = 6);
323
324  /// This is a wrapper around GetUnderlyingObjects and adds support for basic
325  /// ptrtoint+arithmetic+inttoptr sequences.
326  bool getUnderlyingObjectsForCodeGen(const Value *V,
327                            SmallVectorImpl<Value *> &Objects,
328                            const DataLayout &DL);
329
330  /// Return true if the only users of this pointer are lifetime markers.
331  bool onlyUsedByLifetimeMarkers(const Value *V);
332
333  /// Return true if the instruction does not have any effects besides
334  /// calculating the result and does not have undefined behavior.
335  ///
336  /// This method never returns true for an instruction that returns true for
337  /// mayHaveSideEffects; however, this method also does some other checks in
338  /// addition. It checks for undefined behavior, like dividing by zero or
339  /// loading from an invalid pointer (but not for undefined results, like a
340  /// shift with a shift amount larger than the width of the result). It checks
341  /// for malloc and alloca because speculatively executing them might cause a
342  /// memory leak. It also returns false for instructions related to control
343  /// flow, specifically terminators and PHI nodes.
344  ///
345  /// If the CtxI is specified this method performs context-sensitive analysis
346  /// and returns true if it is safe to execute the instruction immediately
347  /// before the CtxI.
348  ///
349  /// If the CtxI is NOT specified this method only looks at the instruction
350  /// itself and its operands, so if this method returns true, it is safe to
351  /// move the instruction as long as the correct dominance relationships for
352  /// the operands and users hold.
353  ///
354  /// This method can return true for instructions that read memory;
355  /// for such instructions, moving them may change the resulting value.
356  bool isSafeToSpeculativelyExecute(const Value *V,
357                                    const Instruction *CtxI = nullptr,
358                                    const DominatorTree *DT = nullptr);
359
360  /// Returns true if the result or effects of the given instructions \p I
361  /// depend on or influence global memory.
362  /// Memory dependence arises for example if the instruction reads from
363  /// memory or may produce effects or undefined behaviour. Memory dependent
364  /// instructions generally cannot be reorderd with respect to other memory
365  /// dependent instructions or moved into non-dominated basic blocks.
366  /// Instructions which just compute a value based on the values of their
367  /// operands are not memory dependent.
368  bool mayBeMemoryDependent(const Instruction &I);
369
370  /// Return true if it is valid to use the assumptions provided by an
371  /// assume intrinsic, I, at the point in the control-flow identified by the
372  /// context instruction, CxtI.
373  bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
374                               const DominatorTree *DT = nullptr);
375
376  enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
377
378  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
379                                               const Value *RHS,
380                                               const DataLayout &DL,
381                                               AssumptionCache *AC,
382                                               const Instruction *CxtI,
383                                               const DominatorTree *DT);
384  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
385                                               const Value *RHS,
386                                               const DataLayout &DL,
387                                               AssumptionCache *AC,
388                                               const Instruction *CxtI,
389                                               const DominatorTree *DT);
390  OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
391                                             const DataLayout &DL,
392                                             AssumptionCache *AC = nullptr,
393                                             const Instruction *CxtI = nullptr,
394                                             const DominatorTree *DT = nullptr);
395  /// This version also leverages the sign bit of Add if known.
396  OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
397                                             const DataLayout &DL,
398                                             AssumptionCache *AC = nullptr,
399                                             const Instruction *CxtI = nullptr,
400                                             const DominatorTree *DT = nullptr);
401
402  /// Returns true if the arithmetic part of the \p II 's result is
403  /// used only along the paths control dependent on the computation
404  /// not overflowing, \p II being an <op>.with.overflow intrinsic.
405  bool isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
406                                 const DominatorTree &DT);
407
408  /// Return true if this function can prove that the instruction I will
409  /// always transfer execution to one of its successors (including the next
410  /// instruction that follows within a basic block). E.g. this is not
411  /// guaranteed for function calls that could loop infinitely.
412  ///
413  /// In other words, this function returns false for instructions that may
414  /// transfer execution or fail to transfer execution in a way that is not
415  /// captured in the CFG nor in the sequence of instructions within a basic
416  /// block.
417  ///
418  /// Undefined behavior is assumed not to happen, so e.g. division is
419  /// guaranteed to transfer execution to the following instruction even
420  /// though division by zero might cause undefined behavior.
421  bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
422
423  /// Return true if this function can prove that the instruction I
424  /// is executed for every iteration of the loop L.
425  ///
426  /// Note that this currently only considers the loop header.
427  bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
428                                              const Loop *L);
429
430  /// Return true if this function can prove that I is guaranteed to yield
431  /// full-poison (all bits poison) if at least one of its operands are
432  /// full-poison (all bits poison).
433  ///
434  /// The exact rules for how poison propagates through instructions have
435  /// not been settled as of 2015-07-10, so this function is conservative
436  /// and only considers poison to be propagated in uncontroversial
437  /// cases. There is no attempt to track values that may be only partially
438  /// poison.
439  bool propagatesFullPoison(const Instruction *I);
440
441  /// Return either nullptr or an operand of I such that I will trigger
442  /// undefined behavior if I is executed and that operand has a full-poison
443  /// value (all bits poison).
444  const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);
445
446  /// Return true if this function can prove that if PoisonI is executed
447  /// and yields a full-poison value (all bits poison), then that will
448  /// trigger undefined behavior.
449  ///
450  /// Note that this currently only considers the basic block that is
451  /// the parent of I.
452  bool programUndefinedIfFullPoison(const Instruction *PoisonI);
453
454  /// \brief Specific patterns of select instructions we can match.
455  enum SelectPatternFlavor {
456    SPF_UNKNOWN = 0,
457    SPF_SMIN,                   /// Signed minimum
458    SPF_UMIN,                   /// Unsigned minimum
459    SPF_SMAX,                   /// Signed maximum
460    SPF_UMAX,                   /// Unsigned maximum
461    SPF_FMINNUM,                /// Floating point minnum
462    SPF_FMAXNUM,                /// Floating point maxnum
463    SPF_ABS,                    /// Absolute value
464    SPF_NABS                    /// Negated absolute value
465  };
466
467  /// \brief Behavior when a floating point min/max is given one NaN and one
468  /// non-NaN as input.
469  enum SelectPatternNaNBehavior {
470    SPNB_NA = 0,                /// NaN behavior not applicable.
471    SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
472    SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
473    SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
474                                /// it has been determined that no operands can
475                                /// be NaN).
476  };
477
478  struct SelectPatternResult {
479    SelectPatternFlavor Flavor;
480    SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
481                                          /// SPF_FMINNUM or SPF_FMAXNUM.
482    bool Ordered;               /// When implementing this min/max pattern as
483                                /// fcmp; select, does the fcmp have to be
484                                /// ordered?
485
486    /// \brief Return true if \p SPF is a min or a max pattern.
487    static bool isMinOrMax(SelectPatternFlavor SPF) {
488      return !(SPF == SPF_UNKNOWN || SPF == SPF_ABS || SPF == SPF_NABS);
489    }
490  };
491
492  /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
493  /// and providing the out parameter results if we successfully match.
494  ///
495  /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
496  /// not match that of the original select. If this is the case, the cast
497  /// operation (one of Trunc,SExt,Zext) that must be done to transform the
498  /// type of LHS and RHS into the type of V is returned in CastOp.
499  ///
500  /// For example:
501  ///   %1 = icmp slt i32 %a, i32 4
502  ///   %2 = sext i32 %a to i64
503  ///   %3 = select i1 %1, i64 %2, i64 4
504  ///
505  /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
506  ///
507  SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
508                                         Instruction::CastOps *CastOp = nullptr);
509  static inline SelectPatternResult
510  matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS,
511                     Instruction::CastOps *CastOp = nullptr) {
512    Value *L = const_cast<Value*>(LHS);
513    Value *R = const_cast<Value*>(RHS);
514    auto Result = matchSelectPattern(const_cast<Value*>(V), L, R);
515    LHS = L;
516    RHS = R;
517    return Result;
518  }
519
520  /// Return true if RHS is known to be implied true by LHS.  Return false if
521  /// RHS is known to be implied false by LHS.  Otherwise, return None if no
522  /// implication can be made.
523  /// A & B must be i1 (boolean) values or a vector of such values. Note that
524  /// the truth table for implication is the same as <=u on i1 values (but not
525  /// <=s!).  The truth table for both is:
526  ///    | T | F (B)
527  ///  T | T | F
528  ///  F | T | T
529  /// (A)
530  Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
531                                    const DataLayout &DL, bool LHSIsTrue = true,
532                                    unsigned Depth = 0);
533} // end namespace llvm
534
535#endif // LLVM_ANALYSIS_VALUETRACKING_H
536