1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some functions that are useful for math stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MATHEXTRAS_H
15#define LLVM_SUPPORT_MATHEXTRAS_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/SwapByteOrder.h"
19#include <algorithm>
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <limits>
24#include <type_traits>
25
26#ifdef _MSC_VER
27#include <intrin.h>
28#endif
29
30#ifdef __ANDROID_NDK__
31#include <android/api-level.h>
32#endif
33
34namespace llvm {
35/// \brief The behavior an operation has on an input of 0.
36enum ZeroBehavior {
37  /// \brief The returned value is undefined.
38  ZB_Undefined,
39  /// \brief The returned value is numeric_limits<T>::max()
40  ZB_Max,
41  /// \brief The returned value is numeric_limits<T>::digits
42  ZB_Width
43};
44
45namespace detail {
46template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
47  static std::size_t count(T Val, ZeroBehavior) {
48    if (!Val)
49      return std::numeric_limits<T>::digits;
50    if (Val & 0x1)
51      return 0;
52
53    // Bisection method.
54    std::size_t ZeroBits = 0;
55    T Shift = std::numeric_limits<T>::digits >> 1;
56    T Mask = std::numeric_limits<T>::max() >> Shift;
57    while (Shift) {
58      if ((Val & Mask) == 0) {
59        Val >>= Shift;
60        ZeroBits |= Shift;
61      }
62      Shift >>= 1;
63      Mask >>= Shift;
64    }
65    return ZeroBits;
66  }
67};
68
69#if __GNUC__ >= 4 || defined(_MSC_VER)
70template <typename T> struct TrailingZerosCounter<T, 4> {
71  static std::size_t count(T Val, ZeroBehavior ZB) {
72    if (ZB != ZB_Undefined && Val == 0)
73      return 32;
74
75#if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
76    return __builtin_ctz(Val);
77#elif defined(_MSC_VER)
78    unsigned long Index;
79    _BitScanForward(&Index, Val);
80    return Index;
81#endif
82  }
83};
84
85#if !defined(_MSC_VER) || defined(_M_X64)
86template <typename T> struct TrailingZerosCounter<T, 8> {
87  static std::size_t count(T Val, ZeroBehavior ZB) {
88    if (ZB != ZB_Undefined && Val == 0)
89      return 64;
90
91#if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
92    return __builtin_ctzll(Val);
93#elif defined(_MSC_VER)
94    unsigned long Index;
95    _BitScanForward64(&Index, Val);
96    return Index;
97#endif
98  }
99};
100#endif
101#endif
102} // namespace detail
103
104/// \brief Count number of 0's from the least significant bit to the most
105///   stopping at the first 1.
106///
107/// Only unsigned integral types are allowed.
108///
109/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
110///   valid arguments.
111template <typename T>
112std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
113  static_assert(std::numeric_limits<T>::is_integer &&
114                    !std::numeric_limits<T>::is_signed,
115                "Only unsigned integral types are allowed.");
116  return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
117}
118
119namespace detail {
120template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
121  static std::size_t count(T Val, ZeroBehavior) {
122    if (!Val)
123      return std::numeric_limits<T>::digits;
124
125    // Bisection method.
126    std::size_t ZeroBits = 0;
127    for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
128      T Tmp = Val >> Shift;
129      if (Tmp)
130        Val = Tmp;
131      else
132        ZeroBits |= Shift;
133    }
134    return ZeroBits;
135  }
136};
137
138#if __GNUC__ >= 4 || defined(_MSC_VER)
139template <typename T> struct LeadingZerosCounter<T, 4> {
140  static std::size_t count(T Val, ZeroBehavior ZB) {
141    if (ZB != ZB_Undefined && Val == 0)
142      return 32;
143
144#if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
145    return __builtin_clz(Val);
146#elif defined(_MSC_VER)
147    unsigned long Index;
148    _BitScanReverse(&Index, Val);
149    return Index ^ 31;
150#endif
151  }
152};
153
154#if !defined(_MSC_VER) || defined(_M_X64)
155template <typename T> struct LeadingZerosCounter<T, 8> {
156  static std::size_t count(T Val, ZeroBehavior ZB) {
157    if (ZB != ZB_Undefined && Val == 0)
158      return 64;
159
160#if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
161    return __builtin_clzll(Val);
162#elif defined(_MSC_VER)
163    unsigned long Index;
164    _BitScanReverse64(&Index, Val);
165    return Index ^ 63;
166#endif
167  }
168};
169#endif
170#endif
171} // namespace detail
172
173/// \brief Count number of 0's from the most significant bit to the least
174///   stopping at the first 1.
175///
176/// Only unsigned integral types are allowed.
177///
178/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
179///   valid arguments.
180template <typename T>
181std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
182  static_assert(std::numeric_limits<T>::is_integer &&
183                    !std::numeric_limits<T>::is_signed,
184                "Only unsigned integral types are allowed.");
185  return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
186}
187
188/// \brief Get the index of the first set bit starting from the least
189///   significant bit.
190///
191/// Only unsigned integral types are allowed.
192///
193/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
194///   valid arguments.
195template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
196  if (ZB == ZB_Max && Val == 0)
197    return std::numeric_limits<T>::max();
198
199  return countTrailingZeros(Val, ZB_Undefined);
200}
201
202/// \brief Create a bitmask with the N right-most bits set to 1, and all other
203/// bits set to 0.  Only unsigned types are allowed.
204template <typename T> T maskTrailingOnes(unsigned N) {
205  static_assert(std::is_unsigned<T>::value, "Invalid type!");
206  const unsigned Bits = CHAR_BIT * sizeof(T);
207  assert(N <= Bits && "Invalid bit index");
208  return N == 0 ? 0 : (T(-1) >> (Bits - N));
209}
210
211/// \brief Create a bitmask with the N left-most bits set to 1, and all other
212/// bits set to 0.  Only unsigned types are allowed.
213template <typename T> T maskLeadingOnes(unsigned N) {
214  return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
215}
216
217/// \brief Create a bitmask with the N right-most bits set to 0, and all other
218/// bits set to 1.  Only unsigned types are allowed.
219template <typename T> T maskTrailingZeros(unsigned N) {
220  return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
221}
222
223/// \brief Create a bitmask with the N left-most bits set to 0, and all other
224/// bits set to 1.  Only unsigned types are allowed.
225template <typename T> T maskLeadingZeros(unsigned N) {
226  return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
227}
228
229/// \brief Get the index of the last set bit starting from the least
230///   significant bit.
231///
232/// Only unsigned integral types are allowed.
233///
234/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
235///   valid arguments.
236template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
237  if (ZB == ZB_Max && Val == 0)
238    return std::numeric_limits<T>::max();
239
240  // Use ^ instead of - because both gcc and llvm can remove the associated ^
241  // in the __builtin_clz intrinsic on x86.
242  return countLeadingZeros(Val, ZB_Undefined) ^
243         (std::numeric_limits<T>::digits - 1);
244}
245
246/// \brief Macro compressed bit reversal table for 256 bits.
247///
248/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
249static const unsigned char BitReverseTable256[256] = {
250#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
251#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
252#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
253  R6(0), R6(2), R6(1), R6(3)
254#undef R2
255#undef R4
256#undef R6
257};
258
259/// \brief Reverse the bits in \p Val.
260template <typename T>
261T reverseBits(T Val) {
262  unsigned char in[sizeof(Val)];
263  unsigned char out[sizeof(Val)];
264  std::memcpy(in, &Val, sizeof(Val));
265  for (unsigned i = 0; i < sizeof(Val); ++i)
266    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
267  std::memcpy(&Val, out, sizeof(Val));
268  return Val;
269}
270
271// NOTE: The following support functions use the _32/_64 extensions instead of
272// type overloading so that signed and unsigned integers can be used without
273// ambiguity.
274
275/// Return the high 32 bits of a 64 bit value.
276constexpr inline uint32_t Hi_32(uint64_t Value) {
277  return static_cast<uint32_t>(Value >> 32);
278}
279
280/// Return the low 32 bits of a 64 bit value.
281constexpr inline uint32_t Lo_32(uint64_t Value) {
282  return static_cast<uint32_t>(Value);
283}
284
285/// Make a 64-bit integer from a high / low pair of 32-bit integers.
286constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
287  return ((uint64_t)High << 32) | (uint64_t)Low;
288}
289
290/// Checks if an integer fits into the given bit width.
291template <unsigned N> constexpr inline bool isInt(int64_t x) {
292  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
293}
294// Template specializations to get better code for common cases.
295template <> constexpr inline bool isInt<8>(int64_t x) {
296  return static_cast<int8_t>(x) == x;
297}
298template <> constexpr inline bool isInt<16>(int64_t x) {
299  return static_cast<int16_t>(x) == x;
300}
301template <> constexpr inline bool isInt<32>(int64_t x) {
302  return static_cast<int32_t>(x) == x;
303}
304
305/// Checks if a signed integer is an N bit number shifted left by S.
306template <unsigned N, unsigned S>
307constexpr inline bool isShiftedInt(int64_t x) {
308  static_assert(
309      N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
310  static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
311  return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
312}
313
314/// Checks if an unsigned integer fits into the given bit width.
315///
316/// This is written as two functions rather than as simply
317///
318///   return N >= 64 || X < (UINT64_C(1) << N);
319///
320/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
321/// left too many places.
322template <unsigned N>
323constexpr inline typename std::enable_if<(N < 64), bool>::type
324isUInt(uint64_t X) {
325  static_assert(N > 0, "isUInt<0> doesn't make sense");
326  return X < (UINT64_C(1) << (N));
327}
328template <unsigned N>
329constexpr inline typename std::enable_if<N >= 64, bool>::type
330isUInt(uint64_t X) {
331  return true;
332}
333
334// Template specializations to get better code for common cases.
335template <> constexpr inline bool isUInt<8>(uint64_t x) {
336  return static_cast<uint8_t>(x) == x;
337}
338template <> constexpr inline bool isUInt<16>(uint64_t x) {
339  return static_cast<uint16_t>(x) == x;
340}
341template <> constexpr inline bool isUInt<32>(uint64_t x) {
342  return static_cast<uint32_t>(x) == x;
343}
344
345/// Checks if a unsigned integer is an N bit number shifted left by S.
346template <unsigned N, unsigned S>
347constexpr inline bool isShiftedUInt(uint64_t x) {
348  static_assert(
349      N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
350  static_assert(N + S <= 64,
351                "isShiftedUInt<N, S> with N + S > 64 is too wide.");
352  // Per the two static_asserts above, S must be strictly less than 64.  So
353  // 1 << S is not undefined behavior.
354  return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
355}
356
357/// Gets the maximum value for a N-bit unsigned integer.
358inline uint64_t maxUIntN(uint64_t N) {
359  assert(N > 0 && N <= 64 && "integer width out of range");
360
361  // uint64_t(1) << 64 is undefined behavior, so we can't do
362  //   (uint64_t(1) << N) - 1
363  // without checking first that N != 64.  But this works and doesn't have a
364  // branch.
365  return UINT64_MAX >> (64 - N);
366}
367
368/// Gets the minimum value for a N-bit signed integer.
369inline int64_t minIntN(int64_t N) {
370  assert(N > 0 && N <= 64 && "integer width out of range");
371
372  return -(UINT64_C(1)<<(N-1));
373}
374
375/// Gets the maximum value for a N-bit signed integer.
376inline int64_t maxIntN(int64_t N) {
377  assert(N > 0 && N <= 64 && "integer width out of range");
378
379  // This relies on two's complement wraparound when N == 64, so we convert to
380  // int64_t only at the very end to avoid UB.
381  return (UINT64_C(1) << (N - 1)) - 1;
382}
383
384/// Checks if an unsigned integer fits into the given (dynamic) bit width.
385inline bool isUIntN(unsigned N, uint64_t x) {
386  return N >= 64 || x <= maxUIntN(N);
387}
388
389/// Checks if an signed integer fits into the given (dynamic) bit width.
390inline bool isIntN(unsigned N, int64_t x) {
391  return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
392}
393
394/// Return true if the argument is a non-empty sequence of ones starting at the
395/// least significant bit with the remainder zero (32 bit version).
396/// Ex. isMask_32(0x0000FFFFU) == true.
397constexpr inline bool isMask_32(uint32_t Value) {
398  return Value && ((Value + 1) & Value) == 0;
399}
400
401/// Return true if the argument is a non-empty sequence of ones starting at the
402/// least significant bit with the remainder zero (64 bit version).
403constexpr inline bool isMask_64(uint64_t Value) {
404  return Value && ((Value + 1) & Value) == 0;
405}
406
407/// Return true if the argument contains a non-empty sequence of ones with the
408/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
409constexpr inline bool isShiftedMask_32(uint32_t Value) {
410  return Value && isMask_32((Value - 1) | Value);
411}
412
413/// Return true if the argument contains a non-empty sequence of ones with the
414/// remainder zero (64 bit version.)
415constexpr inline bool isShiftedMask_64(uint64_t Value) {
416  return Value && isMask_64((Value - 1) | Value);
417}
418
419/// Return true if the argument is a power of two > 0.
420/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
421constexpr inline bool isPowerOf2_32(uint32_t Value) {
422  return Value && !(Value & (Value - 1));
423}
424
425/// Return true if the argument is a power of two > 0 (64 bit edition.)
426constexpr inline bool isPowerOf2_64(uint64_t Value) {
427  return Value && !(Value & (Value - int64_t(1L)));
428}
429
430/// Return a byte-swapped representation of the 16-bit argument.
431inline uint16_t ByteSwap_16(uint16_t Value) {
432  return sys::SwapByteOrder_16(Value);
433}
434
435/// Return a byte-swapped representation of the 32-bit argument.
436inline uint32_t ByteSwap_32(uint32_t Value) {
437  return sys::SwapByteOrder_32(Value);
438}
439
440/// Return a byte-swapped representation of the 64-bit argument.
441inline uint64_t ByteSwap_64(uint64_t Value) {
442  return sys::SwapByteOrder_64(Value);
443}
444
445/// \brief Count the number of ones from the most significant bit to the first
446/// zero bit.
447///
448/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
449/// Only unsigned integral types are allowed.
450///
451/// \param ZB the behavior on an input of all ones. Only ZB_Width and
452/// ZB_Undefined are valid arguments.
453template <typename T>
454std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
455  static_assert(std::numeric_limits<T>::is_integer &&
456                    !std::numeric_limits<T>::is_signed,
457                "Only unsigned integral types are allowed.");
458  return countLeadingZeros(~Value, ZB);
459}
460
461/// \brief Count the number of ones from the least significant bit to the first
462/// zero bit.
463///
464/// Ex. countTrailingOnes(0x00FF00FF) == 8.
465/// Only unsigned integral types are allowed.
466///
467/// \param ZB the behavior on an input of all ones. Only ZB_Width and
468/// ZB_Undefined are valid arguments.
469template <typename T>
470std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
471  static_assert(std::numeric_limits<T>::is_integer &&
472                    !std::numeric_limits<T>::is_signed,
473                "Only unsigned integral types are allowed.");
474  return countTrailingZeros(~Value, ZB);
475}
476
477namespace detail {
478template <typename T, std::size_t SizeOfT> struct PopulationCounter {
479  static unsigned count(T Value) {
480    // Generic version, forward to 32 bits.
481    static_assert(SizeOfT <= 4, "Not implemented!");
482#if __GNUC__ >= 4
483    return __builtin_popcount(Value);
484#else
485    uint32_t v = Value;
486    v = v - ((v >> 1) & 0x55555555);
487    v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
488    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
489#endif
490  }
491};
492
493template <typename T> struct PopulationCounter<T, 8> {
494  static unsigned count(T Value) {
495#if __GNUC__ >= 4
496    return __builtin_popcountll(Value);
497#else
498    uint64_t v = Value;
499    v = v - ((v >> 1) & 0x5555555555555555ULL);
500    v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
501    v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
502    return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
503#endif
504  }
505};
506} // namespace detail
507
508/// \brief Count the number of set bits in a value.
509/// Ex. countPopulation(0xF000F000) = 8
510/// Returns 0 if the word is zero.
511template <typename T>
512inline unsigned countPopulation(T Value) {
513  static_assert(std::numeric_limits<T>::is_integer &&
514                    !std::numeric_limits<T>::is_signed,
515                "Only unsigned integral types are allowed.");
516  return detail::PopulationCounter<T, sizeof(T)>::count(Value);
517}
518
519/// Return the log base 2 of the specified value.
520inline double Log2(double Value) {
521#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
522  return __builtin_log(Value) / __builtin_log(2.0);
523#else
524  return log2(Value);
525#endif
526}
527
528/// Return the floor log base 2 of the specified value, -1 if the value is zero.
529/// (32 bit edition.)
530/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
531inline unsigned Log2_32(uint32_t Value) {
532  return 31 - countLeadingZeros(Value);
533}
534
535/// Return the floor log base 2 of the specified value, -1 if the value is zero.
536/// (64 bit edition.)
537inline unsigned Log2_64(uint64_t Value) {
538  return 63 - countLeadingZeros(Value);
539}
540
541/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
542/// (32 bit edition).
543/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
544inline unsigned Log2_32_Ceil(uint32_t Value) {
545  return 32 - countLeadingZeros(Value - 1);
546}
547
548/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
549/// (64 bit edition.)
550inline unsigned Log2_64_Ceil(uint64_t Value) {
551  return 64 - countLeadingZeros(Value - 1);
552}
553
554/// Return the greatest common divisor of the values using Euclid's algorithm.
555inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
556  while (B) {
557    uint64_t T = B;
558    B = A % B;
559    A = T;
560  }
561  return A;
562}
563
564/// This function takes a 64-bit integer and returns the bit equivalent double.
565inline double BitsToDouble(uint64_t Bits) {
566  double D;
567  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
568  memcpy(&D, &Bits, sizeof(Bits));
569  return D;
570}
571
572/// This function takes a 32-bit integer and returns the bit equivalent float.
573inline float BitsToFloat(uint32_t Bits) {
574  float F;
575  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
576  memcpy(&F, &Bits, sizeof(Bits));
577  return F;
578}
579
580/// This function takes a double and returns the bit equivalent 64-bit integer.
581/// Note that copying doubles around changes the bits of NaNs on some hosts,
582/// notably x86, so this routine cannot be used if these bits are needed.
583inline uint64_t DoubleToBits(double Double) {
584  uint64_t Bits;
585  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
586  memcpy(&Bits, &Double, sizeof(Double));
587  return Bits;
588}
589
590/// This function takes a float and returns the bit equivalent 32-bit integer.
591/// Note that copying floats around changes the bits of NaNs on some hosts,
592/// notably x86, so this routine cannot be used if these bits are needed.
593inline uint32_t FloatToBits(float Float) {
594  uint32_t Bits;
595  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
596  memcpy(&Bits, &Float, sizeof(Float));
597  return Bits;
598}
599
600/// A and B are either alignments or offsets. Return the minimum alignment that
601/// may be assumed after adding the two together.
602constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
603  // The largest power of 2 that divides both A and B.
604  //
605  // Replace "-Value" by "1+~Value" in the following commented code to avoid
606  // MSVC warning C4146
607  //    return (A | B) & -(A | B);
608  return (A | B) & (1 + ~(A | B));
609}
610
611/// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
612///
613/// Alignment should be a power of two.  This method rounds up, so
614/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
615inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
616  assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
617         "Alignment is not a power of two!");
618
619  assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
620
621  return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
622}
623
624/// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
625/// bytes, rounding up.
626inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
627  return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
628}
629
630/// Returns the next power of two (in 64-bits) that is strictly greater than A.
631/// Returns zero on overflow.
632inline uint64_t NextPowerOf2(uint64_t A) {
633  A |= (A >> 1);
634  A |= (A >> 2);
635  A |= (A >> 4);
636  A |= (A >> 8);
637  A |= (A >> 16);
638  A |= (A >> 32);
639  return A + 1;
640}
641
642/// Returns the power of two which is less than or equal to the given value.
643/// Essentially, it is a floor operation across the domain of powers of two.
644inline uint64_t PowerOf2Floor(uint64_t A) {
645  if (!A) return 0;
646  return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
647}
648
649/// Returns the power of two which is greater than or equal to the given value.
650/// Essentially, it is a ceil operation across the domain of powers of two.
651inline uint64_t PowerOf2Ceil(uint64_t A) {
652  if (!A)
653    return 0;
654  return NextPowerOf2(A - 1);
655}
656
657/// Returns the next integer (mod 2**64) that is greater than or equal to
658/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
659///
660/// If non-zero \p Skew is specified, the return value will be a minimal
661/// integer that is greater than or equal to \p Value and equal to
662/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
663/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
664///
665/// Examples:
666/// \code
667///   alignTo(5, 8) = 8
668///   alignTo(17, 8) = 24
669///   alignTo(~0LL, 8) = 0
670///   alignTo(321, 255) = 510
671///
672///   alignTo(5, 8, 7) = 7
673///   alignTo(17, 8, 1) = 17
674///   alignTo(~0LL, 8, 3) = 3
675///   alignTo(321, 255, 42) = 552
676/// \endcode
677inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
678  assert(Align != 0u && "Align can't be 0.");
679  Skew %= Align;
680  return (Value + Align - 1 - Skew) / Align * Align + Skew;
681}
682
683/// Returns the next integer (mod 2**64) that is greater than or equal to
684/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
685template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
686  static_assert(Align != 0u, "Align must be non-zero");
687  return (Value + Align - 1) / Align * Align;
688}
689
690/// \c alignTo for contexts where a constant expression is required.
691/// \sa alignTo
692///
693/// \todo FIXME: remove when \c constexpr becomes really \c constexpr
694template <uint64_t Align>
695struct AlignTo {
696  static_assert(Align != 0u, "Align must be non-zero");
697  template <uint64_t Value>
698  struct from_value {
699    static const uint64_t value = (Value + Align - 1) / Align * Align;
700  };
701};
702
703/// Returns the largest uint64_t less than or equal to \p Value and is
704/// \p Skew mod \p Align. \p Align must be non-zero
705inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
706  assert(Align != 0u && "Align can't be 0.");
707  Skew %= Align;
708  return (Value - Skew) / Align * Align + Skew;
709}
710
711/// Returns the offset to the next integer (mod 2**64) that is greater than
712/// or equal to \p Value and is a multiple of \p Align. \p Align must be
713/// non-zero.
714inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
715  return alignTo(Value, Align) - Value;
716}
717
718/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
719/// Requires 0 < B <= 32.
720template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
721  static_assert(B > 0, "Bit width can't be 0.");
722  static_assert(B <= 32, "Bit width out of range.");
723  return int32_t(X << (32 - B)) >> (32 - B);
724}
725
726/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
727/// Requires 0 < B < 32.
728inline int32_t SignExtend32(uint32_t X, unsigned B) {
729  assert(B > 0 && "Bit width can't be 0.");
730  assert(B <= 32 && "Bit width out of range.");
731  return int32_t(X << (32 - B)) >> (32 - B);
732}
733
734/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
735/// Requires 0 < B < 64.
736template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
737  static_assert(B > 0, "Bit width can't be 0.");
738  static_assert(B <= 64, "Bit width out of range.");
739  return int64_t(x << (64 - B)) >> (64 - B);
740}
741
742/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
743/// Requires 0 < B < 64.
744inline int64_t SignExtend64(uint64_t X, unsigned B) {
745  assert(B > 0 && "Bit width can't be 0.");
746  assert(B <= 64 && "Bit width out of range.");
747  return int64_t(X << (64 - B)) >> (64 - B);
748}
749
750/// Subtract two unsigned integers, X and Y, of type T and return the absolute
751/// value of the result.
752template <typename T>
753typename std::enable_if<std::is_unsigned<T>::value, T>::type
754AbsoluteDifference(T X, T Y) {
755  return std::max(X, Y) - std::min(X, Y);
756}
757
758/// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
759/// maximum representable value of T on overflow.  ResultOverflowed indicates if
760/// the result is larger than the maximum representable value of type T.
761template <typename T>
762typename std::enable_if<std::is_unsigned<T>::value, T>::type
763SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
764  bool Dummy;
765  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
766  // Hacker's Delight, p. 29
767  T Z = X + Y;
768  Overflowed = (Z < X || Z < Y);
769  if (Overflowed)
770    return std::numeric_limits<T>::max();
771  else
772    return Z;
773}
774
775/// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
776/// maximum representable value of T on overflow.  ResultOverflowed indicates if
777/// the result is larger than the maximum representable value of type T.
778template <typename T>
779typename std::enable_if<std::is_unsigned<T>::value, T>::type
780SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
781  bool Dummy;
782  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
783
784  // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
785  // because it fails for uint16_t (where multiplication can have undefined
786  // behavior due to promotion to int), and requires a division in addition
787  // to the multiplication.
788
789  Overflowed = false;
790
791  // Log2(Z) would be either Log2Z or Log2Z + 1.
792  // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
793  // will necessarily be less than Log2Max as desired.
794  int Log2Z = Log2_64(X) + Log2_64(Y);
795  const T Max = std::numeric_limits<T>::max();
796  int Log2Max = Log2_64(Max);
797  if (Log2Z < Log2Max) {
798    return X * Y;
799  }
800  if (Log2Z > Log2Max) {
801    Overflowed = true;
802    return Max;
803  }
804
805  // We're going to use the top bit, and maybe overflow one
806  // bit past it. Multiply all but the bottom bit then add
807  // that on at the end.
808  T Z = (X >> 1) * Y;
809  if (Z & ~(Max >> 1)) {
810    Overflowed = true;
811    return Max;
812  }
813  Z <<= 1;
814  if (X & 1)
815    return SaturatingAdd(Z, Y, ResultOverflowed);
816
817  return Z;
818}
819
820/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
821/// the product. Clamp the result to the maximum representable value of T on
822/// overflow. ResultOverflowed indicates if the result is larger than the
823/// maximum representable value of type T.
824template <typename T>
825typename std::enable_if<std::is_unsigned<T>::value, T>::type
826SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
827  bool Dummy;
828  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
829
830  T Product = SaturatingMultiply(X, Y, &Overflowed);
831  if (Overflowed)
832    return Product;
833
834  return SaturatingAdd(A, Product, &Overflowed);
835}
836
837/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
838extern const float huge_valf;
839} // End llvm namespace
840
841#endif
842