1//===-- llvm/CodeGen/GlobalISel/IRTranslator.h - IRTranslator ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file declares the IRTranslator pass.
11/// This pass is responsible for translating LLVM IR into MachineInstr.
12/// It uses target hooks to lower the ABI but aside from that, the pass
13/// generated code is generic. This is the default translator used for
14/// GlobalISel.
15///
16/// \todo Replace the comments with actual doxygen comments.
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
20#define LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
21
22#include "Types.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27
28namespace llvm {
29// Forward declarations.
30class BasicBlock;
31class CallLowering;
32class Constant;
33class Instruction;
34class MachineBasicBlock;
35class MachineFunction;
36class MachineInstr;
37class OptimizationRemarkEmitter;
38class MachineRegisterInfo;
39class TargetPassConfig;
40
41// Technically the pass should run on an hypothetical MachineModule,
42// since it should translate Global into some sort of MachineGlobal.
43// The MachineGlobal should ultimately just be a transfer of ownership of
44// the interesting bits that are relevant to represent a global value.
45// That being said, we could investigate what would it cost to just duplicate
46// the information from the LLVM IR.
47// The idea is that ultimately we would be able to free up the memory used
48// by the LLVM IR as soon as the translation is over.
49class IRTranslator : public MachineFunctionPass {
50public:
51  static char ID;
52
53private:
54  /// Interface used to lower the everything related to calls.
55  const CallLowering *CLI;
56  /// Mapping of the values of the current LLVM IR function
57  /// to the related virtual registers.
58  ValueToVReg ValToVReg;
59
60  // N.b. it's not completely obvious that this will be sufficient for every
61  // LLVM IR construct (with "invoke" being the obvious candidate to mess up our
62  // lives.
63  DenseMap<const BasicBlock *, MachineBasicBlock *> BBToMBB;
64
65  // One BasicBlock can be translated to multiple MachineBasicBlocks.  For such
66  // BasicBlocks translated to multiple MachineBasicBlocks, MachinePreds retains
67  // a mapping between the edges arriving at the BasicBlock to the corresponding
68  // created MachineBasicBlocks. Some BasicBlocks that get translated to a
69  // single MachineBasicBlock may also end up in this Map.
70  typedef std::pair<const BasicBlock *, const BasicBlock *> CFGEdge;
71  DenseMap<CFGEdge, SmallVector<MachineBasicBlock *, 1>> MachinePreds;
72
73  // List of stubbed PHI instructions, for values and basic blocks to be filled
74  // in once all MachineBasicBlocks have been created.
75  SmallVector<std::pair<const PHINode *, MachineInstr *>, 4> PendingPHIs;
76
77  /// Record of what frame index has been allocated to specified allocas for
78  /// this function.
79  DenseMap<const AllocaInst *, int> FrameIndices;
80
81  /// \name Methods for translating form LLVM IR to MachineInstr.
82  /// \see ::translate for general information on the translate methods.
83  /// @{
84
85  /// Translate \p Inst into its corresponding MachineInstr instruction(s).
86  /// Insert the newly translated instruction(s) right where the CurBuilder
87  /// is set.
88  ///
89  /// The general algorithm is:
90  /// 1. Look for a virtual register for each operand or
91  ///    create one.
92  /// 2 Update the ValToVReg accordingly.
93  /// 2.alt. For constant arguments, if they are compile time constants,
94  ///   produce an immediate in the right operand and do not touch
95  ///   ValToReg. Actually we will go with a virtual register for each
96  ///   constants because it may be expensive to actually materialize the
97  ///   constant. Moreover, if the constant spans on several instructions,
98  ///   CSE may not catch them.
99  ///   => Update ValToVReg and remember that we saw a constant in Constants.
100  ///   We will materialize all the constants in finalize.
101  /// Note: we would need to do something so that we can recognize such operand
102  ///       as constants.
103  /// 3. Create the generic instruction.
104  ///
105  /// \return true if the translation succeeded.
106  bool translate(const Instruction &Inst);
107
108  /// Materialize \p C into virtual-register \p Reg. The generic instructions
109  /// performing this materialization will be inserted into the entry block of
110  /// the function.
111  ///
112  /// \return true if the materialization succeeded.
113  bool translate(const Constant &C, unsigned Reg);
114
115  /// Translate an LLVM bitcast into generic IR. Either a COPY or a G_BITCAST is
116  /// emitted.
117  bool translateBitCast(const User &U, MachineIRBuilder &MIRBuilder);
118
119  /// Translate an LLVM load instruction into generic IR.
120  bool translateLoad(const User &U, MachineIRBuilder &MIRBuilder);
121
122  /// Translate an LLVM store instruction into generic IR.
123  bool translateStore(const User &U, MachineIRBuilder &MIRBuilder);
124
125  /// Translate an LLVM string intrinsic (memcpy, memset, ...).
126  bool translateMemfunc(const CallInst &CI, MachineIRBuilder &MIRBuilder,
127                        unsigned Intrinsic);
128
129  void getStackGuard(unsigned DstReg, MachineIRBuilder &MIRBuilder);
130
131  bool translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
132                                  MachineIRBuilder &MIRBuilder);
133
134  bool translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
135                               MachineIRBuilder &MIRBuilder);
136
137  bool translateInlineAsm(const CallInst &CI, MachineIRBuilder &MIRBuilder);
138
139  /// Translate call instruction.
140  /// \pre \p U is a call instruction.
141  bool translateCall(const User &U, MachineIRBuilder &MIRBuilder);
142
143  bool translateInvoke(const User &U, MachineIRBuilder &MIRBuilder);
144
145  bool translateLandingPad(const User &U, MachineIRBuilder &MIRBuilder);
146
147  /// Translate one of LLVM's cast instructions into MachineInstrs, with the
148  /// given generic Opcode.
149  bool translateCast(unsigned Opcode, const User &U,
150                     MachineIRBuilder &MIRBuilder);
151
152  /// Translate a phi instruction.
153  bool translatePHI(const User &U, MachineIRBuilder &MIRBuilder);
154
155  /// Translate a comparison (icmp or fcmp) instruction or constant.
156  bool translateCompare(const User &U, MachineIRBuilder &MIRBuilder);
157
158  /// Translate an integer compare instruction (or constant).
159  bool translateICmp(const User &U, MachineIRBuilder &MIRBuilder) {
160    return translateCompare(U, MIRBuilder);
161  }
162
163  /// Translate a floating-point compare instruction (or constant).
164  bool translateFCmp(const User &U, MachineIRBuilder &MIRBuilder) {
165    return translateCompare(U, MIRBuilder);
166  }
167
168
169  /// Add remaining operands onto phis we've translated. Executed after all
170  /// MachineBasicBlocks for the function have been created.
171  void finishPendingPhis();
172
173  /// Translate \p Inst into a binary operation \p Opcode.
174  /// \pre \p U is a binary operation.
175  bool translateBinaryOp(unsigned Opcode, const User &U,
176                         MachineIRBuilder &MIRBuilder);
177
178  /// Translate branch (br) instruction.
179  /// \pre \p U is a branch instruction.
180  bool translateBr(const User &U, MachineIRBuilder &MIRBuilder);
181
182  bool translateSwitch(const User &U, MachineIRBuilder &MIRBuilder);
183
184  bool translateIndirectBr(const User &U, MachineIRBuilder &MIRBuilder);
185
186  bool translateExtractValue(const User &U, MachineIRBuilder &MIRBuilder);
187
188  bool translateInsertValue(const User &U, MachineIRBuilder &MIRBuilder);
189
190  bool translateSelect(const User &U, MachineIRBuilder &MIRBuilder);
191
192  bool translateGetElementPtr(const User &U, MachineIRBuilder &MIRBuilder);
193
194  bool translateAlloca(const User &U, MachineIRBuilder &MIRBuilder);
195
196  /// Translate return (ret) instruction.
197  /// The target needs to implement CallLowering::lowerReturn for
198  /// this to succeed.
199  /// \pre \p U is a return instruction.
200  bool translateRet(const User &U, MachineIRBuilder &MIRBuilder);
201
202  bool translateFSub(const User &U, MachineIRBuilder &MIRBuilder);
203
204  bool translateAdd(const User &U, MachineIRBuilder &MIRBuilder) {
205    return translateBinaryOp(TargetOpcode::G_ADD, U, MIRBuilder);
206  }
207  bool translateSub(const User &U, MachineIRBuilder &MIRBuilder) {
208    return translateBinaryOp(TargetOpcode::G_SUB, U, MIRBuilder);
209  }
210  bool translateAnd(const User &U, MachineIRBuilder &MIRBuilder) {
211    return translateBinaryOp(TargetOpcode::G_AND, U, MIRBuilder);
212  }
213  bool translateMul(const User &U, MachineIRBuilder &MIRBuilder) {
214    return translateBinaryOp(TargetOpcode::G_MUL, U, MIRBuilder);
215  }
216  bool translateOr(const User &U, MachineIRBuilder &MIRBuilder) {
217    return translateBinaryOp(TargetOpcode::G_OR, U, MIRBuilder);
218  }
219  bool translateXor(const User &U, MachineIRBuilder &MIRBuilder) {
220    return translateBinaryOp(TargetOpcode::G_XOR, U, MIRBuilder);
221  }
222
223  bool translateUDiv(const User &U, MachineIRBuilder &MIRBuilder) {
224    return translateBinaryOp(TargetOpcode::G_UDIV, U, MIRBuilder);
225  }
226  bool translateSDiv(const User &U, MachineIRBuilder &MIRBuilder) {
227    return translateBinaryOp(TargetOpcode::G_SDIV, U, MIRBuilder);
228  }
229  bool translateURem(const User &U, MachineIRBuilder &MIRBuilder) {
230    return translateBinaryOp(TargetOpcode::G_UREM, U, MIRBuilder);
231  }
232  bool translateSRem(const User &U, MachineIRBuilder &MIRBuilder) {
233    return translateBinaryOp(TargetOpcode::G_SREM, U, MIRBuilder);
234  }
235  bool translateIntToPtr(const User &U, MachineIRBuilder &MIRBuilder) {
236    return translateCast(TargetOpcode::G_INTTOPTR, U, MIRBuilder);
237  }
238  bool translatePtrToInt(const User &U, MachineIRBuilder &MIRBuilder) {
239    return translateCast(TargetOpcode::G_PTRTOINT, U, MIRBuilder);
240  }
241  bool translateTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
242    return translateCast(TargetOpcode::G_TRUNC, U, MIRBuilder);
243  }
244  bool translateFPTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
245    return translateCast(TargetOpcode::G_FPTRUNC, U, MIRBuilder);
246  }
247  bool translateFPExt(const User &U, MachineIRBuilder &MIRBuilder) {
248    return translateCast(TargetOpcode::G_FPEXT, U, MIRBuilder);
249  }
250  bool translateFPToUI(const User &U, MachineIRBuilder &MIRBuilder) {
251    return translateCast(TargetOpcode::G_FPTOUI, U, MIRBuilder);
252  }
253  bool translateFPToSI(const User &U, MachineIRBuilder &MIRBuilder) {
254    return translateCast(TargetOpcode::G_FPTOSI, U, MIRBuilder);
255  }
256  bool translateUIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
257    return translateCast(TargetOpcode::G_UITOFP, U, MIRBuilder);
258  }
259  bool translateSIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
260    return translateCast(TargetOpcode::G_SITOFP, U, MIRBuilder);
261  }
262  bool translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
263    return true;
264  }
265  bool translateSExt(const User &U, MachineIRBuilder &MIRBuilder) {
266    return translateCast(TargetOpcode::G_SEXT, U, MIRBuilder);
267  }
268
269  bool translateZExt(const User &U, MachineIRBuilder &MIRBuilder) {
270    return translateCast(TargetOpcode::G_ZEXT, U, MIRBuilder);
271  }
272
273  bool translateShl(const User &U, MachineIRBuilder &MIRBuilder) {
274    return translateBinaryOp(TargetOpcode::G_SHL, U, MIRBuilder);
275  }
276  bool translateLShr(const User &U, MachineIRBuilder &MIRBuilder) {
277    return translateBinaryOp(TargetOpcode::G_LSHR, U, MIRBuilder);
278  }
279  bool translateAShr(const User &U, MachineIRBuilder &MIRBuilder) {
280    return translateBinaryOp(TargetOpcode::G_ASHR, U, MIRBuilder);
281  }
282
283  bool translateFAdd(const User &U, MachineIRBuilder &MIRBuilder) {
284    return translateBinaryOp(TargetOpcode::G_FADD, U, MIRBuilder);
285  }
286  bool translateFMul(const User &U, MachineIRBuilder &MIRBuilder) {
287    return translateBinaryOp(TargetOpcode::G_FMUL, U, MIRBuilder);
288  }
289  bool translateFDiv(const User &U, MachineIRBuilder &MIRBuilder) {
290    return translateBinaryOp(TargetOpcode::G_FDIV, U, MIRBuilder);
291  }
292  bool translateFRem(const User &U, MachineIRBuilder &MIRBuilder) {
293    return translateBinaryOp(TargetOpcode::G_FREM, U, MIRBuilder);
294  }
295
296  bool translateVAArg(const User &U, MachineIRBuilder &MIRBuilder);
297
298  bool translateInsertElement(const User &U, MachineIRBuilder &MIRBuilder);
299
300  bool translateExtractElement(const User &U, MachineIRBuilder &MIRBuilder);
301
302  bool translateShuffleVector(const User &U, MachineIRBuilder &MIRBuilder);
303
304  // Stubs to keep the compiler happy while we implement the rest of the
305  // translation.
306  bool translateResume(const User &U, MachineIRBuilder &MIRBuilder) {
307    return false;
308  }
309  bool translateCleanupRet(const User &U, MachineIRBuilder &MIRBuilder) {
310    return false;
311  }
312  bool translateCatchRet(const User &U, MachineIRBuilder &MIRBuilder) {
313    return false;
314  }
315  bool translateCatchSwitch(const User &U, MachineIRBuilder &MIRBuilder) {
316    return false;
317  }
318  bool translateFence(const User &U, MachineIRBuilder &MIRBuilder) {
319    return false;
320  }
321  bool translateAtomicCmpXchg(const User &U, MachineIRBuilder &MIRBuilder) {
322    return false;
323  }
324  bool translateAtomicRMW(const User &U, MachineIRBuilder &MIRBuilder) {
325    return false;
326  }
327  bool translateAddrSpaceCast(const User &U, MachineIRBuilder &MIRBuilder) {
328    return false;
329  }
330  bool translateCleanupPad(const User &U, MachineIRBuilder &MIRBuilder) {
331    return false;
332  }
333  bool translateCatchPad(const User &U, MachineIRBuilder &MIRBuilder) {
334    return false;
335  }
336  bool translateUserOp1(const User &U, MachineIRBuilder &MIRBuilder) {
337    return false;
338  }
339  bool translateUserOp2(const User &U, MachineIRBuilder &MIRBuilder) {
340    return false;
341  }
342
343  /// @}
344
345  // Builder for machine instruction a la IRBuilder.
346  // I.e., compared to regular MIBuilder, this one also inserts the instruction
347  // in the current block, it can creates block, etc., basically a kind of
348  // IRBuilder, but for Machine IR.
349  MachineIRBuilder CurBuilder;
350
351  // Builder set to the entry block (just after ABI lowering instructions). Used
352  // as a convenient location for Constants.
353  MachineIRBuilder EntryBuilder;
354
355  // The MachineFunction currently being translated.
356  MachineFunction *MF;
357
358  /// MachineRegisterInfo used to create virtual registers.
359  MachineRegisterInfo *MRI;
360
361  const DataLayout *DL;
362
363  /// Current target configuration. Controls how the pass handles errors.
364  const TargetPassConfig *TPC;
365
366  /// Current optimization remark emitter. Used to report failures.
367  std::unique_ptr<OptimizationRemarkEmitter> ORE;
368
369  // * Insert all the code needed to materialize the constants
370  // at the proper place. E.g., Entry block or dominator block
371  // of each constant depending on how fancy we want to be.
372  // * Clear the different maps.
373  void finalizeFunction();
374
375  /// Get the VReg that represents \p Val.
376  /// If such VReg does not exist, it is created.
377  unsigned getOrCreateVReg(const Value &Val);
378
379  /// Get the frame index that represents \p Val.
380  /// If such VReg does not exist, it is created.
381  int getOrCreateFrameIndex(const AllocaInst &AI);
382
383  /// Get the alignment of the given memory operation instruction. This will
384  /// either be the explicitly specified value or the ABI-required alignment for
385  /// the type being accessed (according to the Module's DataLayout).
386  unsigned getMemOpAlignment(const Instruction &I);
387
388  /// Get the MachineBasicBlock that represents \p BB. Specifically, the block
389  /// returned will be the head of the translated block (suitable for branch
390  /// destinations).
391  MachineBasicBlock &getMBB(const BasicBlock &BB);
392
393  /// Record \p NewPred as a Machine predecessor to `Edge.second`, corresponding
394  /// to `Edge.first` at the IR level. This is used when IRTranslation creates
395  /// multiple MachineBasicBlocks for a given IR block and the CFG is no longer
396  /// represented simply by the IR-level CFG.
397  void addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred);
398
399  /// Returns the Machine IR predecessors for the given IR CFG edge. Usually
400  /// this is just the single MachineBasicBlock corresponding to the predecessor
401  /// in the IR. More complex lowering can result in multiple MachineBasicBlocks
402  /// preceding the original though (e.g. switch instructions).
403  SmallVector<MachineBasicBlock *, 1> getMachinePredBBs(CFGEdge Edge) {
404    auto RemappedEdge = MachinePreds.find(Edge);
405    if (RemappedEdge != MachinePreds.end())
406      return RemappedEdge->second;
407    return SmallVector<MachineBasicBlock *, 4>(1, &getMBB(*Edge.first));
408  }
409
410public:
411  // Ctor, nothing fancy.
412  IRTranslator();
413
414  StringRef getPassName() const override { return "IRTranslator"; }
415
416  void getAnalysisUsage(AnalysisUsage &AU) const override;
417
418  // Algo:
419  //   CallLowering = MF.subtarget.getCallLowering()
420  //   F = MF.getParent()
421  //   MIRBuilder.reset(MF)
422  //   getMBB(F.getEntryBB())
423  //   CallLowering->translateArguments(MIRBuilder, F, ValToVReg)
424  //   for each bb in F
425  //     getMBB(bb)
426  //     for each inst in bb
427  //       if (!translate(MIRBuilder, inst, ValToVReg, ConstantToSequence))
428  //         report_fatal_error("Don't know how to translate input");
429  //   finalize()
430  bool runOnMachineFunction(MachineFunction &MF) override;
431};
432
433} // End namespace llvm.
434#endif
435