1//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10/// @file 11/// This file contains the declarations for the subclasses of Constant, 12/// which represent the different flavors of constant values that live in LLVM. 13/// Note that Constants are immutable (once created they never change) and are 14/// fully shared by structural equivalence. This means that two structurally 15/// equivalent constants will always have the same address. Constants are 16/// created on demand as needed and never deleted: thus clients don't have to 17/// worry about the lifetime of the objects. 18// 19//===----------------------------------------------------------------------===// 20 21#ifndef LLVM_IR_CONSTANTS_H 22#define LLVM_IR_CONSTANTS_H 23 24#include "llvm/ADT/APFloat.h" 25#include "llvm/ADT/APInt.h" 26#include "llvm/ADT/ArrayRef.h" 27#include "llvm/ADT/None.h" 28#include "llvm/ADT/Optional.h" 29#include "llvm/ADT/STLExtras.h" 30#include "llvm/ADT/StringRef.h" 31#include "llvm/IR/Constant.h" 32#include "llvm/IR/DerivedTypes.h" 33#include "llvm/IR/OperandTraits.h" 34#include "llvm/IR/User.h" 35#include "llvm/IR/Value.h" 36#include "llvm/Support/Casting.h" 37#include "llvm/Support/Compiler.h" 38#include "llvm/Support/ErrorHandling.h" 39#include <cassert> 40#include <cstddef> 41#include <cstdint> 42 43namespace llvm { 44 45class ArrayType; 46class IntegerType; 47class PointerType; 48class SequentialType; 49class StructType; 50class VectorType; 51template <class ConstantClass> struct ConstantAggrKeyType; 52 53/// Base class for constants with no operands. 54/// 55/// These constants have no operands; they represent their data directly. 56/// Since they can be in use by unrelated modules (and are never based on 57/// GlobalValues), it never makes sense to RAUW them. 58class ConstantData : public Constant { 59 friend class Constant; 60 61 Value *handleOperandChangeImpl(Value *From, Value *To) { 62 llvm_unreachable("Constant data does not have operands!"); 63 } 64 65protected: 66 explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} 67 68 void *operator new(size_t s) { return User::operator new(s, 0); } 69 70public: 71 ConstantData(const ConstantData &) = delete; 72 73 /// Methods to support type inquiry through isa, cast, and dyn_cast. 74 static bool classof(const Value *V) { 75 return V->getValueID() >= ConstantDataFirstVal && 76 V->getValueID() <= ConstantDataLastVal; 77 } 78}; 79 80//===----------------------------------------------------------------------===// 81/// This is the shared class of boolean and integer constants. This class 82/// represents both boolean and integral constants. 83/// @brief Class for constant integers. 84class ConstantInt final : public ConstantData { 85 friend class Constant; 86 87 APInt Val; 88 89 ConstantInt(IntegerType *Ty, const APInt& V); 90 91 void destroyConstantImpl(); 92 93public: 94 ConstantInt(const ConstantInt &) = delete; 95 96 static ConstantInt *getTrue(LLVMContext &Context); 97 static ConstantInt *getFalse(LLVMContext &Context); 98 static Constant *getTrue(Type *Ty); 99 static Constant *getFalse(Type *Ty); 100 101 /// If Ty is a vector type, return a Constant with a splat of the given 102 /// value. Otherwise return a ConstantInt for the given value. 103 static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); 104 105 /// Return a ConstantInt with the specified integer value for the specified 106 /// type. If the type is wider than 64 bits, the value will be zero-extended 107 /// to fit the type, unless isSigned is true, in which case the value will 108 /// be interpreted as a 64-bit signed integer and sign-extended to fit 109 /// the type. 110 /// @brief Get a ConstantInt for a specific value. 111 static ConstantInt *get(IntegerType *Ty, uint64_t V, 112 bool isSigned = false); 113 114 /// Return a ConstantInt with the specified value for the specified type. The 115 /// value V will be canonicalized to a an unsigned APInt. Accessing it with 116 /// either getSExtValue() or getZExtValue() will yield a correctly sized and 117 /// signed value for the type Ty. 118 /// @brief Get a ConstantInt for a specific signed value. 119 static ConstantInt *getSigned(IntegerType *Ty, int64_t V); 120 static Constant *getSigned(Type *Ty, int64_t V); 121 122 /// Return a ConstantInt with the specified value and an implied Type. The 123 /// type is the integer type that corresponds to the bit width of the value. 124 static ConstantInt *get(LLVMContext &Context, const APInt &V); 125 126 /// Return a ConstantInt constructed from the string strStart with the given 127 /// radix. 128 static ConstantInt *get(IntegerType *Ty, StringRef Str, 129 uint8_t radix); 130 131 /// If Ty is a vector type, return a Constant with a splat of the given 132 /// value. Otherwise return a ConstantInt for the given value. 133 static Constant *get(Type* Ty, const APInt& V); 134 135 /// Return the constant as an APInt value reference. This allows clients to 136 /// obtain a full-precision copy of the value. 137 /// @brief Return the constant's value. 138 inline const APInt &getValue() const { 139 return Val; 140 } 141 142 /// getBitWidth - Return the bitwidth of this constant. 143 unsigned getBitWidth() const { return Val.getBitWidth(); } 144 145 /// Return the constant as a 64-bit unsigned integer value after it 146 /// has been zero extended as appropriate for the type of this constant. Note 147 /// that this method can assert if the value does not fit in 64 bits. 148 /// @brief Return the zero extended value. 149 inline uint64_t getZExtValue() const { 150 return Val.getZExtValue(); 151 } 152 153 /// Return the constant as a 64-bit integer value after it has been sign 154 /// extended as appropriate for the type of this constant. Note that 155 /// this method can assert if the value does not fit in 64 bits. 156 /// @brief Return the sign extended value. 157 inline int64_t getSExtValue() const { 158 return Val.getSExtValue(); 159 } 160 161 /// A helper method that can be used to determine if the constant contained 162 /// within is equal to a constant. This only works for very small values, 163 /// because this is all that can be represented with all types. 164 /// @brief Determine if this constant's value is same as an unsigned char. 165 bool equalsInt(uint64_t V) const { 166 return Val == V; 167 } 168 169 /// getType - Specialize the getType() method to always return an IntegerType, 170 /// which reduces the amount of casting needed in parts of the compiler. 171 /// 172 inline IntegerType *getType() const { 173 return cast<IntegerType>(Value::getType()); 174 } 175 176 /// This static method returns true if the type Ty is big enough to 177 /// represent the value V. This can be used to avoid having the get method 178 /// assert when V is larger than Ty can represent. Note that there are two 179 /// versions of this method, one for unsigned and one for signed integers. 180 /// Although ConstantInt canonicalizes everything to an unsigned integer, 181 /// the signed version avoids callers having to convert a signed quantity 182 /// to the appropriate unsigned type before calling the method. 183 /// @returns true if V is a valid value for type Ty 184 /// @brief Determine if the value is in range for the given type. 185 static bool isValueValidForType(Type *Ty, uint64_t V); 186 static bool isValueValidForType(Type *Ty, int64_t V); 187 188 bool isNegative() const { return Val.isNegative(); } 189 190 /// This is just a convenience method to make client code smaller for a 191 /// common code. It also correctly performs the comparison without the 192 /// potential for an assertion from getZExtValue(). 193 bool isZero() const { 194 return Val.isNullValue(); 195 } 196 197 /// This is just a convenience method to make client code smaller for a 198 /// common case. It also correctly performs the comparison without the 199 /// potential for an assertion from getZExtValue(). 200 /// @brief Determine if the value is one. 201 bool isOne() const { 202 return Val.isOneValue(); 203 } 204 205 /// This function will return true iff every bit in this constant is set 206 /// to true. 207 /// @returns true iff this constant's bits are all set to true. 208 /// @brief Determine if the value is all ones. 209 bool isMinusOne() const { 210 return Val.isAllOnesValue(); 211 } 212 213 /// This function will return true iff this constant represents the largest 214 /// value that may be represented by the constant's type. 215 /// @returns true iff this is the largest value that may be represented 216 /// by this type. 217 /// @brief Determine if the value is maximal. 218 bool isMaxValue(bool isSigned) const { 219 if (isSigned) 220 return Val.isMaxSignedValue(); 221 else 222 return Val.isMaxValue(); 223 } 224 225 /// This function will return true iff this constant represents the smallest 226 /// value that may be represented by this constant's type. 227 /// @returns true if this is the smallest value that may be represented by 228 /// this type. 229 /// @brief Determine if the value is minimal. 230 bool isMinValue(bool isSigned) const { 231 if (isSigned) 232 return Val.isMinSignedValue(); 233 else 234 return Val.isMinValue(); 235 } 236 237 /// This function will return true iff this constant represents a value with 238 /// active bits bigger than 64 bits or a value greater than the given uint64_t 239 /// value. 240 /// @returns true iff this constant is greater or equal to the given number. 241 /// @brief Determine if the value is greater or equal to the given number. 242 bool uge(uint64_t Num) const { 243 return Val.uge(Num); 244 } 245 246 /// getLimitedValue - If the value is smaller than the specified limit, 247 /// return it, otherwise return the limit value. This causes the value 248 /// to saturate to the limit. 249 /// @returns the min of the value of the constant and the specified value 250 /// @brief Get the constant's value with a saturation limit 251 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { 252 return Val.getLimitedValue(Limit); 253 } 254 255 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 256 static bool classof(const Value *V) { 257 return V->getValueID() == ConstantIntVal; 258 } 259}; 260 261//===----------------------------------------------------------------------===// 262/// ConstantFP - Floating Point Values [float, double] 263/// 264class ConstantFP final : public ConstantData { 265 friend class Constant; 266 267 APFloat Val; 268 269 ConstantFP(Type *Ty, const APFloat& V); 270 271 void destroyConstantImpl(); 272 273public: 274 ConstantFP(const ConstantFP &) = delete; 275 276 /// Floating point negation must be implemented with f(x) = -0.0 - x. This 277 /// method returns the negative zero constant for floating point or vector 278 /// floating point types; for all other types, it returns the null value. 279 static Constant *getZeroValueForNegation(Type *Ty); 280 281 /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, 282 /// for the specified value in the specified type. This should only be used 283 /// for simple constant values like 2.0/1.0 etc, that are known-valid both as 284 /// host double and as the target format. 285 static Constant *get(Type* Ty, double V); 286 static Constant *get(Type* Ty, StringRef Str); 287 static ConstantFP *get(LLVMContext &Context, const APFloat &V); 288 static Constant *getNaN(Type *Ty, bool Negative = false, unsigned type = 0); 289 static Constant *getNegativeZero(Type *Ty); 290 static Constant *getInfinity(Type *Ty, bool Negative = false); 291 292 /// Return true if Ty is big enough to represent V. 293 static bool isValueValidForType(Type *Ty, const APFloat &V); 294 inline const APFloat &getValueAPF() const { return Val; } 295 296 /// Return true if the value is positive or negative zero. 297 bool isZero() const { return Val.isZero(); } 298 299 /// Return true if the sign bit is set. 300 bool isNegative() const { return Val.isNegative(); } 301 302 /// Return true if the value is infinity 303 bool isInfinity() const { return Val.isInfinity(); } 304 305 /// Return true if the value is a NaN. 306 bool isNaN() const { return Val.isNaN(); } 307 308 /// We don't rely on operator== working on double values, as it returns true 309 /// for things that are clearly not equal, like -0.0 and 0.0. 310 /// As such, this method can be used to do an exact bit-for-bit comparison of 311 /// two floating point values. The version with a double operand is retained 312 /// because it's so convenient to write isExactlyValue(2.0), but please use 313 /// it only for simple constants. 314 bool isExactlyValue(const APFloat &V) const; 315 316 bool isExactlyValue(double V) const { 317 bool ignored; 318 APFloat FV(V); 319 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); 320 return isExactlyValue(FV); 321 } 322 323 /// Methods for support type inquiry through isa, cast, and dyn_cast: 324 static bool classof(const Value *V) { 325 return V->getValueID() == ConstantFPVal; 326 } 327}; 328 329//===----------------------------------------------------------------------===// 330/// All zero aggregate value 331/// 332class ConstantAggregateZero final : public ConstantData { 333 friend class Constant; 334 335 explicit ConstantAggregateZero(Type *Ty) 336 : ConstantData(Ty, ConstantAggregateZeroVal) {} 337 338 void destroyConstantImpl(); 339 340public: 341 ConstantAggregateZero(const ConstantAggregateZero &) = delete; 342 343 static ConstantAggregateZero *get(Type *Ty); 344 345 /// If this CAZ has array or vector type, return a zero with the right element 346 /// type. 347 Constant *getSequentialElement() const; 348 349 /// If this CAZ has struct type, return a zero with the right element type for 350 /// the specified element. 351 Constant *getStructElement(unsigned Elt) const; 352 353 /// Return a zero of the right value for the specified GEP index if we can, 354 /// otherwise return null (e.g. if C is a ConstantExpr). 355 Constant *getElementValue(Constant *C) const; 356 357 /// Return a zero of the right value for the specified GEP index. 358 Constant *getElementValue(unsigned Idx) const; 359 360 /// Return the number of elements in the array, vector, or struct. 361 unsigned getNumElements() const; 362 363 /// Methods for support type inquiry through isa, cast, and dyn_cast: 364 /// 365 static bool classof(const Value *V) { 366 return V->getValueID() == ConstantAggregateZeroVal; 367 } 368}; 369 370/// Base class for aggregate constants (with operands). 371/// 372/// These constants are aggregates of other constants, which are stored as 373/// operands. 374/// 375/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a 376/// ConstantVector. 377/// 378/// \note Some subclasses of \a ConstantData are semantically aggregates -- 379/// such as \a ConstantDataArray -- but are not subclasses of this because they 380/// use operands. 381class ConstantAggregate : public Constant { 382protected: 383 ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V); 384 385public: 386 /// Transparently provide more efficient getOperand methods. 387 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 388 389 /// Methods for support type inquiry through isa, cast, and dyn_cast: 390 static bool classof(const Value *V) { 391 return V->getValueID() >= ConstantAggregateFirstVal && 392 V->getValueID() <= ConstantAggregateLastVal; 393 } 394}; 395 396template <> 397struct OperandTraits<ConstantAggregate> 398 : public VariadicOperandTraits<ConstantAggregate> {}; 399 400DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) 401 402//===----------------------------------------------------------------------===// 403/// ConstantArray - Constant Array Declarations 404/// 405class ConstantArray final : public ConstantAggregate { 406 friend struct ConstantAggrKeyType<ConstantArray>; 407 friend class Constant; 408 409 ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); 410 411 void destroyConstantImpl(); 412 Value *handleOperandChangeImpl(Value *From, Value *To); 413 414public: 415 // ConstantArray accessors 416 static Constant *get(ArrayType *T, ArrayRef<Constant*> V); 417 418private: 419 static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); 420 421public: 422 /// Specialize the getType() method to always return an ArrayType, 423 /// which reduces the amount of casting needed in parts of the compiler. 424 inline ArrayType *getType() const { 425 return cast<ArrayType>(Value::getType()); 426 } 427 428 /// Methods for support type inquiry through isa, cast, and dyn_cast: 429 static bool classof(const Value *V) { 430 return V->getValueID() == ConstantArrayVal; 431 } 432}; 433 434//===----------------------------------------------------------------------===// 435// Constant Struct Declarations 436// 437class ConstantStruct final : public ConstantAggregate { 438 friend struct ConstantAggrKeyType<ConstantStruct>; 439 friend class Constant; 440 441 ConstantStruct(StructType *T, ArrayRef<Constant *> Val); 442 443 void destroyConstantImpl(); 444 Value *handleOperandChangeImpl(Value *From, Value *To); 445 446public: 447 // ConstantStruct accessors 448 static Constant *get(StructType *T, ArrayRef<Constant*> V); 449 450 template <typename... Csts> 451 static typename std::enable_if<are_base_of<Constant, Csts...>::value, 452 Constant *>::type 453 get(StructType *T, Csts *... Vs) { 454 SmallVector<Constant *, 8> Values({Vs...}); 455 return get(T, Values); 456 } 457 458 /// Return an anonymous struct that has the specified elements. 459 /// If the struct is possibly empty, then you must specify a context. 460 static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { 461 return get(getTypeForElements(V, Packed), V); 462 } 463 static Constant *getAnon(LLVMContext &Ctx, 464 ArrayRef<Constant*> V, bool Packed = false) { 465 return get(getTypeForElements(Ctx, V, Packed), V); 466 } 467 468 /// Return an anonymous struct type to use for a constant with the specified 469 /// set of elements. The list must not be empty. 470 static StructType *getTypeForElements(ArrayRef<Constant*> V, 471 bool Packed = false); 472 /// This version of the method allows an empty list. 473 static StructType *getTypeForElements(LLVMContext &Ctx, 474 ArrayRef<Constant*> V, 475 bool Packed = false); 476 477 /// Specialization - reduce amount of casting. 478 inline StructType *getType() const { 479 return cast<StructType>(Value::getType()); 480 } 481 482 /// Methods for support type inquiry through isa, cast, and dyn_cast: 483 static bool classof(const Value *V) { 484 return V->getValueID() == ConstantStructVal; 485 } 486}; 487 488//===----------------------------------------------------------------------===// 489/// Constant Vector Declarations 490/// 491class ConstantVector final : public ConstantAggregate { 492 friend struct ConstantAggrKeyType<ConstantVector>; 493 friend class Constant; 494 495 ConstantVector(VectorType *T, ArrayRef<Constant *> Val); 496 497 void destroyConstantImpl(); 498 Value *handleOperandChangeImpl(Value *From, Value *To); 499 500public: 501 // ConstantVector accessors 502 static Constant *get(ArrayRef<Constant*> V); 503 504private: 505 static Constant *getImpl(ArrayRef<Constant *> V); 506 507public: 508 /// Return a ConstantVector with the specified constant in each element. 509 static Constant *getSplat(unsigned NumElts, Constant *Elt); 510 511 /// Specialize the getType() method to always return a VectorType, 512 /// which reduces the amount of casting needed in parts of the compiler. 513 inline VectorType *getType() const { 514 return cast<VectorType>(Value::getType()); 515 } 516 517 /// If this is a splat constant, meaning that all of the elements have the 518 /// same value, return that value. Otherwise return NULL. 519 Constant *getSplatValue() const; 520 521 /// Methods for support type inquiry through isa, cast, and dyn_cast: 522 static bool classof(const Value *V) { 523 return V->getValueID() == ConstantVectorVal; 524 } 525}; 526 527//===----------------------------------------------------------------------===// 528/// A constant pointer value that points to null 529/// 530class ConstantPointerNull final : public ConstantData { 531 friend class Constant; 532 533 explicit ConstantPointerNull(PointerType *T) 534 : ConstantData(T, Value::ConstantPointerNullVal) {} 535 536 void destroyConstantImpl(); 537 538public: 539 ConstantPointerNull(const ConstantPointerNull &) = delete; 540 541 /// Static factory methods - Return objects of the specified value 542 static ConstantPointerNull *get(PointerType *T); 543 544 /// Specialize the getType() method to always return an PointerType, 545 /// which reduces the amount of casting needed in parts of the compiler. 546 inline PointerType *getType() const { 547 return cast<PointerType>(Value::getType()); 548 } 549 550 /// Methods for support type inquiry through isa, cast, and dyn_cast: 551 static bool classof(const Value *V) { 552 return V->getValueID() == ConstantPointerNullVal; 553 } 554}; 555 556//===----------------------------------------------------------------------===// 557/// ConstantDataSequential - A vector or array constant whose element type is a 558/// simple 1/2/4/8-byte integer or float/double, and whose elements are just 559/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no 560/// operands because it stores all of the elements of the constant as densely 561/// packed data, instead of as Value*'s. 562/// 563/// This is the common base class of ConstantDataArray and ConstantDataVector. 564/// 565class ConstantDataSequential : public ConstantData { 566 friend class LLVMContextImpl; 567 friend class Constant; 568 569 /// A pointer to the bytes underlying this constant (which is owned by the 570 /// uniquing StringMap). 571 const char *DataElements; 572 573 /// This forms a link list of ConstantDataSequential nodes that have 574 /// the same value but different type. For example, 0,0,0,1 could be a 4 575 /// element array of i8, or a 1-element array of i32. They'll both end up in 576 /// the same StringMap bucket, linked up. 577 ConstantDataSequential *Next; 578 579 void destroyConstantImpl(); 580 581protected: 582 explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) 583 : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {} 584 ~ConstantDataSequential() { delete Next; } 585 586 static Constant *getImpl(StringRef Bytes, Type *Ty); 587 588public: 589 ConstantDataSequential(const ConstantDataSequential &) = delete; 590 591 /// Return true if a ConstantDataSequential can be formed with a vector or 592 /// array of the specified element type. 593 /// ConstantDataArray only works with normal float and int types that are 594 /// stored densely in memory, not with things like i42 or x86_f80. 595 static bool isElementTypeCompatible(Type *Ty); 596 597 /// If this is a sequential container of integers (of any size), return the 598 /// specified element in the low bits of a uint64_t. 599 uint64_t getElementAsInteger(unsigned i) const; 600 601 /// If this is a sequential container of floating point type, return the 602 /// specified element as an APFloat. 603 APFloat getElementAsAPFloat(unsigned i) const; 604 605 /// If this is an sequential container of floats, return the specified element 606 /// as a float. 607 float getElementAsFloat(unsigned i) const; 608 609 /// If this is an sequential container of doubles, return the specified 610 /// element as a double. 611 double getElementAsDouble(unsigned i) const; 612 613 /// Return a Constant for a specified index's element. 614 /// Note that this has to compute a new constant to return, so it isn't as 615 /// efficient as getElementAsInteger/Float/Double. 616 Constant *getElementAsConstant(unsigned i) const; 617 618 /// Specialize the getType() method to always return a SequentialType, which 619 /// reduces the amount of casting needed in parts of the compiler. 620 inline SequentialType *getType() const { 621 return cast<SequentialType>(Value::getType()); 622 } 623 624 /// Return the element type of the array/vector. 625 Type *getElementType() const; 626 627 /// Return the number of elements in the array or vector. 628 unsigned getNumElements() const; 629 630 /// Return the size (in bytes) of each element in the array/vector. 631 /// The size of the elements is known to be a multiple of one byte. 632 uint64_t getElementByteSize() const; 633 634 /// This method returns true if this is an array of \p CharSize integers. 635 bool isString(unsigned CharSize = 8) const; 636 637 /// This method returns true if the array "isString", ends with a null byte, 638 /// and does not contains any other null bytes. 639 bool isCString() const; 640 641 /// If this array is isString(), then this method returns the array as a 642 /// StringRef. Otherwise, it asserts out. 643 StringRef getAsString() const { 644 assert(isString() && "Not a string"); 645 return getRawDataValues(); 646 } 647 648 /// If this array is isCString(), then this method returns the array (without 649 /// the trailing null byte) as a StringRef. Otherwise, it asserts out. 650 StringRef getAsCString() const { 651 assert(isCString() && "Isn't a C string"); 652 StringRef Str = getAsString(); 653 return Str.substr(0, Str.size()-1); 654 } 655 656 /// Return the raw, underlying, bytes of this data. Note that this is an 657 /// extremely tricky thing to work with, as it exposes the host endianness of 658 /// the data elements. 659 StringRef getRawDataValues() const; 660 661 /// Methods for support type inquiry through isa, cast, and dyn_cast: 662 static bool classof(const Value *V) { 663 return V->getValueID() == ConstantDataArrayVal || 664 V->getValueID() == ConstantDataVectorVal; 665 } 666 667private: 668 const char *getElementPointer(unsigned Elt) const; 669}; 670 671//===----------------------------------------------------------------------===// 672/// An array constant whose element type is a simple 1/2/4/8-byte integer or 673/// float/double, and whose elements are just simple data values 674/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 675/// stores all of the elements of the constant as densely packed data, instead 676/// of as Value*'s. 677class ConstantDataArray final : public ConstantDataSequential { 678 friend class ConstantDataSequential; 679 680 explicit ConstantDataArray(Type *ty, const char *Data) 681 : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} 682 683 /// Allocate space for exactly zero operands. 684 void *operator new(size_t s) { 685 return User::operator new(s, 0); 686 } 687 688public: 689 ConstantDataArray(const ConstantDataArray &) = delete; 690 691 /// get() constructors - Return a constant with array type with an element 692 /// count and element type matching the ArrayRef passed in. Note that this 693 /// can return a ConstantAggregateZero object. 694 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); 695 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); 696 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); 697 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); 698 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); 699 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); 700 701 /// getFP() constructors - Return a constant with array type with an element 702 /// count and element type of float with precision matching the number of 703 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 704 /// double for 64bits) Note that this can return a ConstantAggregateZero 705 /// object. 706 static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); 707 static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); 708 static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); 709 710 /// This method constructs a CDS and initializes it with a text string. 711 /// The default behavior (AddNull==true) causes a null terminator to 712 /// be placed at the end of the array (increasing the length of the string by 713 /// one more than the StringRef would normally indicate. Pass AddNull=false 714 /// to disable this behavior. 715 static Constant *getString(LLVMContext &Context, StringRef Initializer, 716 bool AddNull = true); 717 718 /// Specialize the getType() method to always return an ArrayType, 719 /// which reduces the amount of casting needed in parts of the compiler. 720 inline ArrayType *getType() const { 721 return cast<ArrayType>(Value::getType()); 722 } 723 724 /// Methods for support type inquiry through isa, cast, and dyn_cast: 725 static bool classof(const Value *V) { 726 return V->getValueID() == ConstantDataArrayVal; 727 } 728}; 729 730//===----------------------------------------------------------------------===// 731/// A vector constant whose element type is a simple 1/2/4/8-byte integer or 732/// float/double, and whose elements are just simple data values 733/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 734/// stores all of the elements of the constant as densely packed data, instead 735/// of as Value*'s. 736class ConstantDataVector final : public ConstantDataSequential { 737 friend class ConstantDataSequential; 738 739 explicit ConstantDataVector(Type *ty, const char *Data) 740 : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {} 741 742 // allocate space for exactly zero operands. 743 void *operator new(size_t s) { 744 return User::operator new(s, 0); 745 } 746 747public: 748 ConstantDataVector(const ConstantDataVector &) = delete; 749 750 /// get() constructors - Return a constant with vector type with an element 751 /// count and element type matching the ArrayRef passed in. Note that this 752 /// can return a ConstantAggregateZero object. 753 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); 754 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); 755 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); 756 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); 757 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); 758 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); 759 760 /// getFP() constructors - Return a constant with vector type with an element 761 /// count and element type of float with the precision matching the number of 762 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 763 /// double for 64bits) Note that this can return a ConstantAggregateZero 764 /// object. 765 static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); 766 static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); 767 static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); 768 769 /// Return a ConstantVector with the specified constant in each element. 770 /// The specified constant has to be a of a compatible type (i8/i16/ 771 /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. 772 static Constant *getSplat(unsigned NumElts, Constant *Elt); 773 774 /// If this is a splat constant, meaning that all of the elements have the 775 /// same value, return that value. Otherwise return NULL. 776 Constant *getSplatValue() const; 777 778 /// Specialize the getType() method to always return a VectorType, 779 /// which reduces the amount of casting needed in parts of the compiler. 780 inline VectorType *getType() const { 781 return cast<VectorType>(Value::getType()); 782 } 783 784 /// Methods for support type inquiry through isa, cast, and dyn_cast: 785 static bool classof(const Value *V) { 786 return V->getValueID() == ConstantDataVectorVal; 787 } 788}; 789 790//===----------------------------------------------------------------------===// 791/// A constant token which is empty 792/// 793class ConstantTokenNone final : public ConstantData { 794 friend class Constant; 795 796 explicit ConstantTokenNone(LLVMContext &Context) 797 : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} 798 799 void destroyConstantImpl(); 800 801public: 802 ConstantTokenNone(const ConstantTokenNone &) = delete; 803 804 /// Return the ConstantTokenNone. 805 static ConstantTokenNone *get(LLVMContext &Context); 806 807 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 808 static bool classof(const Value *V) { 809 return V->getValueID() == ConstantTokenNoneVal; 810 } 811}; 812 813/// The address of a basic block. 814/// 815class BlockAddress final : public Constant { 816 friend class Constant; 817 818 BlockAddress(Function *F, BasicBlock *BB); 819 820 void *operator new(size_t s) { return User::operator new(s, 2); } 821 822 void destroyConstantImpl(); 823 Value *handleOperandChangeImpl(Value *From, Value *To); 824 825public: 826 /// Return a BlockAddress for the specified function and basic block. 827 static BlockAddress *get(Function *F, BasicBlock *BB); 828 829 /// Return a BlockAddress for the specified basic block. The basic 830 /// block must be embedded into a function. 831 static BlockAddress *get(BasicBlock *BB); 832 833 /// Lookup an existing \c BlockAddress constant for the given BasicBlock. 834 /// 835 /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. 836 static BlockAddress *lookup(const BasicBlock *BB); 837 838 /// Transparently provide more efficient getOperand methods. 839 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 840 841 Function *getFunction() const { return (Function*)Op<0>().get(); } 842 BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } 843 844 /// Methods for support type inquiry through isa, cast, and dyn_cast: 845 static inline bool classof(const Value *V) { 846 return V->getValueID() == BlockAddressVal; 847 } 848}; 849 850template <> 851struct OperandTraits<BlockAddress> : 852 public FixedNumOperandTraits<BlockAddress, 2> { 853}; 854 855DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) 856 857//===----------------------------------------------------------------------===// 858/// A constant value that is initialized with an expression using 859/// other constant values. 860/// 861/// This class uses the standard Instruction opcodes to define the various 862/// constant expressions. The Opcode field for the ConstantExpr class is 863/// maintained in the Value::SubclassData field. 864class ConstantExpr : public Constant { 865 friend struct ConstantExprKeyType; 866 friend class Constant; 867 868 void destroyConstantImpl(); 869 Value *handleOperandChangeImpl(Value *From, Value *To); 870 871protected: 872 ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) 873 : Constant(ty, ConstantExprVal, Ops, NumOps) { 874 // Operation type (an Instruction opcode) is stored as the SubclassData. 875 setValueSubclassData(Opcode); 876 } 877 878public: 879 // Static methods to construct a ConstantExpr of different kinds. Note that 880 // these methods may return a object that is not an instance of the 881 // ConstantExpr class, because they will attempt to fold the constant 882 // expression into something simpler if possible. 883 884 /// getAlignOf constant expr - computes the alignment of a type in a target 885 /// independent way (Note: the return type is an i64). 886 static Constant *getAlignOf(Type *Ty); 887 888 /// getSizeOf constant expr - computes the (alloc) size of a type (in 889 /// address-units, not bits) in a target independent way (Note: the return 890 /// type is an i64). 891 /// 892 static Constant *getSizeOf(Type *Ty); 893 894 /// getOffsetOf constant expr - computes the offset of a struct field in a 895 /// target independent way (Note: the return type is an i64). 896 /// 897 static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); 898 899 /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, 900 /// which supports any aggregate type, and any Constant index. 901 /// 902 static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); 903 904 static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); 905 static Constant *getFNeg(Constant *C); 906 static Constant *getNot(Constant *C); 907 static Constant *getAdd(Constant *C1, Constant *C2, 908 bool HasNUW = false, bool HasNSW = false); 909 static Constant *getFAdd(Constant *C1, Constant *C2); 910 static Constant *getSub(Constant *C1, Constant *C2, 911 bool HasNUW = false, bool HasNSW = false); 912 static Constant *getFSub(Constant *C1, Constant *C2); 913 static Constant *getMul(Constant *C1, Constant *C2, 914 bool HasNUW = false, bool HasNSW = false); 915 static Constant *getFMul(Constant *C1, Constant *C2); 916 static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); 917 static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); 918 static Constant *getFDiv(Constant *C1, Constant *C2); 919 static Constant *getURem(Constant *C1, Constant *C2); 920 static Constant *getSRem(Constant *C1, Constant *C2); 921 static Constant *getFRem(Constant *C1, Constant *C2); 922 static Constant *getAnd(Constant *C1, Constant *C2); 923 static Constant *getOr(Constant *C1, Constant *C2); 924 static Constant *getXor(Constant *C1, Constant *C2); 925 static Constant *getShl(Constant *C1, Constant *C2, 926 bool HasNUW = false, bool HasNSW = false); 927 static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); 928 static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); 929 static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); 930 static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); 931 static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); 932 static Constant *getFPTrunc(Constant *C, Type *Ty, 933 bool OnlyIfReduced = false); 934 static Constant *getFPExtend(Constant *C, Type *Ty, 935 bool OnlyIfReduced = false); 936 static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); 937 static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); 938 static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); 939 static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); 940 static Constant *getPtrToInt(Constant *C, Type *Ty, 941 bool OnlyIfReduced = false); 942 static Constant *getIntToPtr(Constant *C, Type *Ty, 943 bool OnlyIfReduced = false); 944 static Constant *getBitCast(Constant *C, Type *Ty, 945 bool OnlyIfReduced = false); 946 static Constant *getAddrSpaceCast(Constant *C, Type *Ty, 947 bool OnlyIfReduced = false); 948 949 static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } 950 static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } 951 952 static Constant *getNSWAdd(Constant *C1, Constant *C2) { 953 return getAdd(C1, C2, false, true); 954 } 955 956 static Constant *getNUWAdd(Constant *C1, Constant *C2) { 957 return getAdd(C1, C2, true, false); 958 } 959 960 static Constant *getNSWSub(Constant *C1, Constant *C2) { 961 return getSub(C1, C2, false, true); 962 } 963 964 static Constant *getNUWSub(Constant *C1, Constant *C2) { 965 return getSub(C1, C2, true, false); 966 } 967 968 static Constant *getNSWMul(Constant *C1, Constant *C2) { 969 return getMul(C1, C2, false, true); 970 } 971 972 static Constant *getNUWMul(Constant *C1, Constant *C2) { 973 return getMul(C1, C2, true, false); 974 } 975 976 static Constant *getNSWShl(Constant *C1, Constant *C2) { 977 return getShl(C1, C2, false, true); 978 } 979 980 static Constant *getNUWShl(Constant *C1, Constant *C2) { 981 return getShl(C1, C2, true, false); 982 } 983 984 static Constant *getExactSDiv(Constant *C1, Constant *C2) { 985 return getSDiv(C1, C2, true); 986 } 987 988 static Constant *getExactUDiv(Constant *C1, Constant *C2) { 989 return getUDiv(C1, C2, true); 990 } 991 992 static Constant *getExactAShr(Constant *C1, Constant *C2) { 993 return getAShr(C1, C2, true); 994 } 995 996 static Constant *getExactLShr(Constant *C1, Constant *C2) { 997 return getLShr(C1, C2, true); 998 } 999 1000 /// Return the identity for the given binary operation, 1001 /// i.e. a constant C such that X op C = X and C op X = X for every X. It 1002 /// returns null if the operator doesn't have an identity. 1003 static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty); 1004 1005 /// Return the absorbing element for the given binary 1006 /// operation, i.e. a constant C such that X op C = C and C op X = C for 1007 /// every X. For example, this returns zero for integer multiplication. 1008 /// It returns null if the operator doesn't have an absorbing element. 1009 static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); 1010 1011 /// Transparently provide more efficient getOperand methods. 1012 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 1013 1014 /// \brief Convenience function for getting a Cast operation. 1015 /// 1016 /// \param ops The opcode for the conversion 1017 /// \param C The constant to be converted 1018 /// \param Ty The type to which the constant is converted 1019 /// \param OnlyIfReduced see \a getWithOperands() docs. 1020 static Constant *getCast(unsigned ops, Constant *C, Type *Ty, 1021 bool OnlyIfReduced = false); 1022 1023 // @brief Create a ZExt or BitCast cast constant expression 1024 static Constant *getZExtOrBitCast( 1025 Constant *C, ///< The constant to zext or bitcast 1026 Type *Ty ///< The type to zext or bitcast C to 1027 ); 1028 1029 // @brief Create a SExt or BitCast cast constant expression 1030 static Constant *getSExtOrBitCast( 1031 Constant *C, ///< The constant to sext or bitcast 1032 Type *Ty ///< The type to sext or bitcast C to 1033 ); 1034 1035 // @brief Create a Trunc or BitCast cast constant expression 1036 static Constant *getTruncOrBitCast( 1037 Constant *C, ///< The constant to trunc or bitcast 1038 Type *Ty ///< The type to trunc or bitcast C to 1039 ); 1040 1041 /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant 1042 /// expression. 1043 static Constant *getPointerCast( 1044 Constant *C, ///< The pointer value to be casted (operand 0) 1045 Type *Ty ///< The type to which cast should be made 1046 ); 1047 1048 /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on 1049 /// the address space. 1050 static Constant *getPointerBitCastOrAddrSpaceCast( 1051 Constant *C, ///< The constant to addrspacecast or bitcast 1052 Type *Ty ///< The type to bitcast or addrspacecast C to 1053 ); 1054 1055 /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts 1056 static Constant *getIntegerCast( 1057 Constant *C, ///< The integer constant to be casted 1058 Type *Ty, ///< The integer type to cast to 1059 bool isSigned ///< Whether C should be treated as signed or not 1060 ); 1061 1062 /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts 1063 static Constant *getFPCast( 1064 Constant *C, ///< The integer constant to be casted 1065 Type *Ty ///< The integer type to cast to 1066 ); 1067 1068 /// @brief Return true if this is a convert constant expression 1069 bool isCast() const; 1070 1071 /// @brief Return true if this is a compare constant expression 1072 bool isCompare() const; 1073 1074 /// @brief Return true if this is an insertvalue or extractvalue expression, 1075 /// and the getIndices() method may be used. 1076 bool hasIndices() const; 1077 1078 /// @brief Return true if this is a getelementptr expression and all 1079 /// the index operands are compile-time known integers within the 1080 /// corresponding notional static array extents. Note that this is 1081 /// not equivalant to, a subset of, or a superset of the "inbounds" 1082 /// property. 1083 bool isGEPWithNoNotionalOverIndexing() const; 1084 1085 /// Select constant expr 1086 /// 1087 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1088 static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, 1089 Type *OnlyIfReducedTy = nullptr); 1090 1091 /// get - Return a binary or shift operator constant expression, 1092 /// folding if possible. 1093 /// 1094 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1095 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, 1096 unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); 1097 1098 /// \brief Return an ICmp or FCmp comparison operator constant expression. 1099 /// 1100 /// \param OnlyIfReduced see \a getWithOperands() docs. 1101 static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, 1102 bool OnlyIfReduced = false); 1103 1104 /// get* - Return some common constants without having to 1105 /// specify the full Instruction::OPCODE identifier. 1106 /// 1107 static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, 1108 bool OnlyIfReduced = false); 1109 static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, 1110 bool OnlyIfReduced = false); 1111 1112 /// Getelementptr form. Value* is only accepted for convenience; 1113 /// all elements must be Constants. 1114 /// 1115 /// \param InRangeIndex the inrange index if present or None. 1116 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1117 static Constant *getGetElementPtr(Type *Ty, Constant *C, 1118 ArrayRef<Constant *> IdxList, 1119 bool InBounds = false, 1120 Optional<unsigned> InRangeIndex = None, 1121 Type *OnlyIfReducedTy = nullptr) { 1122 return getGetElementPtr( 1123 Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), 1124 InBounds, InRangeIndex, OnlyIfReducedTy); 1125 } 1126 static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, 1127 bool InBounds = false, 1128 Optional<unsigned> InRangeIndex = None, 1129 Type *OnlyIfReducedTy = nullptr) { 1130 // This form of the function only exists to avoid ambiguous overload 1131 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1132 // ArrayRef<Value *>. 1133 return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, 1134 OnlyIfReducedTy); 1135 } 1136 static Constant *getGetElementPtr(Type *Ty, Constant *C, 1137 ArrayRef<Value *> IdxList, 1138 bool InBounds = false, 1139 Optional<unsigned> InRangeIndex = None, 1140 Type *OnlyIfReducedTy = nullptr); 1141 1142 /// Create an "inbounds" getelementptr. See the documentation for the 1143 /// "inbounds" flag in LangRef.html for details. 1144 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1145 ArrayRef<Constant *> IdxList) { 1146 return getGetElementPtr(Ty, C, IdxList, true); 1147 } 1148 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1149 Constant *Idx) { 1150 // This form of the function only exists to avoid ambiguous overload 1151 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1152 // ArrayRef<Value *>. 1153 return getGetElementPtr(Ty, C, Idx, true); 1154 } 1155 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1156 ArrayRef<Value *> IdxList) { 1157 return getGetElementPtr(Ty, C, IdxList, true); 1158 } 1159 1160 static Constant *getExtractElement(Constant *Vec, Constant *Idx, 1161 Type *OnlyIfReducedTy = nullptr); 1162 static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, 1163 Type *OnlyIfReducedTy = nullptr); 1164 static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, 1165 Type *OnlyIfReducedTy = nullptr); 1166 static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 1167 Type *OnlyIfReducedTy = nullptr); 1168 static Constant *getInsertValue(Constant *Agg, Constant *Val, 1169 ArrayRef<unsigned> Idxs, 1170 Type *OnlyIfReducedTy = nullptr); 1171 1172 /// Return the opcode at the root of this constant expression 1173 unsigned getOpcode() const { return getSubclassDataFromValue(); } 1174 1175 /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or 1176 /// FCMP constant expression. 1177 unsigned getPredicate() const; 1178 1179 /// Assert that this is an insertvalue or exactvalue 1180 /// expression and return the list of indices. 1181 ArrayRef<unsigned> getIndices() const; 1182 1183 /// Return a string representation for an opcode. 1184 const char *getOpcodeName() const; 1185 1186 /// Return a constant expression identical to this one, but with the specified 1187 /// operand set to the specified value. 1188 Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; 1189 1190 /// This returns the current constant expression with the operands replaced 1191 /// with the specified values. The specified array must have the same number 1192 /// of operands as our current one. 1193 Constant *getWithOperands(ArrayRef<Constant*> Ops) const { 1194 return getWithOperands(Ops, getType()); 1195 } 1196 1197 /// Get the current expression with the operands replaced. 1198 /// 1199 /// Return the current constant expression with the operands replaced with \c 1200 /// Ops and the type with \c Ty. The new operands must have the same number 1201 /// as the current ones. 1202 /// 1203 /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something 1204 /// gets constant-folded, the type changes, or the expression is otherwise 1205 /// canonicalized. This parameter should almost always be \c false. 1206 Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1207 bool OnlyIfReduced = false, 1208 Type *SrcTy = nullptr) const; 1209 1210 /// Returns an Instruction which implements the same operation as this 1211 /// ConstantExpr. The instruction is not linked to any basic block. 1212 /// 1213 /// A better approach to this could be to have a constructor for Instruction 1214 /// which would take a ConstantExpr parameter, but that would have spread 1215 /// implementation details of ConstantExpr outside of Constants.cpp, which 1216 /// would make it harder to remove ConstantExprs altogether. 1217 Instruction *getAsInstruction(); 1218 1219 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1220 static inline bool classof(const Value *V) { 1221 return V->getValueID() == ConstantExprVal; 1222 } 1223 1224private: 1225 // Shadow Value::setValueSubclassData with a private forwarding method so that 1226 // subclasses cannot accidentally use it. 1227 void setValueSubclassData(unsigned short D) { 1228 Value::setValueSubclassData(D); 1229 } 1230}; 1231 1232template <> 1233struct OperandTraits<ConstantExpr> : 1234 public VariadicOperandTraits<ConstantExpr, 1> { 1235}; 1236 1237DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) 1238 1239//===----------------------------------------------------------------------===// 1240/// 'undef' values are things that do not have specified contents. 1241/// These are used for a variety of purposes, including global variable 1242/// initializers and operands to instructions. 'undef' values can occur with 1243/// any first-class type. 1244/// 1245/// Undef values aren't exactly constants; if they have multiple uses, they 1246/// can appear to have different bit patterns at each use. See 1247/// LangRef.html#undefvalues for details. 1248/// 1249class UndefValue final : public ConstantData { 1250 friend class Constant; 1251 1252 explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} 1253 1254 void destroyConstantImpl(); 1255 1256public: 1257 UndefValue(const UndefValue &) = delete; 1258 1259 /// Static factory methods - Return an 'undef' object of the specified type. 1260 static UndefValue *get(Type *T); 1261 1262 /// If this Undef has array or vector type, return a undef with the right 1263 /// element type. 1264 UndefValue *getSequentialElement() const; 1265 1266 /// If this undef has struct type, return a undef with the right element type 1267 /// for the specified element. 1268 UndefValue *getStructElement(unsigned Elt) const; 1269 1270 /// Return an undef of the right value for the specified GEP index if we can, 1271 /// otherwise return null (e.g. if C is a ConstantExpr). 1272 UndefValue *getElementValue(Constant *C) const; 1273 1274 /// Return an undef of the right value for the specified GEP index. 1275 UndefValue *getElementValue(unsigned Idx) const; 1276 1277 /// Return the number of elements in the array, vector, or struct. 1278 unsigned getNumElements() const; 1279 1280 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1281 static bool classof(const Value *V) { 1282 return V->getValueID() == UndefValueVal; 1283 } 1284}; 1285 1286} // end namespace llvm 1287 1288#endif // LLVM_IR_CONSTANTS_H 1289