1//===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code dealing with generation of the layout of virtual tables. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef LLVM_CLANG_AST_VTABLEBUILDER_H 15#define LLVM_CLANG_AST_VTABLEBUILDER_H 16 17#include "clang/AST/BaseSubobject.h" 18#include "clang/AST/CXXInheritance.h" 19#include "clang/AST/GlobalDecl.h" 20#include "clang/AST/RecordLayout.h" 21#include "clang/Basic/ABI.h" 22#include "llvm/ADT/DenseMap.h" 23#include <memory> 24#include <utility> 25 26namespace clang { 27 class CXXRecordDecl; 28 29/// \brief Represents a single component in a vtable. 30class VTableComponent { 31public: 32 enum Kind { 33 CK_VCallOffset, 34 CK_VBaseOffset, 35 CK_OffsetToTop, 36 CK_RTTI, 37 CK_FunctionPointer, 38 39 /// \brief A pointer to the complete destructor. 40 CK_CompleteDtorPointer, 41 42 /// \brief A pointer to the deleting destructor. 43 CK_DeletingDtorPointer, 44 45 /// \brief An entry that is never used. 46 /// 47 /// In some cases, a vtable function pointer will end up never being 48 /// called. Such vtable function pointers are represented as a 49 /// CK_UnusedFunctionPointer. 50 CK_UnusedFunctionPointer 51 }; 52 53 VTableComponent() = default; 54 55 static VTableComponent MakeVCallOffset(CharUnits Offset) { 56 return VTableComponent(CK_VCallOffset, Offset); 57 } 58 59 static VTableComponent MakeVBaseOffset(CharUnits Offset) { 60 return VTableComponent(CK_VBaseOffset, Offset); 61 } 62 63 static VTableComponent MakeOffsetToTop(CharUnits Offset) { 64 return VTableComponent(CK_OffsetToTop, Offset); 65 } 66 67 static VTableComponent MakeRTTI(const CXXRecordDecl *RD) { 68 return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD)); 69 } 70 71 static VTableComponent MakeFunction(const CXXMethodDecl *MD) { 72 assert(!isa<CXXDestructorDecl>(MD) && 73 "Don't use MakeFunction with destructors!"); 74 75 return VTableComponent(CK_FunctionPointer, 76 reinterpret_cast<uintptr_t>(MD)); 77 } 78 79 static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) { 80 return VTableComponent(CK_CompleteDtorPointer, 81 reinterpret_cast<uintptr_t>(DD)); 82 } 83 84 static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) { 85 return VTableComponent(CK_DeletingDtorPointer, 86 reinterpret_cast<uintptr_t>(DD)); 87 } 88 89 static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) { 90 assert(!isa<CXXDestructorDecl>(MD) && 91 "Don't use MakeUnusedFunction with destructors!"); 92 return VTableComponent(CK_UnusedFunctionPointer, 93 reinterpret_cast<uintptr_t>(MD)); 94 } 95 96 static VTableComponent getFromOpaqueInteger(uint64_t I) { 97 return VTableComponent(I); 98 } 99 100 /// \brief Get the kind of this vtable component. 101 Kind getKind() const { 102 return (Kind)(Value & 0x7); 103 } 104 105 CharUnits getVCallOffset() const { 106 assert(getKind() == CK_VCallOffset && "Invalid component kind!"); 107 108 return getOffset(); 109 } 110 111 CharUnits getVBaseOffset() const { 112 assert(getKind() == CK_VBaseOffset && "Invalid component kind!"); 113 114 return getOffset(); 115 } 116 117 CharUnits getOffsetToTop() const { 118 assert(getKind() == CK_OffsetToTop && "Invalid component kind!"); 119 120 return getOffset(); 121 } 122 123 const CXXRecordDecl *getRTTIDecl() const { 124 assert(isRTTIKind() && "Invalid component kind!"); 125 return reinterpret_cast<CXXRecordDecl *>(getPointer()); 126 } 127 128 const CXXMethodDecl *getFunctionDecl() const { 129 assert(isFunctionPointerKind() && "Invalid component kind!"); 130 if (isDestructorKind()) 131 return getDestructorDecl(); 132 return reinterpret_cast<CXXMethodDecl *>(getPointer()); 133 } 134 135 const CXXDestructorDecl *getDestructorDecl() const { 136 assert(isDestructorKind() && "Invalid component kind!"); 137 return reinterpret_cast<CXXDestructorDecl *>(getPointer()); 138 } 139 140 const CXXMethodDecl *getUnusedFunctionDecl() const { 141 assert(getKind() == CK_UnusedFunctionPointer && "Invalid component kind!"); 142 return reinterpret_cast<CXXMethodDecl *>(getPointer()); 143 } 144 145 bool isDestructorKind() const { return isDestructorKind(getKind()); } 146 147 bool isUsedFunctionPointerKind() const { 148 return isUsedFunctionPointerKind(getKind()); 149 } 150 151 bool isFunctionPointerKind() const { 152 return isFunctionPointerKind(getKind()); 153 } 154 155 bool isRTTIKind() const { return isRTTIKind(getKind()); } 156 157 GlobalDecl getGlobalDecl() const { 158 assert(isUsedFunctionPointerKind() && 159 "GlobalDecl can be created only from virtual function"); 160 161 auto *DtorDecl = dyn_cast<CXXDestructorDecl>(getFunctionDecl()); 162 switch (getKind()) { 163 case CK_FunctionPointer: 164 return GlobalDecl(getFunctionDecl()); 165 case CK_CompleteDtorPointer: 166 return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Complete); 167 case CK_DeletingDtorPointer: 168 return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Deleting); 169 case CK_VCallOffset: 170 case CK_VBaseOffset: 171 case CK_OffsetToTop: 172 case CK_RTTI: 173 case CK_UnusedFunctionPointer: 174 llvm_unreachable("Only function pointers kinds"); 175 } 176 llvm_unreachable("Should already return"); 177 } 178 179private: 180 static bool isFunctionPointerKind(Kind ComponentKind) { 181 return isUsedFunctionPointerKind(ComponentKind) || 182 ComponentKind == CK_UnusedFunctionPointer; 183 } 184 static bool isUsedFunctionPointerKind(Kind ComponentKind) { 185 return ComponentKind == CK_FunctionPointer || 186 isDestructorKind(ComponentKind); 187 } 188 static bool isDestructorKind(Kind ComponentKind) { 189 return ComponentKind == CK_CompleteDtorPointer || 190 ComponentKind == CK_DeletingDtorPointer; 191 } 192 static bool isRTTIKind(Kind ComponentKind) { 193 return ComponentKind == CK_RTTI; 194 } 195 196 VTableComponent(Kind ComponentKind, CharUnits Offset) { 197 assert((ComponentKind == CK_VCallOffset || 198 ComponentKind == CK_VBaseOffset || 199 ComponentKind == CK_OffsetToTop) && "Invalid component kind!"); 200 assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!"); 201 assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!"); 202 203 Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind; 204 } 205 206 VTableComponent(Kind ComponentKind, uintptr_t Ptr) { 207 assert((isRTTIKind(ComponentKind) || isFunctionPointerKind(ComponentKind)) && 208 "Invalid component kind!"); 209 210 assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!"); 211 212 Value = Ptr | ComponentKind; 213 } 214 215 CharUnits getOffset() const { 216 assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset || 217 getKind() == CK_OffsetToTop) && "Invalid component kind!"); 218 219 return CharUnits::fromQuantity(Value >> 3); 220 } 221 222 uintptr_t getPointer() const { 223 assert((getKind() == CK_RTTI || isFunctionPointerKind()) && 224 "Invalid component kind!"); 225 226 return static_cast<uintptr_t>(Value & ~7ULL); 227 } 228 229 explicit VTableComponent(uint64_t Value) 230 : Value(Value) { } 231 232 /// The kind is stored in the lower 3 bits of the value. For offsets, we 233 /// make use of the facts that classes can't be larger than 2^55 bytes, 234 /// so we store the offset in the lower part of the 61 bits that remain. 235 /// (The reason that we're not simply using a PointerIntPair here is that we 236 /// need the offsets to be 64-bit, even when on a 32-bit machine). 237 int64_t Value; 238}; 239 240class VTableLayout { 241public: 242 typedef std::pair<uint64_t, ThunkInfo> VTableThunkTy; 243 struct AddressPointLocation { 244 unsigned VTableIndex, AddressPointIndex; 245 }; 246 typedef llvm::DenseMap<BaseSubobject, AddressPointLocation> 247 AddressPointsMapTy; 248 249private: 250 // Stores the component indices of the first component of each virtual table in 251 // the virtual table group. To save a little memory in the common case where 252 // the vtable group contains a single vtable, an empty vector here represents 253 // the vector {0}. 254 OwningArrayRef<size_t> VTableIndices; 255 256 OwningArrayRef<VTableComponent> VTableComponents; 257 258 /// \brief Contains thunks needed by vtables, sorted by indices. 259 OwningArrayRef<VTableThunkTy> VTableThunks; 260 261 /// \brief Address points for all vtables. 262 AddressPointsMapTy AddressPoints; 263 264public: 265 VTableLayout(ArrayRef<size_t> VTableIndices, 266 ArrayRef<VTableComponent> VTableComponents, 267 ArrayRef<VTableThunkTy> VTableThunks, 268 const AddressPointsMapTy &AddressPoints); 269 ~VTableLayout(); 270 271 ArrayRef<VTableComponent> vtable_components() const { 272 return VTableComponents; 273 } 274 275 ArrayRef<VTableThunkTy> vtable_thunks() const { 276 return VTableThunks; 277 } 278 279 AddressPointLocation getAddressPoint(BaseSubobject Base) const { 280 assert(AddressPoints.count(Base) && "Did not find address point!"); 281 return AddressPoints.find(Base)->second; 282 } 283 284 const AddressPointsMapTy &getAddressPoints() const { 285 return AddressPoints; 286 } 287 288 size_t getNumVTables() const { 289 if (VTableIndices.empty()) 290 return 1; 291 return VTableIndices.size(); 292 } 293 294 size_t getVTableOffset(size_t i) const { 295 if (VTableIndices.empty()) { 296 assert(i == 0); 297 return 0; 298 } 299 return VTableIndices[i]; 300 } 301 302 size_t getVTableSize(size_t i) const { 303 if (VTableIndices.empty()) { 304 assert(i == 0); 305 return vtable_components().size(); 306 } 307 308 size_t thisIndex = VTableIndices[i]; 309 size_t nextIndex = (i + 1 == VTableIndices.size()) 310 ? vtable_components().size() 311 : VTableIndices[i + 1]; 312 return nextIndex - thisIndex; 313 } 314}; 315 316class VTableContextBase { 317public: 318 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 319 320 bool isMicrosoft() const { return IsMicrosoftABI; } 321 322 virtual ~VTableContextBase() {} 323 324protected: 325 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 326 327 /// \brief Contains all thunks that a given method decl will need. 328 ThunksMapTy Thunks; 329 330 /// Compute and store all vtable related information (vtable layout, vbase 331 /// offset offsets, thunks etc) for the given record decl. 332 virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0; 333 334 VTableContextBase(bool MS) : IsMicrosoftABI(MS) {} 335 336public: 337 virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) { 338 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()->getCanonicalDecl()); 339 computeVTableRelatedInformation(MD->getParent()); 340 341 // This assumes that all the destructors present in the vtable 342 // use exactly the same set of thunks. 343 ThunksMapTy::const_iterator I = Thunks.find(MD); 344 if (I == Thunks.end()) { 345 // We did not find a thunk for this method. 346 return nullptr; 347 } 348 349 return &I->second; 350 } 351 352 bool IsMicrosoftABI; 353}; 354 355class ItaniumVTableContext : public VTableContextBase { 356private: 357 358 /// \brief Contains the index (relative to the vtable address point) 359 /// where the function pointer for a virtual function is stored. 360 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; 361 MethodVTableIndicesTy MethodVTableIndices; 362 363 typedef llvm::DenseMap<const CXXRecordDecl *, 364 std::unique_ptr<const VTableLayout>> 365 VTableLayoutMapTy; 366 VTableLayoutMapTy VTableLayouts; 367 368 typedef std::pair<const CXXRecordDecl *, 369 const CXXRecordDecl *> ClassPairTy; 370 371 /// \brief vtable offsets for offsets of virtual bases of a class. 372 /// 373 /// Contains the vtable offset (relative to the address point) in chars 374 /// where the offsets for virtual bases of a class are stored. 375 typedef llvm::DenseMap<ClassPairTy, CharUnits> 376 VirtualBaseClassOffsetOffsetsMapTy; 377 VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets; 378 379 void computeVTableRelatedInformation(const CXXRecordDecl *RD) override; 380 381public: 382 ItaniumVTableContext(ASTContext &Context); 383 ~ItaniumVTableContext() override; 384 385 const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) { 386 computeVTableRelatedInformation(RD); 387 assert(VTableLayouts.count(RD) && "No layout for this record decl!"); 388 389 return *VTableLayouts[RD]; 390 } 391 392 std::unique_ptr<VTableLayout> createConstructionVTableLayout( 393 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, 394 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass); 395 396 /// \brief Locate a virtual function in the vtable. 397 /// 398 /// Return the index (relative to the vtable address point) where the 399 /// function pointer for the given virtual function is stored. 400 uint64_t getMethodVTableIndex(GlobalDecl GD); 401 402 /// Return the offset in chars (relative to the vtable address point) where 403 /// the offset of the virtual base that contains the given base is stored, 404 /// otherwise, if no virtual base contains the given class, return 0. 405 /// 406 /// Base must be a virtual base class or an unambiguous base. 407 CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, 408 const CXXRecordDecl *VBase); 409 410 static bool classof(const VTableContextBase *VT) { 411 return !VT->isMicrosoft(); 412 } 413}; 414 415/// Holds information about the inheritance path to a virtual base or function 416/// table pointer. A record may contain as many vfptrs or vbptrs as there are 417/// base subobjects. 418struct VPtrInfo { 419 typedef SmallVector<const CXXRecordDecl *, 1> BasePath; 420 421 VPtrInfo(const CXXRecordDecl *RD) 422 : ObjectWithVPtr(RD), IntroducingObject(RD), NextBaseToMangle(RD) {} 423 424 /// This is the most derived class that has this vptr at offset zero. When 425 /// single inheritance is used, this is always the most derived class. If 426 /// multiple inheritance is used, it may be any direct or indirect base. 427 const CXXRecordDecl *ObjectWithVPtr; 428 429 /// This is the class that introduced the vptr by declaring new virtual 430 /// methods or virtual bases. 431 const CXXRecordDecl *IntroducingObject; 432 433 /// IntroducingObject is at this offset from its containing complete object or 434 /// virtual base. 435 CharUnits NonVirtualOffset; 436 437 /// The bases from the inheritance path that got used to mangle the vbtable 438 /// name. This is not really a full path like a CXXBasePath. It holds the 439 /// subset of records that need to be mangled into the vbtable symbol name in 440 /// order to get a unique name. 441 BasePath MangledPath; 442 443 /// The next base to push onto the mangled path if this path is ambiguous in a 444 /// derived class. If it's null, then it's already been pushed onto the path. 445 const CXXRecordDecl *NextBaseToMangle; 446 447 /// The set of possibly indirect vbases that contain this vbtable. When a 448 /// derived class indirectly inherits from the same vbase twice, we only keep 449 /// vtables and their paths from the first instance. 450 BasePath ContainingVBases; 451 452 /// This holds the base classes path from the complete type to the first base 453 /// with the given vfptr offset, in the base-to-derived order. Only used for 454 /// vftables. 455 BasePath PathToIntroducingObject; 456 457 /// Static offset from the top of the most derived class to this vfptr, 458 /// including any virtual base offset. Only used for vftables. 459 CharUnits FullOffsetInMDC; 460 461 /// The vptr is stored inside the non-virtual component of this virtual base. 462 const CXXRecordDecl *getVBaseWithVPtr() const { 463 return ContainingVBases.empty() ? nullptr : ContainingVBases.front(); 464 } 465}; 466 467typedef SmallVector<std::unique_ptr<VPtrInfo>, 2> VPtrInfoVector; 468 469/// All virtual base related information about a given record decl. Includes 470/// information on all virtual base tables and the path components that are used 471/// to mangle them. 472struct VirtualBaseInfo { 473 /// A map from virtual base to vbtable index for doing a conversion from the 474 /// the derived class to the a base. 475 llvm::DenseMap<const CXXRecordDecl *, unsigned> VBTableIndices; 476 477 /// Information on all virtual base tables used when this record is the most 478 /// derived class. 479 VPtrInfoVector VBPtrPaths; 480}; 481 482class MicrosoftVTableContext : public VTableContextBase { 483public: 484 struct MethodVFTableLocation { 485 /// If nonzero, holds the vbtable index of the virtual base with the vfptr. 486 uint64_t VBTableIndex; 487 488 /// If nonnull, holds the last vbase which contains the vfptr that the 489 /// method definition is adjusted to. 490 const CXXRecordDecl *VBase; 491 492 /// This is the offset of the vfptr from the start of the last vbase, or the 493 /// complete type if there are no virtual bases. 494 CharUnits VFPtrOffset; 495 496 /// Method's index in the vftable. 497 uint64_t Index; 498 499 MethodVFTableLocation() 500 : VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()), 501 Index(0) {} 502 503 MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase, 504 CharUnits VFPtrOffset, uint64_t Index) 505 : VBTableIndex(VBTableIndex), VBase(VBase), 506 VFPtrOffset(VFPtrOffset), Index(Index) {} 507 508 bool operator<(const MethodVFTableLocation &other) const { 509 if (VBTableIndex != other.VBTableIndex) { 510 assert(VBase != other.VBase); 511 return VBTableIndex < other.VBTableIndex; 512 } 513 return std::tie(VFPtrOffset, Index) < 514 std::tie(other.VFPtrOffset, other.Index); 515 } 516 }; 517 518private: 519 ASTContext &Context; 520 521 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> 522 MethodVFTableLocationsTy; 523 MethodVFTableLocationsTy MethodVFTableLocations; 524 525 typedef llvm::DenseMap<const CXXRecordDecl *, VPtrInfoVector> 526 VFPtrLocationsMapTy; 527 VFPtrLocationsMapTy VFPtrLocations; 528 529 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 530 typedef llvm::DenseMap<VFTableIdTy, std::unique_ptr<const VTableLayout>> 531 VFTableLayoutMapTy; 532 VFTableLayoutMapTy VFTableLayouts; 533 534 llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VirtualBaseInfo>> 535 VBaseInfo; 536 537 void enumerateVFPtrs(const CXXRecordDecl *ForClass, VPtrInfoVector &Result); 538 539 void computeVTableRelatedInformation(const CXXRecordDecl *RD) override; 540 541 void dumpMethodLocations(const CXXRecordDecl *RD, 542 const MethodVFTableLocationsTy &NewMethods, 543 raw_ostream &); 544 545 const VirtualBaseInfo & 546 computeVBTableRelatedInformation(const CXXRecordDecl *RD); 547 548 void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD, 549 VPtrInfoVector &Paths); 550 551public: 552 MicrosoftVTableContext(ASTContext &Context) 553 : VTableContextBase(/*MS=*/true), Context(Context) {} 554 555 ~MicrosoftVTableContext() override; 556 557 const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD); 558 559 const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD, 560 CharUnits VFPtrOffset); 561 562 const MethodVFTableLocation &getMethodVFTableLocation(GlobalDecl GD); 563 564 const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override { 565 // Complete destructors don't have a slot in a vftable, so no thunks needed. 566 if (isa<CXXDestructorDecl>(GD.getDecl()) && 567 GD.getDtorType() == Dtor_Complete) 568 return nullptr; 569 return VTableContextBase::getThunkInfo(GD); 570 } 571 572 /// \brief Returns the index of VBase in the vbtable of Derived. 573 /// VBase must be a morally virtual base of Derived. 574 /// The vbtable is an array of i32 offsets. The first entry is a self entry, 575 /// and the rest are offsets from the vbptr to virtual bases. 576 unsigned getVBTableIndex(const CXXRecordDecl *Derived, 577 const CXXRecordDecl *VBase); 578 579 const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD); 580 581 static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); } 582}; 583 584} // namespace clang 585 586#endif 587