1//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10///
11/// This header defines various interfaces for pass management in LLVM. There
12/// is no "pass" interface in LLVM per se. Instead, an instance of any class
13/// which supports a method to 'run' it over a unit of IR can be used as
14/// a pass. A pass manager is generally a tool to collect a sequence of passes
15/// which run over a particular IR construct, and run each of them in sequence
16/// over each such construct in the containing IR construct. As there is no
17/// containing IR construct for a Module, a manager for passes over modules
18/// forms the base case which runs its managed passes in sequence over the
19/// single module provided.
20///
21/// The core IR library provides managers for running passes over
22/// modules and functions.
23///
24/// * FunctionPassManager can run over a Module, runs each pass over
25///   a Function.
26/// * ModulePassManager must be directly run, runs each pass over the Module.
27///
28/// Note that the implementations of the pass managers use concept-based
29/// polymorphism as outlined in the "Value Semantics and Concept-based
30/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
31/// Class of Evil") by Sean Parent:
32/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
33/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
34/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
35///
36//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_IR_PASSMANAGER_H
39#define LLVM_IR_PASSMANAGER_H
40
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/StringRef.h"
44#include "llvm/ADT/TinyPtrVector.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/Module.h"
47#include "llvm/IR/PassManagerInternal.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/TypeName.h"
50#include "llvm/Support/raw_ostream.h"
51#include <algorithm>
52#include <cassert>
53#include <cstring>
54#include <iterator>
55#include <list>
56#include <memory>
57#include <tuple>
58#include <type_traits>
59#include <utility>
60#include <vector>
61
62namespace llvm {
63
64/// A special type used by analysis passes to provide an address that
65/// identifies that particular analysis pass type.
66///
67/// Analysis passes should have a static data member of this type and derive
68/// from the \c AnalysisInfoMixin to get a static ID method used to identify
69/// the analysis in the pass management infrastructure.
70struct alignas(8) AnalysisKey {};
71
72/// A special type used to provide an address that identifies a set of related
73/// analyses.  These sets are primarily used below to mark sets of analyses as
74/// preserved.
75///
76/// For example, a transformation can indicate that it preserves the CFG of a
77/// function by preserving the appropriate AnalysisSetKey.  An analysis that
78/// depends only on the CFG can then check if that AnalysisSetKey is preserved;
79/// if it is, the analysis knows that it itself is preserved.
80struct alignas(8) AnalysisSetKey {};
81
82/// This templated class represents "all analyses that operate over \<a
83/// particular IR unit\>" (e.g. a Function or a Module) in instances of
84/// PreservedAnalysis.
85///
86/// This lets a transformation say e.g. "I preserved all function analyses".
87///
88/// Note that you must provide an explicit instantiation declaration and
89/// definition for this template in order to get the correct behavior on
90/// Windows. Otherwise, the address of SetKey will not be stable.
91template <typename IRUnitT> class AllAnalysesOn {
92public:
93  static AnalysisSetKey *ID() { return &SetKey; }
94
95private:
96  static AnalysisSetKey SetKey;
97};
98
99template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
100
101extern template class AllAnalysesOn<Module>;
102extern template class AllAnalysesOn<Function>;
103
104/// Represents analyses that only rely on functions' control flow.
105///
106/// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
107/// to query whether it has been preserved.
108///
109/// The CFG of a function is defined as the set of basic blocks and the edges
110/// between them. Changing the set of basic blocks in a function is enough to
111/// mutate the CFG. Mutating the condition of a branch or argument of an
112/// invoked function does not mutate the CFG, but changing the successor labels
113/// of those instructions does.
114class CFGAnalyses {
115public:
116  static AnalysisSetKey *ID() { return &SetKey; }
117
118private:
119  static AnalysisSetKey SetKey;
120};
121
122/// A set of analyses that are preserved following a run of a transformation
123/// pass.
124///
125/// Transformation passes build and return these objects to communicate which
126/// analyses are still valid after the transformation. For most passes this is
127/// fairly simple: if they don't change anything all analyses are preserved,
128/// otherwise only a short list of analyses that have been explicitly updated
129/// are preserved.
130///
131/// This class also lets transformation passes mark abstract *sets* of analyses
132/// as preserved. A transformation that (say) does not alter the CFG can
133/// indicate such by marking a particular AnalysisSetKey as preserved, and
134/// then analyses can query whether that AnalysisSetKey is preserved.
135///
136/// Finally, this class can represent an "abandoned" analysis, which is
137/// not preserved even if it would be covered by some abstract set of analyses.
138///
139/// Given a `PreservedAnalyses` object, an analysis will typically want to
140/// figure out whether it is preserved. In the example below, MyAnalysisType is
141/// preserved if it's not abandoned, and (a) it's explicitly marked as
142/// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
143/// AnalysisSetA and AnalysisSetB are preserved.
144///
145/// ```
146///   auto PAC = PA.getChecker<MyAnalysisType>();
147///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
148///       (PAC.preservedSet<AnalysisSetA>() &&
149///        PAC.preservedSet<AnalysisSetB>())) {
150///     // The analysis has been successfully preserved ...
151///   }
152/// ```
153class PreservedAnalyses {
154public:
155  /// \brief Convenience factory function for the empty preserved set.
156  static PreservedAnalyses none() { return PreservedAnalyses(); }
157
158  /// \brief Construct a special preserved set that preserves all passes.
159  static PreservedAnalyses all() {
160    PreservedAnalyses PA;
161    PA.PreservedIDs.insert(&AllAnalysesKey);
162    return PA;
163  }
164
165  /// Mark an analysis as preserved.
166  template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
167
168  /// \brief Given an analysis's ID, mark the analysis as preserved, adding it
169  /// to the set.
170  void preserve(AnalysisKey *ID) {
171    // Clear this ID from the explicit not-preserved set if present.
172    NotPreservedAnalysisIDs.erase(ID);
173
174    // If we're not already preserving all analyses (other than those in
175    // NotPreservedAnalysisIDs).
176    if (!areAllPreserved())
177      PreservedIDs.insert(ID);
178  }
179
180  /// Mark an analysis set as preserved.
181  template <typename AnalysisSetT> void preserveSet() {
182    preserveSet(AnalysisSetT::ID());
183  }
184
185  /// Mark an analysis set as preserved using its ID.
186  void preserveSet(AnalysisSetKey *ID) {
187    // If we're not already in the saturated 'all' state, add this set.
188    if (!areAllPreserved())
189      PreservedIDs.insert(ID);
190  }
191
192  /// Mark an analysis as abandoned.
193  ///
194  /// An abandoned analysis is not preserved, even if it is nominally covered
195  /// by some other set or was previously explicitly marked as preserved.
196  ///
197  /// Note that you can only abandon a specific analysis, not a *set* of
198  /// analyses.
199  template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
200
201  /// Mark an analysis as abandoned using its ID.
202  ///
203  /// An abandoned analysis is not preserved, even if it is nominally covered
204  /// by some other set or was previously explicitly marked as preserved.
205  ///
206  /// Note that you can only abandon a specific analysis, not a *set* of
207  /// analyses.
208  void abandon(AnalysisKey *ID) {
209    PreservedIDs.erase(ID);
210    NotPreservedAnalysisIDs.insert(ID);
211  }
212
213  /// \brief Intersect this set with another in place.
214  ///
215  /// This is a mutating operation on this preserved set, removing all
216  /// preserved passes which are not also preserved in the argument.
217  void intersect(const PreservedAnalyses &Arg) {
218    if (Arg.areAllPreserved())
219      return;
220    if (areAllPreserved()) {
221      *this = Arg;
222      return;
223    }
224    // The intersection requires the *union* of the explicitly not-preserved
225    // IDs and the *intersection* of the preserved IDs.
226    for (auto ID : Arg.NotPreservedAnalysisIDs) {
227      PreservedIDs.erase(ID);
228      NotPreservedAnalysisIDs.insert(ID);
229    }
230    for (auto ID : PreservedIDs)
231      if (!Arg.PreservedIDs.count(ID))
232        PreservedIDs.erase(ID);
233  }
234
235  /// \brief Intersect this set with a temporary other set in place.
236  ///
237  /// This is a mutating operation on this preserved set, removing all
238  /// preserved passes which are not also preserved in the argument.
239  void intersect(PreservedAnalyses &&Arg) {
240    if (Arg.areAllPreserved())
241      return;
242    if (areAllPreserved()) {
243      *this = std::move(Arg);
244      return;
245    }
246    // The intersection requires the *union* of the explicitly not-preserved
247    // IDs and the *intersection* of the preserved IDs.
248    for (auto ID : Arg.NotPreservedAnalysisIDs) {
249      PreservedIDs.erase(ID);
250      NotPreservedAnalysisIDs.insert(ID);
251    }
252    for (auto ID : PreservedIDs)
253      if (!Arg.PreservedIDs.count(ID))
254        PreservedIDs.erase(ID);
255  }
256
257  /// A checker object that makes it easy to query for whether an analysis or
258  /// some set covering it is preserved.
259  class PreservedAnalysisChecker {
260    friend class PreservedAnalyses;
261
262    const PreservedAnalyses &PA;
263    AnalysisKey *const ID;
264    const bool IsAbandoned;
265
266    /// A PreservedAnalysisChecker is tied to a particular Analysis because
267    /// `preserved()` and `preservedSet()` both return false if the Analysis
268    /// was abandoned.
269    PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
270        : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
271
272  public:
273    /// Returns true if the checker's analysis was not abandoned and either
274    ///  - the analysis is explicitly preserved or
275    ///  - all analyses are preserved.
276    bool preserved() {
277      return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
278                              PA.PreservedIDs.count(ID));
279    }
280
281    /// Returns true if the checker's analysis was not abandoned and either
282    ///  - \p AnalysisSetT is explicitly preserved or
283    ///  - all analyses are preserved.
284    template <typename AnalysisSetT> bool preservedSet() {
285      AnalysisSetKey *SetID = AnalysisSetT::ID();
286      return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
287                              PA.PreservedIDs.count(SetID));
288    }
289  };
290
291  /// Build a checker for this `PreservedAnalyses` and the specified analysis
292  /// type.
293  ///
294  /// You can use the returned object to query whether an analysis was
295  /// preserved. See the example in the comment on `PreservedAnalysis`.
296  template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
297    return PreservedAnalysisChecker(*this, AnalysisT::ID());
298  }
299
300  /// Build a checker for this `PreservedAnalyses` and the specified analysis
301  /// ID.
302  ///
303  /// You can use the returned object to query whether an analysis was
304  /// preserved. See the example in the comment on `PreservedAnalysis`.
305  PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
306    return PreservedAnalysisChecker(*this, ID);
307  }
308
309  /// Test whether all analyses are preserved (and none are abandoned).
310  ///
311  /// This is used primarily to optimize for the common case of a transformation
312  /// which makes no changes to the IR.
313  bool areAllPreserved() const {
314    return NotPreservedAnalysisIDs.empty() &&
315           PreservedIDs.count(&AllAnalysesKey);
316  }
317
318  /// Directly test whether a set of analyses is preserved.
319  ///
320  /// This is only true when no analyses have been explicitly abandoned.
321  template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
322    return allAnalysesInSetPreserved(AnalysisSetT::ID());
323  }
324
325  /// Directly test whether a set of analyses is preserved.
326  ///
327  /// This is only true when no analyses have been explicitly abandoned.
328  bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
329    return NotPreservedAnalysisIDs.empty() &&
330           (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
331  }
332
333private:
334  /// A special key used to indicate all analyses.
335  static AnalysisSetKey AllAnalysesKey;
336
337  /// The IDs of analyses and analysis sets that are preserved.
338  SmallPtrSet<void *, 2> PreservedIDs;
339
340  /// The IDs of explicitly not-preserved analyses.
341  ///
342  /// If an analysis in this set is covered by a set in `PreservedIDs`, we
343  /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
344  /// "wins" over analysis sets in `PreservedIDs`.
345  ///
346  /// Also, a given ID should never occur both here and in `PreservedIDs`.
347  SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
348};
349
350// Forward declare the analysis manager template.
351template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
352
353/// A CRTP mix-in to automatically provide informational APIs needed for
354/// passes.
355///
356/// This provides some boilerplate for types that are passes.
357template <typename DerivedT> struct PassInfoMixin {
358  /// Gets the name of the pass we are mixed into.
359  static StringRef name() {
360    static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
361                  "Must pass the derived type as the template argument!");
362    StringRef Name = getTypeName<DerivedT>();
363    if (Name.startswith("llvm::"))
364      Name = Name.drop_front(strlen("llvm::"));
365    return Name;
366  }
367};
368
369/// A CRTP mix-in that provides informational APIs needed for analysis passes.
370///
371/// This provides some boilerplate for types that are analysis passes. It
372/// automatically mixes in \c PassInfoMixin.
373template <typename DerivedT>
374struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
375  /// Returns an opaque, unique ID for this analysis type.
376  ///
377  /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
378  /// suitable for use in sets, maps, and other data structures that use the low
379  /// bits of pointers.
380  ///
381  /// Note that this requires the derived type provide a static \c AnalysisKey
382  /// member called \c Key.
383  ///
384  /// FIXME: The only reason the mixin type itself can't declare the Key value
385  /// is that some compilers cannot correctly unique a templated static variable
386  /// so it has the same addresses in each instantiation. The only currently
387  /// known platform with this limitation is Windows DLL builds, specifically
388  /// building each part of LLVM as a DLL. If we ever remove that build
389  /// configuration, this mixin can provide the static key as well.
390  static AnalysisKey *ID() {
391    static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
392                  "Must pass the derived type as the template argument!");
393    return &DerivedT::Key;
394  }
395};
396
397/// \brief Manages a sequence of passes over a particular unit of IR.
398///
399/// A pass manager contains a sequence of passes to run over a particular unit
400/// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
401/// IR, and when run over some given IR will run each of its contained passes in
402/// sequence. Pass managers are the primary and most basic building block of a
403/// pass pipeline.
404///
405/// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
406/// argument. The pass manager will propagate that analysis manager to each
407/// pass it runs, and will call the analysis manager's invalidation routine with
408/// the PreservedAnalyses of each pass it runs.
409template <typename IRUnitT,
410          typename AnalysisManagerT = AnalysisManager<IRUnitT>,
411          typename... ExtraArgTs>
412class PassManager : public PassInfoMixin<
413                        PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
414public:
415  /// \brief Construct a pass manager.
416  ///
417  /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
418  explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
419
420  // FIXME: These are equivalent to the default move constructor/move
421  // assignment. However, using = default triggers linker errors due to the
422  // explicit instantiations below. Find away to use the default and remove the
423  // duplicated code here.
424  PassManager(PassManager &&Arg)
425      : Passes(std::move(Arg.Passes)),
426        DebugLogging(std::move(Arg.DebugLogging)) {}
427
428  PassManager &operator=(PassManager &&RHS) {
429    Passes = std::move(RHS.Passes);
430    DebugLogging = std::move(RHS.DebugLogging);
431    return *this;
432  }
433
434  /// \brief Run all of the passes in this manager over the given unit of IR.
435  /// ExtraArgs are passed to each pass.
436  PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
437                        ExtraArgTs... ExtraArgs) {
438    PreservedAnalyses PA = PreservedAnalyses::all();
439
440    if (DebugLogging)
441      dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
442
443    for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
444      if (DebugLogging)
445        dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
446               << IR.getName() << "\n";
447
448      PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM, ExtraArgs...);
449
450      // Update the analysis manager as each pass runs and potentially
451      // invalidates analyses.
452      AM.invalidate(IR, PassPA);
453
454      // Finally, intersect the preserved analyses to compute the aggregate
455      // preserved set for this pass manager.
456      PA.intersect(std::move(PassPA));
457
458      // FIXME: Historically, the pass managers all called the LLVM context's
459      // yield function here. We don't have a generic way to acquire the
460      // context and it isn't yet clear what the right pattern is for yielding
461      // in the new pass manager so it is currently omitted.
462      //IR.getContext().yield();
463    }
464
465    // Invaliadtion was handled after each pass in the above loop for the
466    // current unit of IR. Therefore, the remaining analysis results in the
467    // AnalysisManager are preserved. We mark this with a set so that we don't
468    // need to inspect each one individually.
469    PA.preserveSet<AllAnalysesOn<IRUnitT>>();
470
471    if (DebugLogging)
472      dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
473
474    return PA;
475  }
476
477  template <typename PassT> void addPass(PassT Pass) {
478    using PassModelT =
479        detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
480                          ExtraArgTs...>;
481
482    Passes.emplace_back(new PassModelT(std::move(Pass)));
483  }
484
485private:
486  using PassConceptT =
487      detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
488
489  std::vector<std::unique_ptr<PassConceptT>> Passes;
490
491  /// \brief Flag indicating whether we should do debug logging.
492  bool DebugLogging;
493};
494
495extern template class PassManager<Module>;
496
497/// \brief Convenience typedef for a pass manager over modules.
498using ModulePassManager = PassManager<Module>;
499
500extern template class PassManager<Function>;
501
502/// \brief Convenience typedef for a pass manager over functions.
503using FunctionPassManager = PassManager<Function>;
504
505/// \brief A container for analyses that lazily runs them and caches their
506/// results.
507///
508/// This class can manage analyses for any IR unit where the address of the IR
509/// unit sufficies as its identity.
510template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
511public:
512  class Invalidator;
513
514private:
515  // Now that we've defined our invalidator, we can define the concept types.
516  using ResultConceptT =
517      detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
518  using PassConceptT =
519      detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
520                                  ExtraArgTs...>;
521
522  /// \brief List of analysis pass IDs and associated concept pointers.
523  ///
524  /// Requires iterators to be valid across appending new entries and arbitrary
525  /// erases. Provides the analysis ID to enable finding iterators to a given
526  /// entry in maps below, and provides the storage for the actual result
527  /// concept.
528  using AnalysisResultListT =
529      std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
530
531  /// \brief Map type from IRUnitT pointer to our custom list type.
532  using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
533
534  /// \brief Map type from a pair of analysis ID and IRUnitT pointer to an
535  /// iterator into a particular result list (which is where the actual analysis
536  /// result is stored).
537  using AnalysisResultMapT =
538      DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
539               typename AnalysisResultListT::iterator>;
540
541public:
542  /// API to communicate dependencies between analyses during invalidation.
543  ///
544  /// When an analysis result embeds handles to other analysis results, it
545  /// needs to be invalidated both when its own information isn't preserved and
546  /// when any of its embedded analysis results end up invalidated. We pass an
547  /// \c Invalidator object as an argument to \c invalidate() in order to let
548  /// the analysis results themselves define the dependency graph on the fly.
549  /// This lets us avoid building building an explicit representation of the
550  /// dependencies between analysis results.
551  class Invalidator {
552  public:
553    /// Trigger the invalidation of some other analysis pass if not already
554    /// handled and return whether it was in fact invalidated.
555    ///
556    /// This is expected to be called from within a given analysis result's \c
557    /// invalidate method to trigger a depth-first walk of all inter-analysis
558    /// dependencies. The same \p IR unit and \p PA passed to that result's \c
559    /// invalidate method should in turn be provided to this routine.
560    ///
561    /// The first time this is called for a given analysis pass, it will call
562    /// the corresponding result's \c invalidate method.  Subsequent calls will
563    /// use a cache of the results of that initial call.  It is an error to form
564    /// cyclic dependencies between analysis results.
565    ///
566    /// This returns true if the given analysis's result is invalid. Any
567    /// dependecies on it will become invalid as a result.
568    template <typename PassT>
569    bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
570      using ResultModelT =
571          detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
572                                      PreservedAnalyses, Invalidator>;
573
574      return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
575    }
576
577    /// A type-erased variant of the above invalidate method with the same core
578    /// API other than passing an analysis ID rather than an analysis type
579    /// parameter.
580    ///
581    /// This is sadly less efficient than the above routine, which leverages
582    /// the type parameter to avoid the type erasure overhead.
583    bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
584      return invalidateImpl<>(ID, IR, PA);
585    }
586
587  private:
588    friend class AnalysisManager;
589
590    template <typename ResultT = ResultConceptT>
591    bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
592                        const PreservedAnalyses &PA) {
593      // If we've already visited this pass, return true if it was invalidated
594      // and false otherwise.
595      auto IMapI = IsResultInvalidated.find(ID);
596      if (IMapI != IsResultInvalidated.end())
597        return IMapI->second;
598
599      // Otherwise look up the result object.
600      auto RI = Results.find({ID, &IR});
601      assert(RI != Results.end() &&
602             "Trying to invalidate a dependent result that isn't in the "
603             "manager's cache is always an error, likely due to a stale result "
604             "handle!");
605
606      auto &Result = static_cast<ResultT &>(*RI->second->second);
607
608      // Insert into the map whether the result should be invalidated and return
609      // that. Note that we cannot reuse IMapI and must do a fresh insert here,
610      // as calling invalidate could (recursively) insert things into the map,
611      // making any iterator or reference invalid.
612      bool Inserted;
613      std::tie(IMapI, Inserted) =
614          IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
615      (void)Inserted;
616      assert(Inserted && "Should not have already inserted this ID, likely "
617                         "indicates a dependency cycle!");
618      return IMapI->second;
619    }
620
621    Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
622                const AnalysisResultMapT &Results)
623        : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
624
625    SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
626    const AnalysisResultMapT &Results;
627  };
628
629  /// \brief Construct an empty analysis manager.
630  ///
631  /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
632  AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
633  AnalysisManager(AnalysisManager &&) = default;
634  AnalysisManager &operator=(AnalysisManager &&) = default;
635
636  /// \brief Returns true if the analysis manager has an empty results cache.
637  bool empty() const {
638    assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
639           "The storage and index of analysis results disagree on how many "
640           "there are!");
641    return AnalysisResults.empty();
642  }
643
644  /// \brief Clear any cached analysis results for a single unit of IR.
645  ///
646  /// This doesn't invalidate, but instead simply deletes, the relevant results.
647  /// It is useful when the IR is being removed and we want to clear out all the
648  /// memory pinned for it.
649  void clear(IRUnitT &IR) {
650    if (DebugLogging)
651      dbgs() << "Clearing all analysis results for: " << IR.getName() << "\n";
652
653    auto ResultsListI = AnalysisResultLists.find(&IR);
654    if (ResultsListI == AnalysisResultLists.end())
655      return;
656    // Delete the map entries that point into the results list.
657    for (auto &IDAndResult : ResultsListI->second)
658      AnalysisResults.erase({IDAndResult.first, &IR});
659
660    // And actually destroy and erase the results associated with this IR.
661    AnalysisResultLists.erase(ResultsListI);
662  }
663
664  /// \brief Clear all analysis results cached by this AnalysisManager.
665  ///
666  /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
667  /// deletes them.  This lets you clean up the AnalysisManager when the set of
668  /// IR units itself has potentially changed, and thus we can't even look up a
669  /// a result and invalidate/clear it directly.
670  void clear() {
671    AnalysisResults.clear();
672    AnalysisResultLists.clear();
673  }
674
675  /// \brief Get the result of an analysis pass for a given IR unit.
676  ///
677  /// Runs the analysis if a cached result is not available.
678  template <typename PassT>
679  typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
680    assert(AnalysisPasses.count(PassT::ID()) &&
681           "This analysis pass was not registered prior to being queried");
682    ResultConceptT &ResultConcept =
683        getResultImpl(PassT::ID(), IR, ExtraArgs...);
684
685    using ResultModelT =
686        detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
687                                    PreservedAnalyses, Invalidator>;
688
689    return static_cast<ResultModelT &>(ResultConcept).Result;
690  }
691
692  /// \brief Get the cached result of an analysis pass for a given IR unit.
693  ///
694  /// This method never runs the analysis.
695  ///
696  /// \returns null if there is no cached result.
697  template <typename PassT>
698  typename PassT::Result *getCachedResult(IRUnitT &IR) const {
699    assert(AnalysisPasses.count(PassT::ID()) &&
700           "This analysis pass was not registered prior to being queried");
701
702    ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
703    if (!ResultConcept)
704      return nullptr;
705
706    using ResultModelT =
707        detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
708                                    PreservedAnalyses, Invalidator>;
709
710    return &static_cast<ResultModelT *>(ResultConcept)->Result;
711  }
712
713  /// \brief Register an analysis pass with the manager.
714  ///
715  /// The parameter is a callable whose result is an analysis pass. This allows
716  /// passing in a lambda to construct the analysis.
717  ///
718  /// The analysis type to register is the type returned by calling the \c
719  /// PassBuilder argument. If that type has already been registered, then the
720  /// argument will not be called and this function will return false.
721  /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
722  /// and this function returns true.
723  ///
724  /// (Note: Although the return value of this function indicates whether or not
725  /// an analysis was previously registered, there intentionally isn't a way to
726  /// query this directly.  Instead, you should just register all the analyses
727  /// you might want and let this class run them lazily.  This idiom lets us
728  /// minimize the number of times we have to look up analyses in our
729  /// hashtable.)
730  template <typename PassBuilderT>
731  bool registerPass(PassBuilderT &&PassBuilder) {
732    using PassT = decltype(PassBuilder());
733    using PassModelT =
734        detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
735                                  Invalidator, ExtraArgTs...>;
736
737    auto &PassPtr = AnalysisPasses[PassT::ID()];
738    if (PassPtr)
739      // Already registered this pass type!
740      return false;
741
742    // Construct a new model around the instance returned by the builder.
743    PassPtr.reset(new PassModelT(PassBuilder()));
744    return true;
745  }
746
747  /// \brief Invalidate a specific analysis pass for an IR module.
748  ///
749  /// Note that the analysis result can disregard invalidation, if it determines
750  /// it is in fact still valid.
751  template <typename PassT> void invalidate(IRUnitT &IR) {
752    assert(AnalysisPasses.count(PassT::ID()) &&
753           "This analysis pass was not registered prior to being invalidated");
754    invalidateImpl(PassT::ID(), IR);
755  }
756
757  /// \brief Invalidate cached analyses for an IR unit.
758  ///
759  /// Walk through all of the analyses pertaining to this unit of IR and
760  /// invalidate them, unless they are preserved by the PreservedAnalyses set.
761  void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
762    // We're done if all analyses on this IR unit are preserved.
763    if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
764      return;
765
766    if (DebugLogging)
767      dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
768             << "\n";
769
770    // Track whether each analysis's result is invalidated in
771    // IsResultInvalidated.
772    SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
773    Invalidator Inv(IsResultInvalidated, AnalysisResults);
774    AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
775    for (auto &AnalysisResultPair : ResultsList) {
776      // This is basically the same thing as Invalidator::invalidate, but we
777      // can't call it here because we're operating on the type-erased result.
778      // Moreover if we instead called invalidate() directly, it would do an
779      // unnecessary look up in ResultsList.
780      AnalysisKey *ID = AnalysisResultPair.first;
781      auto &Result = *AnalysisResultPair.second;
782
783      auto IMapI = IsResultInvalidated.find(ID);
784      if (IMapI != IsResultInvalidated.end())
785        // This result was already handled via the Invalidator.
786        continue;
787
788      // Try to invalidate the result, giving it the Invalidator so it can
789      // recursively query for any dependencies it has and record the result.
790      // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
791      // Result.invalidate may insert things into the map, invalidating our
792      // iterator.
793      bool Inserted =
794          IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
795              .second;
796      (void)Inserted;
797      assert(Inserted && "Should never have already inserted this ID, likely "
798                         "indicates a cycle!");
799    }
800
801    // Now erase the results that were marked above as invalidated.
802    if (!IsResultInvalidated.empty()) {
803      for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
804        AnalysisKey *ID = I->first;
805        if (!IsResultInvalidated.lookup(ID)) {
806          ++I;
807          continue;
808        }
809
810        if (DebugLogging)
811          dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
812                 << " on " << IR.getName() << "\n";
813
814        I = ResultsList.erase(I);
815        AnalysisResults.erase({ID, &IR});
816      }
817    }
818
819    if (ResultsList.empty())
820      AnalysisResultLists.erase(&IR);
821  }
822
823private:
824  /// \brief Look up a registered analysis pass.
825  PassConceptT &lookUpPass(AnalysisKey *ID) {
826    typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
827    assert(PI != AnalysisPasses.end() &&
828           "Analysis passes must be registered prior to being queried!");
829    return *PI->second;
830  }
831
832  /// \brief Look up a registered analysis pass.
833  const PassConceptT &lookUpPass(AnalysisKey *ID) const {
834    typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
835    assert(PI != AnalysisPasses.end() &&
836           "Analysis passes must be registered prior to being queried!");
837    return *PI->second;
838  }
839
840  /// \brief Get an analysis result, running the pass if necessary.
841  ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
842                                ExtraArgTs... ExtraArgs) {
843    typename AnalysisResultMapT::iterator RI;
844    bool Inserted;
845    std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
846        std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
847
848    // If we don't have a cached result for this function, look up the pass and
849    // run it to produce a result, which we then add to the cache.
850    if (Inserted) {
851      auto &P = this->lookUpPass(ID);
852      if (DebugLogging)
853        dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
854               << "\n";
855      AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
856      ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
857
858      // P.run may have inserted elements into AnalysisResults and invalidated
859      // RI.
860      RI = AnalysisResults.find({ID, &IR});
861      assert(RI != AnalysisResults.end() && "we just inserted it!");
862
863      RI->second = std::prev(ResultList.end());
864    }
865
866    return *RI->second->second;
867  }
868
869  /// \brief Get a cached analysis result or return null.
870  ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
871    typename AnalysisResultMapT::const_iterator RI =
872        AnalysisResults.find({ID, &IR});
873    return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
874  }
875
876  /// \brief Invalidate a function pass result.
877  void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
878    typename AnalysisResultMapT::iterator RI =
879        AnalysisResults.find({ID, &IR});
880    if (RI == AnalysisResults.end())
881      return;
882
883    if (DebugLogging)
884      dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
885             << " on " << IR.getName() << "\n";
886    AnalysisResultLists[&IR].erase(RI->second);
887    AnalysisResults.erase(RI);
888  }
889
890  /// \brief Map type from module analysis pass ID to pass concept pointer.
891  using AnalysisPassMapT =
892      DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
893
894  /// \brief Collection of module analysis passes, indexed by ID.
895  AnalysisPassMapT AnalysisPasses;
896
897  /// \brief Map from function to a list of function analysis results.
898  ///
899  /// Provides linear time removal of all analysis results for a function and
900  /// the ultimate storage for a particular cached analysis result.
901  AnalysisResultListMapT AnalysisResultLists;
902
903  /// \brief Map from an analysis ID and function to a particular cached
904  /// analysis result.
905  AnalysisResultMapT AnalysisResults;
906
907  /// \brief Indicates whether we log to \c llvm::dbgs().
908  bool DebugLogging;
909};
910
911extern template class AnalysisManager<Module>;
912
913/// \brief Convenience typedef for the Module analysis manager.
914using ModuleAnalysisManager = AnalysisManager<Module>;
915
916extern template class AnalysisManager<Function>;
917
918/// \brief Convenience typedef for the Function analysis manager.
919using FunctionAnalysisManager = AnalysisManager<Function>;
920
921/// \brief An analysis over an "outer" IR unit that provides access to an
922/// analysis manager over an "inner" IR unit.  The inner unit must be contained
923/// in the outer unit.
924///
925/// Fore example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
926/// an analysis over Modules (the "outer" unit) that provides access to a
927/// Function analysis manager.  The FunctionAnalysisManager is the "inner"
928/// manager being proxied, and Functions are the "inner" unit.  The inner/outer
929/// relationship is valid because each Function is contained in one Module.
930///
931/// If you're (transitively) within a pass manager for an IR unit U that
932/// contains IR unit V, you should never use an analysis manager over V, except
933/// via one of these proxies.
934///
935/// Note that the proxy's result is a move-only RAII object.  The validity of
936/// the analyses in the inner analysis manager is tied to its lifetime.
937template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
938class InnerAnalysisManagerProxy
939    : public AnalysisInfoMixin<
940          InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
941public:
942  class Result {
943  public:
944    explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
945
946    Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
947      // We have to null out the analysis manager in the moved-from state
948      // because we are taking ownership of the responsibilty to clear the
949      // analysis state.
950      Arg.InnerAM = nullptr;
951    }
952
953    ~Result() {
954      // InnerAM is cleared in a moved from state where there is nothing to do.
955      if (!InnerAM)
956        return;
957
958      // Clear out the analysis manager if we're being destroyed -- it means we
959      // didn't even see an invalidate call when we got invalidated.
960      InnerAM->clear();
961    }
962
963    Result &operator=(Result &&RHS) {
964      InnerAM = RHS.InnerAM;
965      // We have to null out the analysis manager in the moved-from state
966      // because we are taking ownership of the responsibilty to clear the
967      // analysis state.
968      RHS.InnerAM = nullptr;
969      return *this;
970    }
971
972    /// \brief Accessor for the analysis manager.
973    AnalysisManagerT &getManager() { return *InnerAM; }
974
975    /// \brief Handler for invalidation of the outer IR unit, \c IRUnitT.
976    ///
977    /// If the proxy analysis itself is not preserved, we assume that the set of
978    /// inner IR objects contained in IRUnit may have changed.  In this case,
979    /// we have to call \c clear() on the inner analysis manager, as it may now
980    /// have stale pointers to its inner IR objects.
981    ///
982    /// Regardless of whether the proxy analysis is marked as preserved, all of
983    /// the analyses in the inner analysis manager are potentially invalidated
984    /// based on the set of preserved analyses.
985    bool invalidate(
986        IRUnitT &IR, const PreservedAnalyses &PA,
987        typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
988
989  private:
990    AnalysisManagerT *InnerAM;
991  };
992
993  explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
994      : InnerAM(&InnerAM) {}
995
996  /// \brief Run the analysis pass and create our proxy result object.
997  ///
998  /// This doesn't do any interesting work; it is primarily used to insert our
999  /// proxy result object into the outer analysis cache so that we can proxy
1000  /// invalidation to the inner analysis manager.
1001  Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1002             ExtraArgTs...) {
1003    return Result(*InnerAM);
1004  }
1005
1006private:
1007  friend AnalysisInfoMixin<
1008      InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1009
1010  static AnalysisKey Key;
1011
1012  AnalysisManagerT *InnerAM;
1013};
1014
1015template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1016AnalysisKey
1017    InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1018
1019/// Provide the \c FunctionAnalysisManager to \c Module proxy.
1020using FunctionAnalysisManagerModuleProxy =
1021    InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1022
1023/// Specialization of the invalidate method for the \c
1024/// FunctionAnalysisManagerModuleProxy's result.
1025template <>
1026bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1027    Module &M, const PreservedAnalyses &PA,
1028    ModuleAnalysisManager::Invalidator &Inv);
1029
1030// Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1031// template.
1032extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1033                                                Module>;
1034
1035/// \brief An analysis over an "inner" IR unit that provides access to an
1036/// analysis manager over a "outer" IR unit.  The inner unit must be contained
1037/// in the outer unit.
1038///
1039/// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1040/// analysis over Functions (the "inner" unit) which provides access to a Module
1041/// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
1042/// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
1043/// is valid because each Function is contained in one Module.
1044///
1045/// This proxy only exposes the const interface of the outer analysis manager,
1046/// to indicate that you cannot cause an outer analysis to run from within an
1047/// inner pass.  Instead, you must rely on the \c getCachedResult API.
1048///
1049/// This proxy doesn't manage invalidation in any way -- that is handled by the
1050/// recursive return path of each layer of the pass manager.  A consequence of
1051/// this is the outer analyses may be stale.  We invalidate the outer analyses
1052/// only when we're done running passes over the inner IR units.
1053template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1054class OuterAnalysisManagerProxy
1055    : public AnalysisInfoMixin<
1056          OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1057public:
1058  /// \brief Result proxy object for \c OuterAnalysisManagerProxy.
1059  class Result {
1060  public:
1061    explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
1062
1063    const AnalysisManagerT &getManager() const { return *AM; }
1064
1065    /// \brief Handle invalidation by ignoring it; this pass is immutable.
1066    bool invalidate(
1067        IRUnitT &, const PreservedAnalyses &,
1068        typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &) {
1069      return false;
1070    }
1071
1072    /// Register a deferred invalidation event for when the outer analysis
1073    /// manager processes its invalidations.
1074    template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
1075    void registerOuterAnalysisInvalidation() {
1076      AnalysisKey *OuterID = OuterAnalysisT::ID();
1077      AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1078
1079      auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1080      // Note, this is a linear scan. If we end up with large numbers of
1081      // analyses that all trigger invalidation on the same outer analysis,
1082      // this entire system should be changed to some other deterministic
1083      // data structure such as a `SetVector` of a pair of pointers.
1084      auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
1085                                     InvalidatedIDList.end(), InvalidatedID);
1086      if (InvalidatedIt == InvalidatedIDList.end())
1087        InvalidatedIDList.push_back(InvalidatedID);
1088    }
1089
1090    /// Access the map from outer analyses to deferred invalidation requiring
1091    /// analyses.
1092    const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
1093    getOuterInvalidations() const {
1094      return OuterAnalysisInvalidationMap;
1095    }
1096
1097  private:
1098    const AnalysisManagerT *AM;
1099
1100    /// A map from an outer analysis ID to the set of this IR-unit's analyses
1101    /// which need to be invalidated.
1102    SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1103        OuterAnalysisInvalidationMap;
1104  };
1105
1106  OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
1107
1108  /// \brief Run the analysis pass and create our proxy result object.
1109  /// Nothing to see here, it just forwards the \c AM reference into the
1110  /// result.
1111  Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1112             ExtraArgTs...) {
1113    return Result(*AM);
1114  }
1115
1116private:
1117  friend AnalysisInfoMixin<
1118      OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1119
1120  static AnalysisKey Key;
1121
1122  const AnalysisManagerT *AM;
1123};
1124
1125template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1126AnalysisKey
1127    OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1128
1129extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1130                                                Function>;
1131/// Provide the \c ModuleAnalysisManager to \c Function proxy.
1132using ModuleAnalysisManagerFunctionProxy =
1133    OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1134
1135/// \brief Trivial adaptor that maps from a module to its functions.
1136///
1137/// Designed to allow composition of a FunctionPass(Manager) and
1138/// a ModulePassManager, by running the FunctionPass(Manager) over every
1139/// function in the module.
1140///
1141/// Function passes run within this adaptor can rely on having exclusive access
1142/// to the function they are run over. They should not read or modify any other
1143/// functions! Other threads or systems may be manipulating other functions in
1144/// the module, and so their state should never be relied on.
1145/// FIXME: Make the above true for all of LLVM's actual passes, some still
1146/// violate this principle.
1147///
1148/// Function passes can also read the module containing the function, but they
1149/// should not modify that module outside of the use lists of various globals.
1150/// For example, a function pass is not permitted to add functions to the
1151/// module.
1152/// FIXME: Make the above true for all of LLVM's actual passes, some still
1153/// violate this principle.
1154///
1155/// Note that although function passes can access module analyses, module
1156/// analyses are not invalidated while the function passes are running, so they
1157/// may be stale.  Function analyses will not be stale.
1158template <typename FunctionPassT>
1159class ModuleToFunctionPassAdaptor
1160    : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
1161public:
1162  explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
1163      : Pass(std::move(Pass)) {}
1164
1165  /// \brief Runs the function pass across every function in the module.
1166  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
1167    FunctionAnalysisManager &FAM =
1168        AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1169
1170    PreservedAnalyses PA = PreservedAnalyses::all();
1171    for (Function &F : M) {
1172      if (F.isDeclaration())
1173        continue;
1174
1175      PreservedAnalyses PassPA = Pass.run(F, FAM);
1176
1177      // We know that the function pass couldn't have invalidated any other
1178      // function's analyses (that's the contract of a function pass), so
1179      // directly handle the function analysis manager's invalidation here.
1180      FAM.invalidate(F, PassPA);
1181
1182      // Then intersect the preserved set so that invalidation of module
1183      // analyses will eventually occur when the module pass completes.
1184      PA.intersect(std::move(PassPA));
1185    }
1186
1187    // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
1188    // the function passes we ran didn't add or remove any functions.
1189    //
1190    // We also preserve all analyses on Functions, because we did all the
1191    // invalidation we needed to do above.
1192    PA.preserveSet<AllAnalysesOn<Function>>();
1193    PA.preserve<FunctionAnalysisManagerModuleProxy>();
1194    return PA;
1195  }
1196
1197private:
1198  FunctionPassT Pass;
1199};
1200
1201/// \brief A function to deduce a function pass type and wrap it in the
1202/// templated adaptor.
1203template <typename FunctionPassT>
1204ModuleToFunctionPassAdaptor<FunctionPassT>
1205createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
1206  return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
1207}
1208
1209/// \brief A utility pass template to force an analysis result to be available.
1210///
1211/// If there are extra arguments at the pass's run level there may also be
1212/// extra arguments to the analysis manager's \c getResult routine. We can't
1213/// guess how to effectively map the arguments from one to the other, and so
1214/// this specialization just ignores them.
1215///
1216/// Specific patterns of run-method extra arguments and analysis manager extra
1217/// arguments will have to be defined as appropriate specializations.
1218template <typename AnalysisT, typename IRUnitT,
1219          typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1220          typename... ExtraArgTs>
1221struct RequireAnalysisPass
1222    : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1223                                        ExtraArgTs...>> {
1224  /// \brief Run this pass over some unit of IR.
1225  ///
1226  /// This pass can be run over any unit of IR and use any analysis manager
1227  /// provided they satisfy the basic API requirements. When this pass is
1228  /// created, these methods can be instantiated to satisfy whatever the
1229  /// context requires.
1230  PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1231                        ExtraArgTs &&... Args) {
1232    (void)AM.template getResult<AnalysisT>(Arg,
1233                                           std::forward<ExtraArgTs>(Args)...);
1234
1235    return PreservedAnalyses::all();
1236  }
1237};
1238
1239/// \brief A no-op pass template which simply forces a specific analysis result
1240/// to be invalidated.
1241template <typename AnalysisT>
1242struct InvalidateAnalysisPass
1243    : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1244  /// \brief Run this pass over some unit of IR.
1245  ///
1246  /// This pass can be run over any unit of IR and use any analysis manager,
1247  /// provided they satisfy the basic API requirements. When this pass is
1248  /// created, these methods can be instantiated to satisfy whatever the
1249  /// context requires.
1250  template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1251  PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1252    auto PA = PreservedAnalyses::all();
1253    PA.abandon<AnalysisT>();
1254    return PA;
1255  }
1256};
1257
1258/// \brief A utility pass that does nothing, but preserves no analyses.
1259///
1260/// Because this preserves no analyses, any analysis passes queried after this
1261/// pass runs will recompute fresh results.
1262struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1263  /// \brief Run this pass over some unit of IR.
1264  template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
1265  PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1266    return PreservedAnalyses::none();
1267  }
1268};
1269
1270/// A utility pass template that simply runs another pass multiple times.
1271///
1272/// This can be useful when debugging or testing passes. It also serves as an
1273/// example of how to extend the pass manager in ways beyond composition.
1274template <typename PassT>
1275class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1276public:
1277  RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
1278
1279  template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
1280  PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, Ts &&... Args) {
1281    auto PA = PreservedAnalyses::all();
1282    for (int i = 0; i < Count; ++i)
1283      PA.intersect(P.run(Arg, AM, std::forward<Ts>(Args)...));
1284    return PA;
1285  }
1286
1287private:
1288  int Count;
1289  PassT P;
1290};
1291
1292template <typename PassT>
1293RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
1294  return RepeatedPass<PassT>(Count, std::move(P));
1295}
1296
1297} // end namespace llvm
1298
1299#endif // LLVM_IR_PASSMANAGER_H
1300