1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineCombinerPattern.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/MC/MCInstrInfo.h"
24#include "llvm/Support/BranchProbability.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26
27namespace llvm {
28
29class InstrItineraryData;
30class LiveVariables;
31class MCAsmInfo;
32class MachineMemOperand;
33class MachineRegisterInfo;
34class MDNode;
35class MCInst;
36struct MCSchedModel;
37class MCSymbolRefExpr;
38class SDNode;
39class ScheduleHazardRecognizer;
40class SelectionDAG;
41class ScheduleDAG;
42class TargetRegisterClass;
43class TargetRegisterInfo;
44class TargetSubtargetInfo;
45class TargetSchedModel;
46class DFAPacketizer;
47
48template<class T> class SmallVectorImpl;
49
50//---------------------------------------------------------------------------
51///
52/// TargetInstrInfo - Interface to description of machine instruction set
53///
54class TargetInstrInfo : public MCInstrInfo {
55  TargetInstrInfo(const TargetInstrInfo &) = delete;
56  void operator=(const TargetInstrInfo &) = delete;
57public:
58  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
59                  unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
60      : CallFrameSetupOpcode(CFSetupOpcode),
61        CallFrameDestroyOpcode(CFDestroyOpcode),
62        CatchRetOpcode(CatchRetOpcode),
63        ReturnOpcode(ReturnOpcode) {}
64
65  virtual ~TargetInstrInfo();
66
67  static bool isGenericOpcode(unsigned Opc) {
68    return Opc <= TargetOpcode::GENERIC_OP_END;
69  }
70
71  /// Given a machine instruction descriptor, returns the register
72  /// class constraint for OpNum, or NULL.
73  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
74                                         unsigned OpNum,
75                                         const TargetRegisterInfo *TRI,
76                                         const MachineFunction &MF) const;
77
78  /// Return true if the instruction is trivially rematerializable, meaning it
79  /// has no side effects and requires no operands that aren't always available.
80  /// This means the only allowed uses are constants and unallocatable physical
81  /// registers so that the instructions result is independent of the place
82  /// in the function.
83  bool isTriviallyReMaterializable(const MachineInstr &MI,
84                                   AliasAnalysis *AA = nullptr) const {
85    return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
86           (MI.getDesc().isRematerializable() &&
87            (isReallyTriviallyReMaterializable(MI, AA) ||
88             isReallyTriviallyReMaterializableGeneric(MI, AA)));
89  }
90
91protected:
92  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
93  /// set, this hook lets the target specify whether the instruction is actually
94  /// trivially rematerializable, taking into consideration its operands. This
95  /// predicate must return false if the instruction has any side effects other
96  /// than producing a value, or if it requres any address registers that are
97  /// not always available.
98  /// Requirements must be check as stated in isTriviallyReMaterializable() .
99  virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
100                                                 AliasAnalysis *AA) const {
101    return false;
102  }
103
104  /// This method commutes the operands of the given machine instruction MI.
105  /// The operands to be commuted are specified by their indices OpIdx1 and
106  /// OpIdx2.
107  ///
108  /// If a target has any instructions that are commutable but require
109  /// converting to different instructions or making non-trivial changes
110  /// to commute them, this method can be overloaded to do that.
111  /// The default implementation simply swaps the commutable operands.
112  ///
113  /// If NewMI is false, MI is modified in place and returned; otherwise, a
114  /// new machine instruction is created and returned.
115  ///
116  /// Do not call this method for a non-commutable instruction.
117  /// Even though the instruction is commutable, the method may still
118  /// fail to commute the operands, null pointer is returned in such cases.
119  virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
120                                               unsigned OpIdx1,
121                                               unsigned OpIdx2) const;
122
123  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
124  /// operand indices to (ResultIdx1, ResultIdx2).
125  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
126  /// predefined to some indices or be undefined (designated by the special
127  /// value 'CommuteAnyOperandIndex').
128  /// The predefined result indices cannot be re-defined.
129  /// The function returns true iff after the result pair redefinition
130  /// the fixed result pair is equal to or equivalent to the source pair of
131  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
132  /// the pairs (x,y) and (y,x) are equivalent.
133  static bool fixCommutedOpIndices(unsigned &ResultIdx1,
134                                   unsigned &ResultIdx2,
135                                   unsigned CommutableOpIdx1,
136                                   unsigned CommutableOpIdx2);
137
138private:
139  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
140  /// set and the target hook isReallyTriviallyReMaterializable returns false,
141  /// this function does target-independent tests to determine if the
142  /// instruction is really trivially rematerializable.
143  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
144                                                AliasAnalysis *AA) const;
145
146public:
147  /// These methods return the opcode of the frame setup/destroy instructions
148  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
149  /// order to abstract away the difference between operating with a frame
150  /// pointer and operating without, through the use of these two instructions.
151  ///
152  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
153  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
154
155  /// Returns true if the argument is a frame pseudo instruction.
156  bool isFrameInstr(const MachineInstr &I) const {
157    return I.getOpcode() == getCallFrameSetupOpcode() ||
158      I.getOpcode() == getCallFrameDestroyOpcode();
159  }
160
161  /// Returns true if the argument is a frame setup pseudo instruction.
162  bool isFrameSetup(const MachineInstr &I) const {
163    return I.getOpcode() == getCallFrameSetupOpcode();
164  }
165
166  /// Returns size of the frame associated with the given frame instruction.
167  /// For frame setup instruction this is frame that is set up space set up
168  /// after the instruction. For frame destroy instruction this is the frame
169  /// freed by the caller.
170  /// Note, in some cases a call frame (or a part of it) may be prepared prior
171  /// to the frame setup instruction. It occurs in the calls that involve
172  /// inalloca arguments. This function reports only the size of the frame part
173  /// that is set up between the frame setup and destroy pseudo instructions.
174  int64_t getFrameSize(const MachineInstr &I) const {
175    assert(isFrameInstr(I) && "Not a frame instruction");
176    assert(I.getOperand(0).getImm() >= 0);
177    return I.getOperand(0).getImm();
178  }
179
180  /// Returns the total frame size, which is made up of the space set up inside
181  /// the pair of frame start-stop instructions and the space that is set up
182  /// prior to the pair.
183  int64_t getFrameTotalSize(const MachineInstr &I) const {
184    if (isFrameSetup(I)) {
185      assert(I.getOperand(1).getImm() >= 0 && "Frame size must not be negative");
186      return getFrameSize(I) + I.getOperand(1).getImm();
187    }
188    return getFrameSize(I);
189  }
190
191  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
192  unsigned getReturnOpcode() const { return ReturnOpcode; }
193
194  /// Returns the actual stack pointer adjustment made by an instruction
195  /// as part of a call sequence. By default, only call frame setup/destroy
196  /// instructions adjust the stack, but targets may want to override this
197  /// to enable more fine-grained adjustment, or adjust by a different value.
198  virtual int getSPAdjust(const MachineInstr &MI) const;
199
200  /// Return true if the instruction is a "coalescable" extension instruction.
201  /// That is, it's like a copy where it's legal for the source to overlap the
202  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
203  /// expected the pre-extension value is available as a subreg of the result
204  /// register. This also returns the sub-register index in SubIdx.
205  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
206                                     unsigned &SrcReg, unsigned &DstReg,
207                                     unsigned &SubIdx) const {
208    return false;
209  }
210
211  /// If the specified machine instruction is a direct
212  /// load from a stack slot, return the virtual or physical register number of
213  /// the destination along with the FrameIndex of the loaded stack slot.  If
214  /// not, return 0.  This predicate must return 0 if the instruction has
215  /// any side effects other than loading from the stack slot.
216  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
217                                       int &FrameIndex) const {
218    return 0;
219  }
220
221  /// Check for post-frame ptr elimination stack locations as well.
222  /// This uses a heuristic so it isn't reliable for correctness.
223  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
224                                             int &FrameIndex) const {
225    return 0;
226  }
227
228  /// If the specified machine instruction has a load from a stack slot,
229  /// return true along with the FrameIndex of the loaded stack slot and the
230  /// machine mem operand containing the reference.
231  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
232  /// any instructions that loads from the stack.  This is just a hint, as some
233  /// cases may be missed.
234  virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
235                                    const MachineMemOperand *&MMO,
236                                    int &FrameIndex) const;
237
238  /// If the specified machine instruction is a direct
239  /// store to a stack slot, return the virtual or physical register number of
240  /// the source reg along with the FrameIndex of the loaded stack slot.  If
241  /// not, return 0.  This predicate must return 0 if the instruction has
242  /// any side effects other than storing to the stack slot.
243  virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
244                                      int &FrameIndex) const {
245    return 0;
246  }
247
248  /// Check for post-frame ptr elimination stack locations as well.
249  /// This uses a heuristic, so it isn't reliable for correctness.
250  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
251                                            int &FrameIndex) const {
252    return 0;
253  }
254
255  /// If the specified machine instruction has a store to a stack slot,
256  /// return true along with the FrameIndex of the loaded stack slot and the
257  /// machine mem operand containing the reference.
258  /// If not, return false.  Unlike isStoreToStackSlot,
259  /// this returns true for any instructions that stores to the
260  /// stack.  This is just a hint, as some cases may be missed.
261  virtual bool hasStoreToStackSlot(const MachineInstr &MI,
262                                   const MachineMemOperand *&MMO,
263                                   int &FrameIndex) const;
264
265  /// Return true if the specified machine instruction
266  /// is a copy of one stack slot to another and has no other effect.
267  /// Provide the identity of the two frame indices.
268  virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
269                               int &SrcFrameIndex) const {
270    return false;
271  }
272
273  /// Compute the size in bytes and offset within a stack slot of a spilled
274  /// register or subregister.
275  ///
276  /// \param [out] Size in bytes of the spilled value.
277  /// \param [out] Offset in bytes within the stack slot.
278  /// \returns true if both Size and Offset are successfully computed.
279  ///
280  /// Not all subregisters have computable spill slots. For example,
281  /// subregisters registers may not be byte-sized, and a pair of discontiguous
282  /// subregisters has no single offset.
283  ///
284  /// Targets with nontrivial bigendian implementations may need to override
285  /// this, particularly to support spilled vector registers.
286  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
287                                 unsigned &Size, unsigned &Offset,
288                                 const MachineFunction &MF) const;
289
290  /// Returns the size in bytes of the specified MachineInstr, or ~0U
291  /// when this function is not implemented by a target.
292  virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
293    return ~0U;
294  }
295
296  /// Return true if the instruction is as cheap as a move instruction.
297  ///
298  /// Targets for different archs need to override this, and different
299  /// micro-architectures can also be finely tuned inside.
300  virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
301    return MI.isAsCheapAsAMove();
302  }
303
304  /// Return true if the instruction should be sunk by MachineSink.
305  ///
306  /// MachineSink determines on its own whether the instruction is safe to sink;
307  /// this gives the target a hook to override the default behavior with regards
308  /// to which instructions should be sunk.
309  virtual bool shouldSink(const MachineInstr &MI) const {
310    return true;
311  }
312
313  /// Re-issue the specified 'original' instruction at the
314  /// specific location targeting a new destination register.
315  /// The register in Orig->getOperand(0).getReg() will be substituted by
316  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
317  /// SubIdx.
318  virtual void reMaterialize(MachineBasicBlock &MBB,
319                             MachineBasicBlock::iterator MI, unsigned DestReg,
320                             unsigned SubIdx, const MachineInstr &Orig,
321                             const TargetRegisterInfo &TRI) const;
322
323  /// Create a duplicate of the Orig instruction in MF. This is like
324  /// MachineFunction::CloneMachineInstr(), but the target may update operands
325  /// that are required to be unique.
326  ///
327  /// The instruction must be duplicable as indicated by isNotDuplicable().
328  virtual MachineInstr *duplicate(MachineInstr &Orig,
329                                  MachineFunction &MF) const;
330
331  /// This method must be implemented by targets that
332  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
333  /// may be able to convert a two-address instruction into one or more true
334  /// three-address instructions on demand.  This allows the X86 target (for
335  /// example) to convert ADD and SHL instructions into LEA instructions if they
336  /// would require register copies due to two-addressness.
337  ///
338  /// This method returns a null pointer if the transformation cannot be
339  /// performed, otherwise it returns the last new instruction.
340  ///
341  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
342                                              MachineInstr &MI,
343                                              LiveVariables *LV) const {
344    return nullptr;
345  }
346
347  // This constant can be used as an input value of operand index passed to
348  // the method findCommutedOpIndices() to tell the method that the
349  // corresponding operand index is not pre-defined and that the method
350  // can pick any commutable operand.
351  static const unsigned CommuteAnyOperandIndex = ~0U;
352
353  /// This method commutes the operands of the given machine instruction MI.
354  ///
355  /// The operands to be commuted are specified by their indices OpIdx1 and
356  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
357  /// 'CommuteAnyOperandIndex', which means that the method is free to choose
358  /// any arbitrarily chosen commutable operand. If both arguments are set to
359  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
360  /// operands; then commutes them if such operands could be found.
361  ///
362  /// If NewMI is false, MI is modified in place and returned; otherwise, a
363  /// new machine instruction is created and returned.
364  ///
365  /// Do not call this method for a non-commutable instruction or
366  /// for non-commuable operands.
367  /// Even though the instruction is commutable, the method may still
368  /// fail to commute the operands, null pointer is returned in such cases.
369  MachineInstr *
370  commuteInstruction(MachineInstr &MI, bool NewMI = false,
371                     unsigned OpIdx1 = CommuteAnyOperandIndex,
372                     unsigned OpIdx2 = CommuteAnyOperandIndex) const;
373
374  /// Returns true iff the routine could find two commutable operands in the
375  /// given machine instruction.
376  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
377  /// If any of the INPUT values is set to the special value
378  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
379  /// operand, then returns its index in the corresponding argument.
380  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
381  /// looks for 2 commutable operands.
382  /// If INPUT values refer to some operands of MI, then the method simply
383  /// returns true if the corresponding operands are commutable and returns
384  /// false otherwise.
385  ///
386  /// For example, calling this method this way:
387  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
388  ///     findCommutedOpIndices(MI, Op1, Op2);
389  /// can be interpreted as a query asking to find an operand that would be
390  /// commutable with the operand#1.
391  virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
392                                     unsigned &SrcOpIdx2) const;
393
394  /// A pair composed of a register and a sub-register index.
395  /// Used to give some type checking when modeling Reg:SubReg.
396  struct RegSubRegPair {
397    unsigned Reg;
398    unsigned SubReg;
399    RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
400        : Reg(Reg), SubReg(SubReg) {}
401  };
402  /// A pair composed of a pair of a register and a sub-register index,
403  /// and another sub-register index.
404  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
405  struct RegSubRegPairAndIdx : RegSubRegPair {
406    unsigned SubIdx;
407    RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
408                        unsigned SubIdx = 0)
409        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
410  };
411
412  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
413  /// and \p DefIdx.
414  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
415  /// the list is modeled as <Reg:SubReg, SubIdx>.
416  /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
417  /// two elements:
418  /// - vreg1:sub1, sub0
419  /// - vreg2<:0>, sub1
420  ///
421  /// \returns true if it is possible to build such an input sequence
422  /// with the pair \p MI, \p DefIdx. False otherwise.
423  ///
424  /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
425  ///
426  /// \note The generic implementation does not provide any support for
427  /// MI.isRegSequenceLike(). In other words, one has to override
428  /// getRegSequenceLikeInputs for target specific instructions.
429  bool
430  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
431                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
432
433  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
434  /// and \p DefIdx.
435  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
436  /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
437  /// - vreg1:sub1, sub0
438  ///
439  /// \returns true if it is possible to build such an input sequence
440  /// with the pair \p MI, \p DefIdx. False otherwise.
441  ///
442  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
443  ///
444  /// \note The generic implementation does not provide any support for
445  /// MI.isExtractSubregLike(). In other words, one has to override
446  /// getExtractSubregLikeInputs for target specific instructions.
447  bool
448  getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
449                         RegSubRegPairAndIdx &InputReg) const;
450
451  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
452  /// and \p DefIdx.
453  /// \p [out] BaseReg and \p [out] InsertedReg contain
454  /// the equivalent inputs of INSERT_SUBREG.
455  /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
456  /// - BaseReg: vreg0:sub0
457  /// - InsertedReg: vreg1:sub1, sub3
458  ///
459  /// \returns true if it is possible to build such an input sequence
460  /// with the pair \p MI, \p DefIdx. False otherwise.
461  ///
462  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
463  ///
464  /// \note The generic implementation does not provide any support for
465  /// MI.isInsertSubregLike(). In other words, one has to override
466  /// getInsertSubregLikeInputs for target specific instructions.
467  bool
468  getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
469                        RegSubRegPair &BaseReg,
470                        RegSubRegPairAndIdx &InsertedReg) const;
471
472
473  /// Return true if two machine instructions would produce identical values.
474  /// By default, this is only true when the two instructions
475  /// are deemed identical except for defs. If this function is called when the
476  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
477  /// aggressive checks.
478  virtual bool produceSameValue(const MachineInstr &MI0,
479                                const MachineInstr &MI1,
480                                const MachineRegisterInfo *MRI = nullptr) const;
481
482  /// \returns true if a branch from an instruction with opcode \p BranchOpc
483  ///  bytes is capable of jumping to a position \p BrOffset bytes away.
484  virtual bool isBranchOffsetInRange(unsigned BranchOpc,
485                                     int64_t BrOffset) const {
486    llvm_unreachable("target did not implement");
487  }
488
489  /// \returns The block that branch instruction \p MI jumps to.
490  virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
491    llvm_unreachable("target did not implement");
492  }
493
494  /// Insert an unconditional indirect branch at the end of \p MBB to \p
495  /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to
496  /// the offset of the position to insert the new branch.
497  ///
498  /// \returns The number of bytes added to the block.
499  virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
500                                        MachineBasicBlock &NewDestBB,
501                                        const DebugLoc &DL,
502                                        int64_t BrOffset = 0,
503                                        RegScavenger *RS = nullptr) const {
504    llvm_unreachable("target did not implement");
505  }
506
507  /// Analyze the branching code at the end of MBB, returning
508  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
509  /// implemented for a target).  Upon success, this returns false and returns
510  /// with the following information in various cases:
511  ///
512  /// 1. If this block ends with no branches (it just falls through to its succ)
513  ///    just return false, leaving TBB/FBB null.
514  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
515  ///    the destination block.
516  /// 3. If this block ends with a conditional branch and it falls through to a
517  ///    successor block, it sets TBB to be the branch destination block and a
518  ///    list of operands that evaluate the condition. These operands can be
519  ///    passed to other TargetInstrInfo methods to create new branches.
520  /// 4. If this block ends with a conditional branch followed by an
521  ///    unconditional branch, it returns the 'true' destination in TBB, the
522  ///    'false' destination in FBB, and a list of operands that evaluate the
523  ///    condition.  These operands can be passed to other TargetInstrInfo
524  ///    methods to create new branches.
525  ///
526  /// Note that removeBranch and insertBranch must be implemented to support
527  /// cases where this method returns success.
528  ///
529  /// If AllowModify is true, then this routine is allowed to modify the basic
530  /// block (e.g. delete instructions after the unconditional branch).
531  ///
532  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
533  /// before calling this function.
534  virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
535                             MachineBasicBlock *&FBB,
536                             SmallVectorImpl<MachineOperand> &Cond,
537                             bool AllowModify = false) const {
538    return true;
539  }
540
541  /// Represents a predicate at the MachineFunction level.  The control flow a
542  /// MachineBranchPredicate represents is:
543  ///
544  ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
545  ///  if Reg then goto TrueDest else goto FalseDest
546  ///
547  struct MachineBranchPredicate {
548    enum ComparePredicate {
549      PRED_EQ,     // True if two values are equal
550      PRED_NE,     // True if two values are not equal
551      PRED_INVALID // Sentinel value
552    };
553
554    ComparePredicate Predicate;
555    MachineOperand LHS;
556    MachineOperand RHS;
557    MachineBasicBlock *TrueDest;
558    MachineBasicBlock *FalseDest;
559    MachineInstr *ConditionDef;
560
561    /// SingleUseCondition is true if ConditionDef is dead except for the
562    /// branch(es) at the end of the basic block.
563    ///
564    bool SingleUseCondition;
565
566    explicit MachineBranchPredicate()
567        : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
568          RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
569          FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
570    }
571  };
572
573  /// Analyze the branching code at the end of MBB and parse it into the
574  /// MachineBranchPredicate structure if possible.  Returns false on success
575  /// and true on failure.
576  ///
577  /// If AllowModify is true, then this routine is allowed to modify the basic
578  /// block (e.g. delete instructions after the unconditional branch).
579  ///
580  virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
581                                      MachineBranchPredicate &MBP,
582                                      bool AllowModify = false) const {
583    return true;
584  }
585
586  /// Remove the branching code at the end of the specific MBB.
587  /// This is only invoked in cases where AnalyzeBranch returns success. It
588  /// returns the number of instructions that were removed.
589  /// If \p BytesRemoved is non-null, report the change in code size from the
590  /// removed instructions.
591  virtual unsigned removeBranch(MachineBasicBlock &MBB,
592                                int *BytesRemoved = nullptr) const {
593    llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
594  }
595
596  /// Insert branch code into the end of the specified MachineBasicBlock. The
597  /// operands to this method are the same as those returned by AnalyzeBranch.
598  /// This is only invoked in cases where AnalyzeBranch returns success. It
599  /// returns the number of instructions inserted. If \p BytesAdded is non-null,
600  /// report the change in code size from the added instructions.
601  ///
602  /// It is also invoked by tail merging to add unconditional branches in
603  /// cases where AnalyzeBranch doesn't apply because there was no original
604  /// branch to analyze.  At least this much must be implemented, else tail
605  /// merging needs to be disabled.
606  ///
607  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
608  /// before calling this function.
609  virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
610                                MachineBasicBlock *FBB,
611                                ArrayRef<MachineOperand> Cond,
612                                const DebugLoc &DL,
613                                int *BytesAdded = nullptr) const {
614    llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
615  }
616
617  unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
618                                     MachineBasicBlock *DestBB,
619                                     const DebugLoc &DL,
620                                     int *BytesAdded = nullptr) const {
621    return insertBranch(MBB, DestBB, nullptr,
622                        ArrayRef<MachineOperand>(), DL, BytesAdded);
623  }
624
625  /// Analyze the loop code, return true if it cannot be understoo. Upon
626  /// success, this function returns false and returns information about the
627  /// induction variable and compare instruction used at the end.
628  virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
629                           MachineInstr *&CmpInst) const {
630    return true;
631  }
632
633  /// Generate code to reduce the loop iteration by one and check if the loop is
634  /// finished.  Return the value/register of the the new loop count.  We need
635  /// this function when peeling off one or more iterations of a loop. This
636  /// function assumes the nth iteration is peeled first.
637  virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
638                                   MachineInstr *IndVar, MachineInstr &Cmp,
639                                   SmallVectorImpl<MachineOperand> &Cond,
640                                   SmallVectorImpl<MachineInstr *> &PrevInsts,
641                                   unsigned Iter, unsigned MaxIter) const {
642    llvm_unreachable("Target didn't implement ReduceLoopCount");
643  }
644
645  /// Delete the instruction OldInst and everything after it, replacing it with
646  /// an unconditional branch to NewDest. This is used by the tail merging pass.
647  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
648                                       MachineBasicBlock *NewDest) const;
649
650  /// Return true if it's legal to split the given basic
651  /// block at the specified instruction (i.e. instruction would be the start
652  /// of a new basic block).
653  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
654                                   MachineBasicBlock::iterator MBBI) const {
655    return true;
656  }
657
658  /// Return true if it's profitable to predicate
659  /// instructions with accumulated instruction latency of "NumCycles"
660  /// of the specified basic block, where the probability of the instructions
661  /// being executed is given by Probability, and Confidence is a measure
662  /// of our confidence that it will be properly predicted.
663  virtual
664  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
665                           unsigned ExtraPredCycles,
666                           BranchProbability Probability) const {
667    return false;
668  }
669
670  /// Second variant of isProfitableToIfCvt. This one
671  /// checks for the case where two basic blocks from true and false path
672  /// of a if-then-else (diamond) are predicated on mutally exclusive
673  /// predicates, where the probability of the true path being taken is given
674  /// by Probability, and Confidence is a measure of our confidence that it
675  /// will be properly predicted.
676  virtual bool
677  isProfitableToIfCvt(MachineBasicBlock &TMBB,
678                      unsigned NumTCycles, unsigned ExtraTCycles,
679                      MachineBasicBlock &FMBB,
680                      unsigned NumFCycles, unsigned ExtraFCycles,
681                      BranchProbability Probability) const {
682    return false;
683  }
684
685  /// Return true if it's profitable for if-converter to duplicate instructions
686  /// of specified accumulated instruction latencies in the specified MBB to
687  /// enable if-conversion.
688  /// The probability of the instructions being executed is given by
689  /// Probability, and Confidence is a measure of our confidence that it
690  /// will be properly predicted.
691  virtual bool
692  isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
693                            BranchProbability Probability) const {
694    return false;
695  }
696
697  /// Return true if it's profitable to unpredicate
698  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
699  /// exclusive predicates.
700  /// e.g.
701  ///   subeq  r0, r1, #1
702  ///   addne  r0, r1, #1
703  /// =>
704  ///   sub    r0, r1, #1
705  ///   addne  r0, r1, #1
706  ///
707  /// This may be profitable is conditional instructions are always executed.
708  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
709                                         MachineBasicBlock &FMBB) const {
710    return false;
711  }
712
713  /// Return true if it is possible to insert a select
714  /// instruction that chooses between TrueReg and FalseReg based on the
715  /// condition code in Cond.
716  ///
717  /// When successful, also return the latency in cycles from TrueReg,
718  /// FalseReg, and Cond to the destination register. In most cases, a select
719  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
720  ///
721  /// Some x86 implementations have 2-cycle cmov instructions.
722  ///
723  /// @param MBB         Block where select instruction would be inserted.
724  /// @param Cond        Condition returned by AnalyzeBranch.
725  /// @param TrueReg     Virtual register to select when Cond is true.
726  /// @param FalseReg    Virtual register to select when Cond is false.
727  /// @param CondCycles  Latency from Cond+Branch to select output.
728  /// @param TrueCycles  Latency from TrueReg to select output.
729  /// @param FalseCycles Latency from FalseReg to select output.
730  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
731                               ArrayRef<MachineOperand> Cond,
732                               unsigned TrueReg, unsigned FalseReg,
733                               int &CondCycles,
734                               int &TrueCycles, int &FalseCycles) const {
735    return false;
736  }
737
738  /// Insert a select instruction into MBB before I that will copy TrueReg to
739  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
740  ///
741  /// This function can only be called after canInsertSelect() returned true.
742  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
743  /// that the same flags or registers required by Cond are available at the
744  /// insertion point.
745  ///
746  /// @param MBB      Block where select instruction should be inserted.
747  /// @param I        Insertion point.
748  /// @param DL       Source location for debugging.
749  /// @param DstReg   Virtual register to be defined by select instruction.
750  /// @param Cond     Condition as computed by AnalyzeBranch.
751  /// @param TrueReg  Virtual register to copy when Cond is true.
752  /// @param FalseReg Virtual register to copy when Cons is false.
753  virtual void insertSelect(MachineBasicBlock &MBB,
754                            MachineBasicBlock::iterator I, const DebugLoc &DL,
755                            unsigned DstReg, ArrayRef<MachineOperand> Cond,
756                            unsigned TrueReg, unsigned FalseReg) const {
757    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
758  }
759
760  /// Analyze the given select instruction, returning true if
761  /// it cannot be understood. It is assumed that MI->isSelect() is true.
762  ///
763  /// When successful, return the controlling condition and the operands that
764  /// determine the true and false result values.
765  ///
766  ///   Result = SELECT Cond, TrueOp, FalseOp
767  ///
768  /// Some targets can optimize select instructions, for example by predicating
769  /// the instruction defining one of the operands. Such targets should set
770  /// Optimizable.
771  ///
772  /// @param         MI Select instruction to analyze.
773  /// @param Cond    Condition controlling the select.
774  /// @param TrueOp  Operand number of the value selected when Cond is true.
775  /// @param FalseOp Operand number of the value selected when Cond is false.
776  /// @param Optimizable Returned as true if MI is optimizable.
777  /// @returns False on success.
778  virtual bool analyzeSelect(const MachineInstr &MI,
779                             SmallVectorImpl<MachineOperand> &Cond,
780                             unsigned &TrueOp, unsigned &FalseOp,
781                             bool &Optimizable) const {
782    assert(MI.getDesc().isSelect() && "MI must be a select instruction");
783    return true;
784  }
785
786  /// Given a select instruction that was understood by
787  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
788  /// merging it with one of its operands. Returns NULL on failure.
789  ///
790  /// When successful, returns the new select instruction. The client is
791  /// responsible for deleting MI.
792  ///
793  /// If both sides of the select can be optimized, PreferFalse is used to pick
794  /// a side.
795  ///
796  /// @param MI          Optimizable select instruction.
797  /// @param NewMIs     Set that record all MIs in the basic block up to \p
798  /// MI. Has to be updated with any newly created MI or deleted ones.
799  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
800  /// @returns Optimized instruction or NULL.
801  virtual MachineInstr *optimizeSelect(MachineInstr &MI,
802                                       SmallPtrSetImpl<MachineInstr *> &NewMIs,
803                                       bool PreferFalse = false) const {
804    // This function must be implemented if Optimizable is ever set.
805    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
806  }
807
808  /// Emit instructions to copy a pair of physical registers.
809  ///
810  /// This function should support copies within any legal register class as
811  /// well as any cross-class copies created during instruction selection.
812  ///
813  /// The source and destination registers may overlap, which may require a
814  /// careful implementation when multiple copy instructions are required for
815  /// large registers. See for example the ARM target.
816  virtual void copyPhysReg(MachineBasicBlock &MBB,
817                           MachineBasicBlock::iterator MI, const DebugLoc &DL,
818                           unsigned DestReg, unsigned SrcReg,
819                           bool KillSrc) const {
820    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
821  }
822
823  /// Store the specified register of the given register class to the specified
824  /// stack frame index. The store instruction is to be added to the given
825  /// machine basic block before the specified machine instruction. If isKill
826  /// is true, the register operand is the last use and must be marked kill.
827  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
828                                   MachineBasicBlock::iterator MI,
829                                   unsigned SrcReg, bool isKill, int FrameIndex,
830                                   const TargetRegisterClass *RC,
831                                   const TargetRegisterInfo *TRI) const {
832    llvm_unreachable("Target didn't implement "
833                     "TargetInstrInfo::storeRegToStackSlot!");
834  }
835
836  /// Load the specified register of the given register class from the specified
837  /// stack frame index. The load instruction is to be added to the given
838  /// machine basic block before the specified machine instruction.
839  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
840                                    MachineBasicBlock::iterator MI,
841                                    unsigned DestReg, int FrameIndex,
842                                    const TargetRegisterClass *RC,
843                                    const TargetRegisterInfo *TRI) const {
844    llvm_unreachable("Target didn't implement "
845                     "TargetInstrInfo::loadRegFromStackSlot!");
846  }
847
848  /// This function is called for all pseudo instructions
849  /// that remain after register allocation. Many pseudo instructions are
850  /// created to help register allocation. This is the place to convert them
851  /// into real instructions. The target can edit MI in place, or it can insert
852  /// new instructions and erase MI. The function should return true if
853  /// anything was changed.
854  virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
855
856  /// Check whether the target can fold a load that feeds a subreg operand
857  /// (or a subreg operand that feeds a store).
858  /// For example, X86 may want to return true if it can fold
859  /// movl (%esp), %eax
860  /// subb, %al, ...
861  /// Into:
862  /// subb (%esp), ...
863  ///
864  /// Ideally, we'd like the target implementation of foldMemoryOperand() to
865  /// reject subregs - but since this behavior used to be enforced in the
866  /// target-independent code, moving this responsibility to the targets
867  /// has the potential of causing nasty silent breakage in out-of-tree targets.
868  virtual bool isSubregFoldable() const { return false; }
869
870  /// Attempt to fold a load or store of the specified stack
871  /// slot into the specified machine instruction for the specified operand(s).
872  /// If this is possible, a new instruction is returned with the specified
873  /// operand folded, otherwise NULL is returned.
874  /// The new instruction is inserted before MI, and the client is responsible
875  /// for removing the old instruction.
876  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
877                                  int FrameIndex,
878                                  LiveIntervals *LIS = nullptr) const;
879
880  /// Same as the previous version except it allows folding of any load and
881  /// store from / to any address, not just from a specific stack slot.
882  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
883                                  MachineInstr &LoadMI,
884                                  LiveIntervals *LIS = nullptr) const;
885
886  /// Return true when there is potentially a faster code sequence
887  /// for an instruction chain ending in \p Root. All potential patterns are
888  /// returned in the \p Pattern vector. Pattern should be sorted in priority
889  /// order since the pattern evaluator stops checking as soon as it finds a
890  /// faster sequence.
891  /// \param Root - Instruction that could be combined with one of its operands
892  /// \param Patterns - Vector of possible combination patterns
893  virtual bool getMachineCombinerPatterns(
894      MachineInstr &Root,
895      SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
896
897  /// Return true when a code sequence can improve throughput. It
898  /// should be called only for instructions in loops.
899  /// \param Pattern - combiner pattern
900  virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
901
902  /// Return true if the input \P Inst is part of a chain of dependent ops
903  /// that are suitable for reassociation, otherwise return false.
904  /// If the instruction's operands must be commuted to have a previous
905  /// instruction of the same type define the first source operand, \P Commuted
906  /// will be set to true.
907  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
908
909  /// Return true when \P Inst is both associative and commutative.
910  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
911    return false;
912  }
913
914  /// Return true when \P Inst has reassociable operands in the same \P MBB.
915  virtual bool hasReassociableOperands(const MachineInstr &Inst,
916                                       const MachineBasicBlock *MBB) const;
917
918  /// Return true when \P Inst has reassociable sibling.
919  bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
920
921  /// When getMachineCombinerPatterns() finds patterns, this function generates
922  /// the instructions that could replace the original code sequence. The client
923  /// has to decide whether the actual replacement is beneficial or not.
924  /// \param Root - Instruction that could be combined with one of its operands
925  /// \param Pattern - Combination pattern for Root
926  /// \param InsInstrs - Vector of new instructions that implement P
927  /// \param DelInstrs - Old instructions, including Root, that could be
928  /// replaced by InsInstr
929  /// \param InstrIdxForVirtReg - map of virtual register to instruction in
930  /// InsInstr that defines it
931  virtual void genAlternativeCodeSequence(
932      MachineInstr &Root, MachineCombinerPattern Pattern,
933      SmallVectorImpl<MachineInstr *> &InsInstrs,
934      SmallVectorImpl<MachineInstr *> &DelInstrs,
935      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
936
937  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
938  /// reduce critical path length.
939  void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
940                      MachineCombinerPattern Pattern,
941                      SmallVectorImpl<MachineInstr *> &InsInstrs,
942                      SmallVectorImpl<MachineInstr *> &DelInstrs,
943                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
944
945  /// This is an architecture-specific helper function of reassociateOps.
946  /// Set special operand attributes for new instructions after reassociation.
947  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
948                                     MachineInstr &NewMI1,
949                                     MachineInstr &NewMI2) const {
950  }
951
952  /// Return true when a target supports MachineCombiner.
953  virtual bool useMachineCombiner() const { return false; }
954
955protected:
956  /// Target-dependent implementation for foldMemoryOperand.
957  /// Target-independent code in foldMemoryOperand will
958  /// take care of adding a MachineMemOperand to the newly created instruction.
959  /// The instruction and any auxiliary instructions necessary will be inserted
960  /// at InsertPt.
961  virtual MachineInstr *
962  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
963                        ArrayRef<unsigned> Ops,
964                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
965                        LiveIntervals *LIS = nullptr) const {
966    return nullptr;
967  }
968
969  /// Target-dependent implementation for foldMemoryOperand.
970  /// Target-independent code in foldMemoryOperand will
971  /// take care of adding a MachineMemOperand to the newly created instruction.
972  /// The instruction and any auxiliary instructions necessary will be inserted
973  /// at InsertPt.
974  virtual MachineInstr *foldMemoryOperandImpl(
975      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
976      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
977      LiveIntervals *LIS = nullptr) const {
978    return nullptr;
979  }
980
981  /// \brief Target-dependent implementation of getRegSequenceInputs.
982  ///
983  /// \returns true if it is possible to build the equivalent
984  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
985  ///
986  /// \pre MI.isRegSequenceLike().
987  ///
988  /// \see TargetInstrInfo::getRegSequenceInputs.
989  virtual bool getRegSequenceLikeInputs(
990      const MachineInstr &MI, unsigned DefIdx,
991      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
992    return false;
993  }
994
995  /// \brief Target-dependent implementation of getExtractSubregInputs.
996  ///
997  /// \returns true if it is possible to build the equivalent
998  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
999  ///
1000  /// \pre MI.isExtractSubregLike().
1001  ///
1002  /// \see TargetInstrInfo::getExtractSubregInputs.
1003  virtual bool getExtractSubregLikeInputs(
1004      const MachineInstr &MI, unsigned DefIdx,
1005      RegSubRegPairAndIdx &InputReg) const {
1006    return false;
1007  }
1008
1009  /// \brief Target-dependent implementation of getInsertSubregInputs.
1010  ///
1011  /// \returns true if it is possible to build the equivalent
1012  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1013  ///
1014  /// \pre MI.isInsertSubregLike().
1015  ///
1016  /// \see TargetInstrInfo::getInsertSubregInputs.
1017  virtual bool
1018  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1019                            RegSubRegPair &BaseReg,
1020                            RegSubRegPairAndIdx &InsertedReg) const {
1021    return false;
1022  }
1023
1024public:
1025  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1026  /// a store or a load and a store into two or more instruction. If this is
1027  /// possible, returns true as well as the new instructions by reference.
1028  virtual bool
1029  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1030                      bool UnfoldLoad, bool UnfoldStore,
1031                      SmallVectorImpl<MachineInstr *> &NewMIs) const {
1032    return false;
1033  }
1034
1035  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1036                                   SmallVectorImpl<SDNode*> &NewNodes) const {
1037    return false;
1038  }
1039
1040  /// Returns the opcode of the would be new
1041  /// instruction after load / store are unfolded from an instruction of the
1042  /// specified opcode. It returns zero if the specified unfolding is not
1043  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1044  /// index of the operand which will hold the register holding the loaded
1045  /// value.
1046  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
1047                                      bool UnfoldLoad, bool UnfoldStore,
1048                                      unsigned *LoadRegIndex = nullptr) const {
1049    return 0;
1050  }
1051
1052  /// This is used by the pre-regalloc scheduler to determine if two loads are
1053  /// loading from the same base address. It should only return true if the base
1054  /// pointers are the same and the only differences between the two addresses
1055  /// are the offset. It also returns the offsets by reference.
1056  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1057                                    int64_t &Offset1, int64_t &Offset2) const {
1058    return false;
1059  }
1060
1061  /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1062  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1063  /// On some targets if two loads are loading from
1064  /// addresses in the same cache line, it's better if they are scheduled
1065  /// together. This function takes two integers that represent the load offsets
1066  /// from the common base address. It returns true if it decides it's desirable
1067  /// to schedule the two loads together. "NumLoads" is the number of loads that
1068  /// have already been scheduled after Load1.
1069  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1070                                       int64_t Offset1, int64_t Offset2,
1071                                       unsigned NumLoads) const {
1072    return false;
1073  }
1074
1075  /// Get the base register and byte offset of an instruction that reads/writes
1076  /// memory.
1077  virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1078                                     int64_t &Offset,
1079                                     const TargetRegisterInfo *TRI) const {
1080    return false;
1081  }
1082
1083  /// Return true if the instruction contains a base register and offset. If
1084  /// true, the function also sets the operand position in the instruction
1085  /// for the base register and offset.
1086  virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1087                                        unsigned &BasePos,
1088                                        unsigned &OffsetPos) const {
1089    return false;
1090  }
1091
1092  /// If the instruction is an increment of a constant value, return the amount.
1093  virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1094    return false;
1095  }
1096
1097  /// Returns true if the two given memory operations should be scheduled
1098  /// adjacent. Note that you have to add:
1099  ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1100  /// or
1101  ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1102  /// to TargetPassConfig::createMachineScheduler() to have an effect.
1103  virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt,
1104                                   MachineInstr &SecondLdSt,
1105                                   unsigned NumLoads) const {
1106    llvm_unreachable("target did not implement shouldClusterMemOps()");
1107  }
1108
1109  /// Reverses the branch condition of the specified condition list,
1110  /// returning false on success and true if it cannot be reversed.
1111  virtual
1112  bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1113    return true;
1114  }
1115
1116  /// Insert a noop into the instruction stream at the specified point.
1117  virtual void insertNoop(MachineBasicBlock &MBB,
1118                          MachineBasicBlock::iterator MI) const;
1119
1120
1121  /// Return the noop instruction to use for a noop.
1122  virtual void getNoop(MCInst &NopInst) const;
1123
1124  /// Return true for post-incremented instructions.
1125  virtual bool isPostIncrement(const MachineInstr &MI) const {
1126    return false;
1127  }
1128
1129  /// Returns true if the instruction is already predicated.
1130  virtual bool isPredicated(const MachineInstr &MI) const {
1131    return false;
1132  }
1133
1134  /// Returns true if the instruction is a
1135  /// terminator instruction that has not been predicated.
1136  virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1137
1138  /// Returns true if MI is an unconditional tail call.
1139  virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1140    return false;
1141  }
1142
1143  /// Returns true if the tail call can be made conditional on BranchCond.
1144  virtual bool
1145  canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1146                             const MachineInstr &TailCall) const {
1147    return false;
1148  }
1149
1150  /// Replace the conditional branch in MBB with a conditional tail call.
1151  virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1152                                         SmallVectorImpl<MachineOperand> &Cond,
1153                                         const MachineInstr &TailCall) const {
1154    llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1155  }
1156
1157  /// Convert the instruction into a predicated instruction.
1158  /// It returns true if the operation was successful.
1159  virtual bool PredicateInstruction(MachineInstr &MI,
1160                                    ArrayRef<MachineOperand> Pred) const;
1161
1162  /// Returns true if the first specified predicate
1163  /// subsumes the second, e.g. GE subsumes GT.
1164  virtual
1165  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1166                         ArrayRef<MachineOperand> Pred2) const {
1167    return false;
1168  }
1169
1170  /// If the specified instruction defines any predicate
1171  /// or condition code register(s) used for predication, returns true as well
1172  /// as the definition predicate(s) by reference.
1173  virtual bool DefinesPredicate(MachineInstr &MI,
1174                                std::vector<MachineOperand> &Pred) const {
1175    return false;
1176  }
1177
1178  /// Return true if the specified instruction can be predicated.
1179  /// By default, this returns true for every instruction with a
1180  /// PredicateOperand.
1181  virtual bool isPredicable(const MachineInstr &MI) const {
1182    return MI.getDesc().isPredicable();
1183  }
1184
1185  /// Return true if it's safe to move a machine
1186  /// instruction that defines the specified register class.
1187  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1188    return true;
1189  }
1190
1191  /// Test if the given instruction should be considered a scheduling boundary.
1192  /// This primarily includes labels and terminators.
1193  virtual bool isSchedulingBoundary(const MachineInstr &MI,
1194                                    const MachineBasicBlock *MBB,
1195                                    const MachineFunction &MF) const;
1196
1197  /// Measure the specified inline asm to determine an approximation of its
1198  /// length.
1199  virtual unsigned getInlineAsmLength(const char *Str,
1200                                      const MCAsmInfo &MAI) const;
1201
1202  /// Allocate and return a hazard recognizer to use for this target when
1203  /// scheduling the machine instructions before register allocation.
1204  virtual ScheduleHazardRecognizer*
1205  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1206                               const ScheduleDAG *DAG) const;
1207
1208  /// Allocate and return a hazard recognizer to use for this target when
1209  /// scheduling the machine instructions before register allocation.
1210  virtual ScheduleHazardRecognizer*
1211  CreateTargetMIHazardRecognizer(const InstrItineraryData*,
1212                                 const ScheduleDAG *DAG) const;
1213
1214  /// Allocate and return a hazard recognizer to use for this target when
1215  /// scheduling the machine instructions after register allocation.
1216  virtual ScheduleHazardRecognizer*
1217  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1218                                     const ScheduleDAG *DAG) const;
1219
1220  /// Allocate and return a hazard recognizer to use for by non-scheduling
1221  /// passes.
1222  virtual ScheduleHazardRecognizer*
1223  CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1224    return nullptr;
1225  }
1226
1227  /// Provide a global flag for disabling the PreRA hazard recognizer that
1228  /// targets may choose to honor.
1229  bool usePreRAHazardRecognizer() const;
1230
1231  /// For a comparison instruction, return the source registers
1232  /// in SrcReg and SrcReg2 if having two register operands, and the value it
1233  /// compares against in CmpValue. Return true if the comparison instruction
1234  /// can be analyzed.
1235  virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1236                              unsigned &SrcReg2, int &Mask, int &Value) const {
1237    return false;
1238  }
1239
1240  /// See if the comparison instruction can be converted
1241  /// into something more efficient. E.g., on ARM most instructions can set the
1242  /// flags register, obviating the need for a separate CMP.
1243  virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1244                                    unsigned SrcReg2, int Mask, int Value,
1245                                    const MachineRegisterInfo *MRI) const {
1246    return false;
1247  }
1248  virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1249
1250  /// Try to remove the load by folding it to a register operand at the use.
1251  /// We fold the load instructions if and only if the
1252  /// def and use are in the same BB. We only look at one load and see
1253  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1254  /// defined by the load we are trying to fold. DefMI returns the machine
1255  /// instruction that defines FoldAsLoadDefReg, and the function returns
1256  /// the machine instruction generated due to folding.
1257  virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1258                                          const MachineRegisterInfo *MRI,
1259                                          unsigned &FoldAsLoadDefReg,
1260                                          MachineInstr *&DefMI) const {
1261    return nullptr;
1262  }
1263
1264  /// 'Reg' is known to be defined by a move immediate instruction,
1265  /// try to fold the immediate into the use instruction.
1266  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1267  /// then the caller may assume that DefMI has been erased from its parent
1268  /// block. The caller may assume that it will not be erased by this
1269  /// function otherwise.
1270  virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1271                             unsigned Reg, MachineRegisterInfo *MRI) const {
1272    return false;
1273  }
1274
1275  /// Return the number of u-operations the given machine
1276  /// instruction will be decoded to on the target cpu. The itinerary's
1277  /// IssueWidth is the number of microops that can be dispatched each
1278  /// cycle. An instruction with zero microops takes no dispatch resources.
1279  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1280                                  const MachineInstr &MI) const;
1281
1282  /// Return true for pseudo instructions that don't consume any
1283  /// machine resources in their current form. These are common cases that the
1284  /// scheduler should consider free, rather than conservatively handling them
1285  /// as instructions with no itinerary.
1286  bool isZeroCost(unsigned Opcode) const {
1287    return Opcode <= TargetOpcode::COPY;
1288  }
1289
1290  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1291                                SDNode *DefNode, unsigned DefIdx,
1292                                SDNode *UseNode, unsigned UseIdx) const;
1293
1294  /// Compute and return the use operand latency of a given pair of def and use.
1295  /// In most cases, the static scheduling itinerary was enough to determine the
1296  /// operand latency. But it may not be possible for instructions with variable
1297  /// number of defs / uses.
1298  ///
1299  /// This is a raw interface to the itinerary that may be directly overridden
1300  /// by a target. Use computeOperandLatency to get the best estimate of
1301  /// latency.
1302  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1303                                const MachineInstr &DefMI, unsigned DefIdx,
1304                                const MachineInstr &UseMI,
1305                                unsigned UseIdx) const;
1306
1307  /// Compute the instruction latency of a given instruction.
1308  /// If the instruction has higher cost when predicated, it's returned via
1309  /// PredCost.
1310  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1311                                   const MachineInstr &MI,
1312                                   unsigned *PredCost = nullptr) const;
1313
1314  virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1315
1316  virtual int getInstrLatency(const InstrItineraryData *ItinData,
1317                              SDNode *Node) const;
1318
1319  /// Return the default expected latency for a def based on its opcode.
1320  unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1321                             const MachineInstr &DefMI) const;
1322
1323  int computeDefOperandLatency(const InstrItineraryData *ItinData,
1324                               const MachineInstr &DefMI) const;
1325
1326  /// Return true if this opcode has high latency to its result.
1327  virtual bool isHighLatencyDef(int opc) const { return false; }
1328
1329  /// Compute operand latency between a def of 'Reg'
1330  /// and a use in the current loop. Return true if the target considered
1331  /// it 'high'. This is used by optimization passes such as machine LICM to
1332  /// determine whether it makes sense to hoist an instruction out even in a
1333  /// high register pressure situation.
1334  virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1335                                     const MachineRegisterInfo *MRI,
1336                                     const MachineInstr &DefMI, unsigned DefIdx,
1337                                     const MachineInstr &UseMI,
1338                                     unsigned UseIdx) const {
1339    return false;
1340  }
1341
1342  /// Compute operand latency of a def of 'Reg'. Return true
1343  /// if the target considered it 'low'.
1344  virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1345                                const MachineInstr &DefMI,
1346                                unsigned DefIdx) const;
1347
1348  /// Perform target-specific instruction verification.
1349  virtual bool verifyInstruction(const MachineInstr &MI,
1350                                 StringRef &ErrInfo) const {
1351    return true;
1352  }
1353
1354  /// Return the current execution domain and bit mask of
1355  /// possible domains for instruction.
1356  ///
1357  /// Some micro-architectures have multiple execution domains, and multiple
1358  /// opcodes that perform the same operation in different domains.  For
1359  /// example, the x86 architecture provides the por, orps, and orpd
1360  /// instructions that all do the same thing.  There is a latency penalty if a
1361  /// register is written in one domain and read in another.
1362  ///
1363  /// This function returns a pair (domain, mask) containing the execution
1364  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1365  /// function can be used to change the opcode to one of the domains in the
1366  /// bit mask.  Instructions whose execution domain can't be changed should
1367  /// return a 0 mask.
1368  ///
1369  /// The execution domain numbers don't have any special meaning except domain
1370  /// 0 is used for instructions that are not associated with any interesting
1371  /// execution domain.
1372  ///
1373  virtual std::pair<uint16_t, uint16_t>
1374  getExecutionDomain(const MachineInstr &MI) const {
1375    return std::make_pair(0, 0);
1376  }
1377
1378  /// Change the opcode of MI to execute in Domain.
1379  ///
1380  /// The bit (1 << Domain) must be set in the mask returned from
1381  /// getExecutionDomain(MI).
1382  virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1383
1384  /// Returns the preferred minimum clearance
1385  /// before an instruction with an unwanted partial register update.
1386  ///
1387  /// Some instructions only write part of a register, and implicitly need to
1388  /// read the other parts of the register.  This may cause unwanted stalls
1389  /// preventing otherwise unrelated instructions from executing in parallel in
1390  /// an out-of-order CPU.
1391  ///
1392  /// For example, the x86 instruction cvtsi2ss writes its result to bits
1393  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1394  /// the instruction needs to wait for the old value of the register to become
1395  /// available:
1396  ///
1397  ///   addps %xmm1, %xmm0
1398  ///   movaps %xmm0, (%rax)
1399  ///   cvtsi2ss %rbx, %xmm0
1400  ///
1401  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1402  /// instruction before it can issue, even though the high bits of %xmm0
1403  /// probably aren't needed.
1404  ///
1405  /// This hook returns the preferred clearance before MI, measured in
1406  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1407  /// instructions before MI.  It should only return a positive value for
1408  /// unwanted dependencies.  If the old bits of the defined register have
1409  /// useful values, or if MI is determined to otherwise read the dependency,
1410  /// the hook should return 0.
1411  ///
1412  /// The unwanted dependency may be handled by:
1413  ///
1414  /// 1. Allocating the same register for an MI def and use.  That makes the
1415  ///    unwanted dependency identical to a required dependency.
1416  ///
1417  /// 2. Allocating a register for the def that has no defs in the previous N
1418  ///    instructions.
1419  ///
1420  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1421  ///    allows the target to insert a dependency breaking instruction.
1422  ///
1423  virtual unsigned
1424  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1425                               const TargetRegisterInfo *TRI) const {
1426    // The default implementation returns 0 for no partial register dependency.
1427    return 0;
1428  }
1429
1430  /// \brief Return the minimum clearance before an instruction that reads an
1431  /// unused register.
1432  ///
1433  /// For example, AVX instructions may copy part of a register operand into
1434  /// the unused high bits of the destination register.
1435  ///
1436  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
1437  ///
1438  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1439  /// false dependence on any previous write to %xmm0.
1440  ///
1441  /// This hook works similarly to getPartialRegUpdateClearance, except that it
1442  /// does not take an operand index. Instead sets \p OpNum to the index of the
1443  /// unused register.
1444  virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1445                                        const TargetRegisterInfo *TRI) const {
1446    // The default implementation returns 0 for no undef register dependency.
1447    return 0;
1448  }
1449
1450  /// Insert a dependency-breaking instruction
1451  /// before MI to eliminate an unwanted dependency on OpNum.
1452  ///
1453  /// If it wasn't possible to avoid a def in the last N instructions before MI
1454  /// (see getPartialRegUpdateClearance), this hook will be called to break the
1455  /// unwanted dependency.
1456  ///
1457  /// On x86, an xorps instruction can be used as a dependency breaker:
1458  ///
1459  ///   addps %xmm1, %xmm0
1460  ///   movaps %xmm0, (%rax)
1461  ///   xorps %xmm0, %xmm0
1462  ///   cvtsi2ss %rbx, %xmm0
1463  ///
1464  /// An <imp-kill> operand should be added to MI if an instruction was
1465  /// inserted.  This ties the instructions together in the post-ra scheduler.
1466  ///
1467  virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1468                                         const TargetRegisterInfo *TRI) const {}
1469
1470  /// Create machine specific model for scheduling.
1471  virtual DFAPacketizer *
1472  CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1473    return nullptr;
1474  }
1475
1476  /// Sometimes, it is possible for the target
1477  /// to tell, even without aliasing information, that two MIs access different
1478  /// memory addresses. This function returns true if two MIs access different
1479  /// memory addresses and false otherwise.
1480  ///
1481  /// Assumes any physical registers used to compute addresses have the same
1482  /// value for both instructions. (This is the most useful assumption for
1483  /// post-RA scheduling.)
1484  ///
1485  /// See also MachineInstr::mayAlias, which is implemented on top of this
1486  /// function.
1487  virtual bool
1488  areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1489                                  AliasAnalysis *AA = nullptr) const {
1490    assert((MIa.mayLoad() || MIa.mayStore()) &&
1491           "MIa must load from or modify a memory location");
1492    assert((MIb.mayLoad() || MIb.mayStore()) &&
1493           "MIb must load from or modify a memory location");
1494    return false;
1495  }
1496
1497  /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
1498  /// which is a heuristic used for CSE'ing phys reg defs.
1499  virtual unsigned getMachineCSELookAheadLimit () const {
1500    // The default lookahead is small to prevent unprofitable quadratic
1501    // behavior.
1502    return 5;
1503  }
1504
1505  /// Return an array that contains the ids of the target indices (used for the
1506  /// TargetIndex machine operand) and their names.
1507  ///
1508  /// MIR Serialization is able to serialize only the target indices that are
1509  /// defined by this method.
1510  virtual ArrayRef<std::pair<int, const char *>>
1511  getSerializableTargetIndices() const {
1512    return None;
1513  }
1514
1515  /// Decompose the machine operand's target flags into two values - the direct
1516  /// target flag value and any of bit flags that are applied.
1517  virtual std::pair<unsigned, unsigned>
1518  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1519    return std::make_pair(0u, 0u);
1520  }
1521
1522  /// Return an array that contains the direct target flag values and their
1523  /// names.
1524  ///
1525  /// MIR Serialization is able to serialize only the target flags that are
1526  /// defined by this method.
1527  virtual ArrayRef<std::pair<unsigned, const char *>>
1528  getSerializableDirectMachineOperandTargetFlags() const {
1529    return None;
1530  }
1531
1532  /// Return an array that contains the bitmask target flag values and their
1533  /// names.
1534  ///
1535  /// MIR Serialization is able to serialize only the target flags that are
1536  /// defined by this method.
1537  virtual ArrayRef<std::pair<unsigned, const char *>>
1538  getSerializableBitmaskMachineOperandTargetFlags() const {
1539    return None;
1540  }
1541
1542  /// Determines whether \p Inst is a tail call instruction. Override this
1543  /// method on targets that do not properly set MCID::Return and MCID::Call on
1544  /// tail call instructions."
1545  virtual bool isTailCall(const MachineInstr &Inst) const {
1546    return Inst.isReturn() && Inst.isCall();
1547  }
1548
1549  /// True if the instruction is bound to the top of its basic block and no
1550  /// other instructions shall be inserted before it. This can be implemented
1551  /// to prevent register allocator to insert spills before such instructions.
1552  virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1553    return false;
1554  }
1555
1556  /// \brief Return how many instructions would be saved by outlining a
1557  /// sequence containing \p SequenceSize instructions that appears
1558  /// \p Occurrences times in a module.
1559  virtual unsigned getOutliningBenefit(size_t SequenceSize, size_t Occurrences,
1560                                       bool CanBeTailCall) const {
1561    llvm_unreachable(
1562        "Target didn't implement TargetInstrInfo::getOutliningBenefit!");
1563  }
1564
1565  /// Represents how an instruction should be mapped by the outliner.
1566  /// \p Legal instructions are those which are safe to outline.
1567  /// \p Illegal instructions are those which cannot be outlined.
1568  /// \p Invisible instructions are instructions which can be outlined, but
1569  /// shouldn't actually impact the outlining result.
1570  enum MachineOutlinerInstrType {Legal, Illegal, Invisible};
1571
1572  /// Returns how or if \p MI should be outlined.
1573  virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
1574    llvm_unreachable(
1575        "Target didn't implement TargetInstrInfo::getOutliningType!");
1576  }
1577
1578  /// Insert a custom epilogue for outlined functions.
1579  /// This may be empty, in which case no epilogue or return statement will be
1580  /// emitted.
1581  virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
1582                                      MachineFunction &MF,
1583                                      bool IsTailCall) const {
1584    llvm_unreachable(
1585        "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
1586  }
1587
1588  /// Insert a call to an outlined function into the program.
1589  /// Returns an iterator to the spot where we inserted the call. This must be
1590  /// implemented by the target.
1591  virtual MachineBasicBlock::iterator
1592  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1593                     MachineBasicBlock::iterator &It, MachineFunction &MF,
1594                     bool IsTailCall) const {
1595    llvm_unreachable(
1596        "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1597  }
1598
1599  /// Insert a custom prologue for outlined functions.
1600  /// This may be empty, in which case no prologue will be emitted.
1601  virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
1602                                      MachineFunction &MF,
1603                                      bool IsTailCall) const {
1604    llvm_unreachable(
1605        "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
1606  }
1607
1608  /// Return true if the function can safely be outlined from.
1609  /// By default, this means that the function has no red zone.
1610  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const {
1611    llvm_unreachable("Target didn't implement "
1612                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1613  }
1614
1615private:
1616  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1617  unsigned CatchRetOpcode;
1618  unsigned ReturnOpcode;
1619};
1620
1621/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1622template<>
1623struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1624  typedef DenseMapInfo<unsigned> RegInfo;
1625
1626  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1627    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1628                         RegInfo::getEmptyKey());
1629  }
1630  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1631    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1632                         RegInfo::getTombstoneKey());
1633  }
1634  /// \brief Reuse getHashValue implementation from
1635  /// std::pair<unsigned, unsigned>.
1636  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1637    std::pair<unsigned, unsigned> PairVal =
1638        std::make_pair(Val.Reg, Val.SubReg);
1639    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1640  }
1641  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1642                      const TargetInstrInfo::RegSubRegPair &RHS) {
1643    return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1644           RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1645  }
1646};
1647
1648} // end namespace llvm
1649
1650#endif // LLVM_TARGET_TARGETINSTRINFO_H
1651