1//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// @file
11/// This file contains the declarations for the subclasses of Constant,
12/// which represent the different flavors of constant values that live in LLVM.
13/// Note that Constants are immutable (once created they never change) and are
14/// fully shared by structural equivalence.  This means that two structurally
15/// equivalent constants will always have the same address.  Constants are
16/// created on demand as needed and never deleted: thus clients don't have to
17/// worry about the lifetime of the objects.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_IR_CONSTANTS_H
22#define LLVM_IR_CONSTANTS_H
23
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/None.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/OperandTraits.h"
34#include "llvm/IR/User.h"
35#include "llvm/IR/Value.h"
36#include "llvm/Support/Casting.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <cassert>
40#include <cstddef>
41#include <cstdint>
42
43namespace llvm {
44
45class ArrayType;
46class IntegerType;
47class PointerType;
48class SequentialType;
49class StructType;
50class VectorType;
51template <class ConstantClass> struct ConstantAggrKeyType;
52
53/// Base class for constants with no operands.
54///
55/// These constants have no operands; they represent their data directly.
56/// Since they can be in use by unrelated modules (and are never based on
57/// GlobalValues), it never makes sense to RAUW them.
58class ConstantData : public Constant {
59  friend class Constant;
60
61  Value *handleOperandChangeImpl(Value *From, Value *To) {
62    llvm_unreachable("Constant data does not have operands!");
63  }
64
65protected:
66  explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
67
68  void *operator new(size_t s) { return User::operator new(s, 0); }
69
70public:
71  ConstantData(const ConstantData &) = delete;
72
73  /// Methods to support type inquiry through isa, cast, and dyn_cast.
74  static bool classof(const Value *V) {
75    return V->getValueID() >= ConstantDataFirstVal &&
76           V->getValueID() <= ConstantDataLastVal;
77  }
78};
79
80//===----------------------------------------------------------------------===//
81/// This is the shared class of boolean and integer constants. This class
82/// represents both boolean and integral constants.
83/// @brief Class for constant integers.
84class ConstantInt final : public ConstantData {
85  friend class Constant;
86
87  APInt Val;
88
89  ConstantInt(IntegerType *Ty, const APInt& V);
90
91  void destroyConstantImpl();
92
93public:
94  ConstantInt(const ConstantInt &) = delete;
95
96  static ConstantInt *getTrue(LLVMContext &Context);
97  static ConstantInt *getFalse(LLVMContext &Context);
98  static Constant *getTrue(Type *Ty);
99  static Constant *getFalse(Type *Ty);
100
101  /// If Ty is a vector type, return a Constant with a splat of the given
102  /// value. Otherwise return a ConstantInt for the given value.
103  static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
104
105  /// Return a ConstantInt with the specified integer value for the specified
106  /// type. If the type is wider than 64 bits, the value will be zero-extended
107  /// to fit the type, unless isSigned is true, in which case the value will
108  /// be interpreted as a 64-bit signed integer and sign-extended to fit
109  /// the type.
110  /// @brief Get a ConstantInt for a specific value.
111  static ConstantInt *get(IntegerType *Ty, uint64_t V,
112                          bool isSigned = false);
113
114  /// Return a ConstantInt with the specified value for the specified type. The
115  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
116  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
117  /// signed value for the type Ty.
118  /// @brief Get a ConstantInt for a specific signed value.
119  static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
120  static Constant *getSigned(Type *Ty, int64_t V);
121
122  /// Return a ConstantInt with the specified value and an implied Type. The
123  /// type is the integer type that corresponds to the bit width of the value.
124  static ConstantInt *get(LLVMContext &Context, const APInt &V);
125
126  /// Return a ConstantInt constructed from the string strStart with the given
127  /// radix.
128  static ConstantInt *get(IntegerType *Ty, StringRef Str,
129                          uint8_t radix);
130
131  /// If Ty is a vector type, return a Constant with a splat of the given
132  /// value. Otherwise return a ConstantInt for the given value.
133  static Constant *get(Type* Ty, const APInt& V);
134
135  /// Return the constant as an APInt value reference. This allows clients to
136  /// obtain a full-precision copy of the value.
137  /// @brief Return the constant's value.
138  inline const APInt &getValue() const {
139    return Val;
140  }
141
142  /// getBitWidth - Return the bitwidth of this constant.
143  unsigned getBitWidth() const { return Val.getBitWidth(); }
144
145  /// Return the constant as a 64-bit unsigned integer value after it
146  /// has been zero extended as appropriate for the type of this constant. Note
147  /// that this method can assert if the value does not fit in 64 bits.
148  /// @brief Return the zero extended value.
149  inline uint64_t getZExtValue() const {
150    return Val.getZExtValue();
151  }
152
153  /// Return the constant as a 64-bit integer value after it has been sign
154  /// extended as appropriate for the type of this constant. Note that
155  /// this method can assert if the value does not fit in 64 bits.
156  /// @brief Return the sign extended value.
157  inline int64_t getSExtValue() const {
158    return Val.getSExtValue();
159  }
160
161  /// A helper method that can be used to determine if the constant contained
162  /// within is equal to a constant.  This only works for very small values,
163  /// because this is all that can be represented with all types.
164  /// @brief Determine if this constant's value is same as an unsigned char.
165  bool equalsInt(uint64_t V) const {
166    return Val == V;
167  }
168
169  /// getType - Specialize the getType() method to always return an IntegerType,
170  /// which reduces the amount of casting needed in parts of the compiler.
171  ///
172  inline IntegerType *getType() const {
173    return cast<IntegerType>(Value::getType());
174  }
175
176  /// This static method returns true if the type Ty is big enough to
177  /// represent the value V. This can be used to avoid having the get method
178  /// assert when V is larger than Ty can represent. Note that there are two
179  /// versions of this method, one for unsigned and one for signed integers.
180  /// Although ConstantInt canonicalizes everything to an unsigned integer,
181  /// the signed version avoids callers having to convert a signed quantity
182  /// to the appropriate unsigned type before calling the method.
183  /// @returns true if V is a valid value for type Ty
184  /// @brief Determine if the value is in range for the given type.
185  static bool isValueValidForType(Type *Ty, uint64_t V);
186  static bool isValueValidForType(Type *Ty, int64_t V);
187
188  bool isNegative() const { return Val.isNegative(); }
189
190  /// This is just a convenience method to make client code smaller for a
191  /// common code. It also correctly performs the comparison without the
192  /// potential for an assertion from getZExtValue().
193  bool isZero() const {
194    return Val.isNullValue();
195  }
196
197  /// This is just a convenience method to make client code smaller for a
198  /// common case. It also correctly performs the comparison without the
199  /// potential for an assertion from getZExtValue().
200  /// @brief Determine if the value is one.
201  bool isOne() const {
202    return Val.isOneValue();
203  }
204
205  /// This function will return true iff every bit in this constant is set
206  /// to true.
207  /// @returns true iff this constant's bits are all set to true.
208  /// @brief Determine if the value is all ones.
209  bool isMinusOne() const {
210    return Val.isAllOnesValue();
211  }
212
213  /// This function will return true iff this constant represents the largest
214  /// value that may be represented by the constant's type.
215  /// @returns true iff this is the largest value that may be represented
216  /// by this type.
217  /// @brief Determine if the value is maximal.
218  bool isMaxValue(bool isSigned) const {
219    if (isSigned)
220      return Val.isMaxSignedValue();
221    else
222      return Val.isMaxValue();
223  }
224
225  /// This function will return true iff this constant represents the smallest
226  /// value that may be represented by this constant's type.
227  /// @returns true if this is the smallest value that may be represented by
228  /// this type.
229  /// @brief Determine if the value is minimal.
230  bool isMinValue(bool isSigned) const {
231    if (isSigned)
232      return Val.isMinSignedValue();
233    else
234      return Val.isMinValue();
235  }
236
237  /// This function will return true iff this constant represents a value with
238  /// active bits bigger than 64 bits or a value greater than the given uint64_t
239  /// value.
240  /// @returns true iff this constant is greater or equal to the given number.
241  /// @brief Determine if the value is greater or equal to the given number.
242  bool uge(uint64_t Num) const {
243    return Val.uge(Num);
244  }
245
246  /// getLimitedValue - If the value is smaller than the specified limit,
247  /// return it, otherwise return the limit value.  This causes the value
248  /// to saturate to the limit.
249  /// @returns the min of the value of the constant and the specified value
250  /// @brief Get the constant's value with a saturation limit
251  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
252    return Val.getLimitedValue(Limit);
253  }
254
255  /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
256  static bool classof(const Value *V) {
257    return V->getValueID() == ConstantIntVal;
258  }
259};
260
261//===----------------------------------------------------------------------===//
262/// ConstantFP - Floating Point Values [float, double]
263///
264class ConstantFP final : public ConstantData {
265  friend class Constant;
266
267  APFloat Val;
268
269  ConstantFP(Type *Ty, const APFloat& V);
270
271  void destroyConstantImpl();
272
273public:
274  ConstantFP(const ConstantFP &) = delete;
275
276  /// Floating point negation must be implemented with f(x) = -0.0 - x. This
277  /// method returns the negative zero constant for floating point or vector
278  /// floating point types; for all other types, it returns the null value.
279  static Constant *getZeroValueForNegation(Type *Ty);
280
281  /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
282  /// for the specified value in the specified type. This should only be used
283  /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
284  /// host double and as the target format.
285  static Constant *get(Type* Ty, double V);
286  static Constant *get(Type* Ty, StringRef Str);
287  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
288  static Constant *getNaN(Type *Ty, bool Negative = false, unsigned type = 0);
289  static Constant *getNegativeZero(Type *Ty);
290  static Constant *getInfinity(Type *Ty, bool Negative = false);
291
292  /// Return true if Ty is big enough to represent V.
293  static bool isValueValidForType(Type *Ty, const APFloat &V);
294  inline const APFloat &getValueAPF() const { return Val; }
295
296  /// Return true if the value is positive or negative zero.
297  bool isZero() const { return Val.isZero(); }
298
299  /// Return true if the sign bit is set.
300  bool isNegative() const { return Val.isNegative(); }
301
302  /// Return true if the value is infinity
303  bool isInfinity() const { return Val.isInfinity(); }
304
305  /// Return true if the value is a NaN.
306  bool isNaN() const { return Val.isNaN(); }
307
308  /// We don't rely on operator== working on double values, as it returns true
309  /// for things that are clearly not equal, like -0.0 and 0.0.
310  /// As such, this method can be used to do an exact bit-for-bit comparison of
311  /// two floating point values.  The version with a double operand is retained
312  /// because it's so convenient to write isExactlyValue(2.0), but please use
313  /// it only for simple constants.
314  bool isExactlyValue(const APFloat &V) const;
315
316  bool isExactlyValue(double V) const {
317    bool ignored;
318    APFloat FV(V);
319    FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
320    return isExactlyValue(FV);
321  }
322
323  /// Methods for support type inquiry through isa, cast, and dyn_cast:
324  static bool classof(const Value *V) {
325    return V->getValueID() == ConstantFPVal;
326  }
327};
328
329//===----------------------------------------------------------------------===//
330/// All zero aggregate value
331///
332class ConstantAggregateZero final : public ConstantData {
333  friend class Constant;
334
335  explicit ConstantAggregateZero(Type *Ty)
336      : ConstantData(Ty, ConstantAggregateZeroVal) {}
337
338  void destroyConstantImpl();
339
340public:
341  ConstantAggregateZero(const ConstantAggregateZero &) = delete;
342
343  static ConstantAggregateZero *get(Type *Ty);
344
345  /// If this CAZ has array or vector type, return a zero with the right element
346  /// type.
347  Constant *getSequentialElement() const;
348
349  /// If this CAZ has struct type, return a zero with the right element type for
350  /// the specified element.
351  Constant *getStructElement(unsigned Elt) const;
352
353  /// Return a zero of the right value for the specified GEP index if we can,
354  /// otherwise return null (e.g. if C is a ConstantExpr).
355  Constant *getElementValue(Constant *C) const;
356
357  /// Return a zero of the right value for the specified GEP index.
358  Constant *getElementValue(unsigned Idx) const;
359
360  /// Return the number of elements in the array, vector, or struct.
361  unsigned getNumElements() const;
362
363  /// Methods for support type inquiry through isa, cast, and dyn_cast:
364  ///
365  static bool classof(const Value *V) {
366    return V->getValueID() == ConstantAggregateZeroVal;
367  }
368};
369
370/// Base class for aggregate constants (with operands).
371///
372/// These constants are aggregates of other constants, which are stored as
373/// operands.
374///
375/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
376/// ConstantVector.
377///
378/// \note Some subclasses of \a ConstantData are semantically aggregates --
379/// such as \a ConstantDataArray -- but are not subclasses of this because they
380/// use operands.
381class ConstantAggregate : public Constant {
382protected:
383  ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V);
384
385public:
386  /// Transparently provide more efficient getOperand methods.
387  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
388
389  /// Methods for support type inquiry through isa, cast, and dyn_cast:
390  static bool classof(const Value *V) {
391    return V->getValueID() >= ConstantAggregateFirstVal &&
392           V->getValueID() <= ConstantAggregateLastVal;
393  }
394};
395
396template <>
397struct OperandTraits<ConstantAggregate>
398    : public VariadicOperandTraits<ConstantAggregate> {};
399
400DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
401
402//===----------------------------------------------------------------------===//
403/// ConstantArray - Constant Array Declarations
404///
405class ConstantArray final : public ConstantAggregate {
406  friend struct ConstantAggrKeyType<ConstantArray>;
407  friend class Constant;
408
409  ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
410
411  void destroyConstantImpl();
412  Value *handleOperandChangeImpl(Value *From, Value *To);
413
414public:
415  // ConstantArray accessors
416  static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
417
418private:
419  static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
420
421public:
422  /// Specialize the getType() method to always return an ArrayType,
423  /// which reduces the amount of casting needed in parts of the compiler.
424  inline ArrayType *getType() const {
425    return cast<ArrayType>(Value::getType());
426  }
427
428  /// Methods for support type inquiry through isa, cast, and dyn_cast:
429  static bool classof(const Value *V) {
430    return V->getValueID() == ConstantArrayVal;
431  }
432};
433
434//===----------------------------------------------------------------------===//
435// Constant Struct Declarations
436//
437class ConstantStruct final : public ConstantAggregate {
438  friend struct ConstantAggrKeyType<ConstantStruct>;
439  friend class Constant;
440
441  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
442
443  void destroyConstantImpl();
444  Value *handleOperandChangeImpl(Value *From, Value *To);
445
446public:
447  // ConstantStruct accessors
448  static Constant *get(StructType *T, ArrayRef<Constant*> V);
449
450  template <typename... Csts>
451  static typename std::enable_if<are_base_of<Constant, Csts...>::value,
452                                 Constant *>::type
453  get(StructType *T, Csts *... Vs) {
454    SmallVector<Constant *, 8> Values({Vs...});
455    return get(T, Values);
456  }
457
458  /// Return an anonymous struct that has the specified elements.
459  /// If the struct is possibly empty, then you must specify a context.
460  static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
461    return get(getTypeForElements(V, Packed), V);
462  }
463  static Constant *getAnon(LLVMContext &Ctx,
464                           ArrayRef<Constant*> V, bool Packed = false) {
465    return get(getTypeForElements(Ctx, V, Packed), V);
466  }
467
468  /// Return an anonymous struct type to use for a constant with the specified
469  /// set of elements. The list must not be empty.
470  static StructType *getTypeForElements(ArrayRef<Constant*> V,
471                                        bool Packed = false);
472  /// This version of the method allows an empty list.
473  static StructType *getTypeForElements(LLVMContext &Ctx,
474                                        ArrayRef<Constant*> V,
475                                        bool Packed = false);
476
477  /// Specialization - reduce amount of casting.
478  inline StructType *getType() const {
479    return cast<StructType>(Value::getType());
480  }
481
482  /// Methods for support type inquiry through isa, cast, and dyn_cast:
483  static bool classof(const Value *V) {
484    return V->getValueID() == ConstantStructVal;
485  }
486};
487
488//===----------------------------------------------------------------------===//
489/// Constant Vector Declarations
490///
491class ConstantVector final : public ConstantAggregate {
492  friend struct ConstantAggrKeyType<ConstantVector>;
493  friend class Constant;
494
495  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
496
497  void destroyConstantImpl();
498  Value *handleOperandChangeImpl(Value *From, Value *To);
499
500public:
501  // ConstantVector accessors
502  static Constant *get(ArrayRef<Constant*> V);
503
504private:
505  static Constant *getImpl(ArrayRef<Constant *> V);
506
507public:
508  /// Return a ConstantVector with the specified constant in each element.
509  static Constant *getSplat(unsigned NumElts, Constant *Elt);
510
511  /// Specialize the getType() method to always return a VectorType,
512  /// which reduces the amount of casting needed in parts of the compiler.
513  inline VectorType *getType() const {
514    return cast<VectorType>(Value::getType());
515  }
516
517  /// If this is a splat constant, meaning that all of the elements have the
518  /// same value, return that value. Otherwise return NULL.
519  Constant *getSplatValue() const;
520
521  /// Methods for support type inquiry through isa, cast, and dyn_cast:
522  static bool classof(const Value *V) {
523    return V->getValueID() == ConstantVectorVal;
524  }
525};
526
527//===----------------------------------------------------------------------===//
528/// A constant pointer value that points to null
529///
530class ConstantPointerNull final : public ConstantData {
531  friend class Constant;
532
533  explicit ConstantPointerNull(PointerType *T)
534      : ConstantData(T, Value::ConstantPointerNullVal) {}
535
536  void destroyConstantImpl();
537
538public:
539  ConstantPointerNull(const ConstantPointerNull &) = delete;
540
541  /// Static factory methods - Return objects of the specified value
542  static ConstantPointerNull *get(PointerType *T);
543
544  /// Specialize the getType() method to always return an PointerType,
545  /// which reduces the amount of casting needed in parts of the compiler.
546  inline PointerType *getType() const {
547    return cast<PointerType>(Value::getType());
548  }
549
550  /// Methods for support type inquiry through isa, cast, and dyn_cast:
551  static bool classof(const Value *V) {
552    return V->getValueID() == ConstantPointerNullVal;
553  }
554};
555
556//===----------------------------------------------------------------------===//
557/// ConstantDataSequential - A vector or array constant whose element type is a
558/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
559/// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
560/// operands because it stores all of the elements of the constant as densely
561/// packed data, instead of as Value*'s.
562///
563/// This is the common base class of ConstantDataArray and ConstantDataVector.
564///
565class ConstantDataSequential : public ConstantData {
566  friend class LLVMContextImpl;
567  friend class Constant;
568
569  /// A pointer to the bytes underlying this constant (which is owned by the
570  /// uniquing StringMap).
571  const char *DataElements;
572
573  /// This forms a link list of ConstantDataSequential nodes that have
574  /// the same value but different type.  For example, 0,0,0,1 could be a 4
575  /// element array of i8, or a 1-element array of i32.  They'll both end up in
576  /// the same StringMap bucket, linked up.
577  ConstantDataSequential *Next;
578
579  void destroyConstantImpl();
580
581protected:
582  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
583      : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {}
584  ~ConstantDataSequential() { delete Next; }
585
586  static Constant *getImpl(StringRef Bytes, Type *Ty);
587
588public:
589  ConstantDataSequential(const ConstantDataSequential &) = delete;
590
591  /// Return true if a ConstantDataSequential can be formed with a vector or
592  /// array of the specified element type.
593  /// ConstantDataArray only works with normal float and int types that are
594  /// stored densely in memory, not with things like i42 or x86_f80.
595  static bool isElementTypeCompatible(Type *Ty);
596
597  /// If this is a sequential container of integers (of any size), return the
598  /// specified element in the low bits of a uint64_t.
599  uint64_t getElementAsInteger(unsigned i) const;
600
601  /// If this is a sequential container of integers (of any size), return the
602  /// specified element as an APInt.
603  APInt getElementAsAPInt(unsigned i) const;
604
605  /// If this is a sequential container of floating point type, return the
606  /// specified element as an APFloat.
607  APFloat getElementAsAPFloat(unsigned i) const;
608
609  /// If this is an sequential container of floats, return the specified element
610  /// as a float.
611  float getElementAsFloat(unsigned i) const;
612
613  /// If this is an sequential container of doubles, return the specified
614  /// element as a double.
615  double getElementAsDouble(unsigned i) const;
616
617  /// Return a Constant for a specified index's element.
618  /// Note that this has to compute a new constant to return, so it isn't as
619  /// efficient as getElementAsInteger/Float/Double.
620  Constant *getElementAsConstant(unsigned i) const;
621
622  /// Specialize the getType() method to always return a SequentialType, which
623  /// reduces the amount of casting needed in parts of the compiler.
624  inline SequentialType *getType() const {
625    return cast<SequentialType>(Value::getType());
626  }
627
628  /// Return the element type of the array/vector.
629  Type *getElementType() const;
630
631  /// Return the number of elements in the array or vector.
632  unsigned getNumElements() const;
633
634  /// Return the size (in bytes) of each element in the array/vector.
635  /// The size of the elements is known to be a multiple of one byte.
636  uint64_t getElementByteSize() const;
637
638  /// This method returns true if this is an array of \p CharSize integers.
639  bool isString(unsigned CharSize = 8) const;
640
641  /// This method returns true if the array "isString", ends with a null byte,
642  /// and does not contains any other null bytes.
643  bool isCString() const;
644
645  /// If this array is isString(), then this method returns the array as a
646  /// StringRef. Otherwise, it asserts out.
647  StringRef getAsString() const {
648    assert(isString() && "Not a string");
649    return getRawDataValues();
650  }
651
652  /// If this array is isCString(), then this method returns the array (without
653  /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
654  StringRef getAsCString() const {
655    assert(isCString() && "Isn't a C string");
656    StringRef Str = getAsString();
657    return Str.substr(0, Str.size()-1);
658  }
659
660  /// Return the raw, underlying, bytes of this data. Note that this is an
661  /// extremely tricky thing to work with, as it exposes the host endianness of
662  /// the data elements.
663  StringRef getRawDataValues() const;
664
665  /// Methods for support type inquiry through isa, cast, and dyn_cast:
666  static bool classof(const Value *V) {
667    return V->getValueID() == ConstantDataArrayVal ||
668           V->getValueID() == ConstantDataVectorVal;
669  }
670
671private:
672  const char *getElementPointer(unsigned Elt) const;
673};
674
675//===----------------------------------------------------------------------===//
676/// An array constant whose element type is a simple 1/2/4/8-byte integer or
677/// float/double, and whose elements are just simple data values
678/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
679/// stores all of the elements of the constant as densely packed data, instead
680/// of as Value*'s.
681class ConstantDataArray final : public ConstantDataSequential {
682  friend class ConstantDataSequential;
683
684  explicit ConstantDataArray(Type *ty, const char *Data)
685      : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
686
687public:
688  ConstantDataArray(const ConstantDataArray &) = delete;
689
690  /// get() constructors - Return a constant with array type with an element
691  /// count and element type matching the ArrayRef passed in.  Note that this
692  /// can return a ConstantAggregateZero object.
693  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
694  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
695  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
696  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
697  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
698  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
699
700  /// getFP() constructors - Return a constant with array type with an element
701  /// count and element type of float with precision matching the number of
702  /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
703  /// double for 64bits) Note that this can return a ConstantAggregateZero
704  /// object.
705  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
706  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
707  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
708
709  /// This method constructs a CDS and initializes it with a text string.
710  /// The default behavior (AddNull==true) causes a null terminator to
711  /// be placed at the end of the array (increasing the length of the string by
712  /// one more than the StringRef would normally indicate.  Pass AddNull=false
713  /// to disable this behavior.
714  static Constant *getString(LLVMContext &Context, StringRef Initializer,
715                             bool AddNull = true);
716
717  /// Specialize the getType() method to always return an ArrayType,
718  /// which reduces the amount of casting needed in parts of the compiler.
719  inline ArrayType *getType() const {
720    return cast<ArrayType>(Value::getType());
721  }
722
723  /// Methods for support type inquiry through isa, cast, and dyn_cast:
724  static bool classof(const Value *V) {
725    return V->getValueID() == ConstantDataArrayVal;
726  }
727};
728
729//===----------------------------------------------------------------------===//
730/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
731/// float/double, and whose elements are just simple data values
732/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
733/// stores all of the elements of the constant as densely packed data, instead
734/// of as Value*'s.
735class ConstantDataVector final : public ConstantDataSequential {
736  friend class ConstantDataSequential;
737
738  explicit ConstantDataVector(Type *ty, const char *Data)
739      : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
740
741public:
742  ConstantDataVector(const ConstantDataVector &) = delete;
743
744  /// get() constructors - Return a constant with vector type with an element
745  /// count and element type matching the ArrayRef passed in.  Note that this
746  /// can return a ConstantAggregateZero object.
747  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
748  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
749  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
750  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
751  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
752  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
753
754  /// getFP() constructors - Return a constant with vector type with an element
755  /// count and element type of float with the precision matching the number of
756  /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
757  /// double for 64bits) Note that this can return a ConstantAggregateZero
758  /// object.
759  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
760  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
761  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
762
763  /// Return a ConstantVector with the specified constant in each element.
764  /// The specified constant has to be a of a compatible type (i8/i16/
765  /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
766  static Constant *getSplat(unsigned NumElts, Constant *Elt);
767
768  /// Returns true if this is a splat constant, meaning that all elements have
769  /// the same value.
770  bool isSplat() const;
771
772  /// If this is a splat constant, meaning that all of the elements have the
773  /// same value, return that value. Otherwise return NULL.
774  Constant *getSplatValue() const;
775
776  /// Specialize the getType() method to always return a VectorType,
777  /// which reduces the amount of casting needed in parts of the compiler.
778  inline VectorType *getType() const {
779    return cast<VectorType>(Value::getType());
780  }
781
782  /// Methods for support type inquiry through isa, cast, and dyn_cast:
783  static bool classof(const Value *V) {
784    return V->getValueID() == ConstantDataVectorVal;
785  }
786};
787
788//===----------------------------------------------------------------------===//
789/// A constant token which is empty
790///
791class ConstantTokenNone final : public ConstantData {
792  friend class Constant;
793
794  explicit ConstantTokenNone(LLVMContext &Context)
795      : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
796
797  void destroyConstantImpl();
798
799public:
800  ConstantTokenNone(const ConstantTokenNone &) = delete;
801
802  /// Return the ConstantTokenNone.
803  static ConstantTokenNone *get(LLVMContext &Context);
804
805  /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
806  static bool classof(const Value *V) {
807    return V->getValueID() == ConstantTokenNoneVal;
808  }
809};
810
811/// The address of a basic block.
812///
813class BlockAddress final : public Constant {
814  friend class Constant;
815
816  BlockAddress(Function *F, BasicBlock *BB);
817
818  void *operator new(size_t s) { return User::operator new(s, 2); }
819
820  void destroyConstantImpl();
821  Value *handleOperandChangeImpl(Value *From, Value *To);
822
823public:
824  /// Return a BlockAddress for the specified function and basic block.
825  static BlockAddress *get(Function *F, BasicBlock *BB);
826
827  /// Return a BlockAddress for the specified basic block.  The basic
828  /// block must be embedded into a function.
829  static BlockAddress *get(BasicBlock *BB);
830
831  /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
832  ///
833  /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
834  static BlockAddress *lookup(const BasicBlock *BB);
835
836  /// Transparently provide more efficient getOperand methods.
837  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
838
839  Function *getFunction() const { return (Function*)Op<0>().get(); }
840  BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
841
842  /// Methods for support type inquiry through isa, cast, and dyn_cast:
843  static bool classof(const Value *V) {
844    return V->getValueID() == BlockAddressVal;
845  }
846};
847
848template <>
849struct OperandTraits<BlockAddress> :
850  public FixedNumOperandTraits<BlockAddress, 2> {
851};
852
853DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
854
855//===----------------------------------------------------------------------===//
856/// A constant value that is initialized with an expression using
857/// other constant values.
858///
859/// This class uses the standard Instruction opcodes to define the various
860/// constant expressions.  The Opcode field for the ConstantExpr class is
861/// maintained in the Value::SubclassData field.
862class ConstantExpr : public Constant {
863  friend struct ConstantExprKeyType;
864  friend class Constant;
865
866  void destroyConstantImpl();
867  Value *handleOperandChangeImpl(Value *From, Value *To);
868
869protected:
870  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
871      : Constant(ty, ConstantExprVal, Ops, NumOps) {
872    // Operation type (an Instruction opcode) is stored as the SubclassData.
873    setValueSubclassData(Opcode);
874  }
875
876public:
877  // Static methods to construct a ConstantExpr of different kinds.  Note that
878  // these methods may return a object that is not an instance of the
879  // ConstantExpr class, because they will attempt to fold the constant
880  // expression into something simpler if possible.
881
882  /// getAlignOf constant expr - computes the alignment of a type in a target
883  /// independent way (Note: the return type is an i64).
884  static Constant *getAlignOf(Type *Ty);
885
886  /// getSizeOf constant expr - computes the (alloc) size of a type (in
887  /// address-units, not bits) in a target independent way (Note: the return
888  /// type is an i64).
889  ///
890  static Constant *getSizeOf(Type *Ty);
891
892  /// getOffsetOf constant expr - computes the offset of a struct field in a
893  /// target independent way (Note: the return type is an i64).
894  ///
895  static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
896
897  /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
898  /// which supports any aggregate type, and any Constant index.
899  ///
900  static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
901
902  static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
903  static Constant *getFNeg(Constant *C);
904  static Constant *getNot(Constant *C);
905  static Constant *getAdd(Constant *C1, Constant *C2,
906                          bool HasNUW = false, bool HasNSW = false);
907  static Constant *getFAdd(Constant *C1, Constant *C2);
908  static Constant *getSub(Constant *C1, Constant *C2,
909                          bool HasNUW = false, bool HasNSW = false);
910  static Constant *getFSub(Constant *C1, Constant *C2);
911  static Constant *getMul(Constant *C1, Constant *C2,
912                          bool HasNUW = false, bool HasNSW = false);
913  static Constant *getFMul(Constant *C1, Constant *C2);
914  static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
915  static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
916  static Constant *getFDiv(Constant *C1, Constant *C2);
917  static Constant *getURem(Constant *C1, Constant *C2);
918  static Constant *getSRem(Constant *C1, Constant *C2);
919  static Constant *getFRem(Constant *C1, Constant *C2);
920  static Constant *getAnd(Constant *C1, Constant *C2);
921  static Constant *getOr(Constant *C1, Constant *C2);
922  static Constant *getXor(Constant *C1, Constant *C2);
923  static Constant *getShl(Constant *C1, Constant *C2,
924                          bool HasNUW = false, bool HasNSW = false);
925  static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
926  static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
927  static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
928  static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
929  static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
930  static Constant *getFPTrunc(Constant *C, Type *Ty,
931                              bool OnlyIfReduced = false);
932  static Constant *getFPExtend(Constant *C, Type *Ty,
933                               bool OnlyIfReduced = false);
934  static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
935  static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
936  static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
937  static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
938  static Constant *getPtrToInt(Constant *C, Type *Ty,
939                               bool OnlyIfReduced = false);
940  static Constant *getIntToPtr(Constant *C, Type *Ty,
941                               bool OnlyIfReduced = false);
942  static Constant *getBitCast(Constant *C, Type *Ty,
943                              bool OnlyIfReduced = false);
944  static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
945                                    bool OnlyIfReduced = false);
946
947  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
948  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
949
950  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
951    return getAdd(C1, C2, false, true);
952  }
953
954  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
955    return getAdd(C1, C2, true, false);
956  }
957
958  static Constant *getNSWSub(Constant *C1, Constant *C2) {
959    return getSub(C1, C2, false, true);
960  }
961
962  static Constant *getNUWSub(Constant *C1, Constant *C2) {
963    return getSub(C1, C2, true, false);
964  }
965
966  static Constant *getNSWMul(Constant *C1, Constant *C2) {
967    return getMul(C1, C2, false, true);
968  }
969
970  static Constant *getNUWMul(Constant *C1, Constant *C2) {
971    return getMul(C1, C2, true, false);
972  }
973
974  static Constant *getNSWShl(Constant *C1, Constant *C2) {
975    return getShl(C1, C2, false, true);
976  }
977
978  static Constant *getNUWShl(Constant *C1, Constant *C2) {
979    return getShl(C1, C2, true, false);
980  }
981
982  static Constant *getExactSDiv(Constant *C1, Constant *C2) {
983    return getSDiv(C1, C2, true);
984  }
985
986  static Constant *getExactUDiv(Constant *C1, Constant *C2) {
987    return getUDiv(C1, C2, true);
988  }
989
990  static Constant *getExactAShr(Constant *C1, Constant *C2) {
991    return getAShr(C1, C2, true);
992  }
993
994  static Constant *getExactLShr(Constant *C1, Constant *C2) {
995    return getLShr(C1, C2, true);
996  }
997
998  /// Return the identity for the given binary operation,
999  /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
1000  /// returns null if the operator doesn't have an identity.
1001  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
1002
1003  /// Return the absorbing element for the given binary
1004  /// operation, i.e. a constant C such that X op C = C and C op X = C for
1005  /// every X.  For example, this returns zero for integer multiplication.
1006  /// It returns null if the operator doesn't have an absorbing element.
1007  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1008
1009  /// Transparently provide more efficient getOperand methods.
1010  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1011
1012  /// \brief Convenience function for getting a Cast operation.
1013  ///
1014  /// \param ops The opcode for the conversion
1015  /// \param C  The constant to be converted
1016  /// \param Ty The type to which the constant is converted
1017  /// \param OnlyIfReduced see \a getWithOperands() docs.
1018  static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1019                           bool OnlyIfReduced = false);
1020
1021  // @brief Create a ZExt or BitCast cast constant expression
1022  static Constant *getZExtOrBitCast(
1023    Constant *C,   ///< The constant to zext or bitcast
1024    Type *Ty ///< The type to zext or bitcast C to
1025  );
1026
1027  // @brief Create a SExt or BitCast cast constant expression
1028  static Constant *getSExtOrBitCast(
1029    Constant *C,   ///< The constant to sext or bitcast
1030    Type *Ty ///< The type to sext or bitcast C to
1031  );
1032
1033  // @brief Create a Trunc or BitCast cast constant expression
1034  static Constant *getTruncOrBitCast(
1035    Constant *C,   ///< The constant to trunc or bitcast
1036    Type *Ty ///< The type to trunc or bitcast C to
1037  );
1038
1039  /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1040  /// expression.
1041  static Constant *getPointerCast(
1042    Constant *C,   ///< The pointer value to be casted (operand 0)
1043    Type *Ty ///< The type to which cast should be made
1044  );
1045
1046  /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
1047  /// the address space.
1048  static Constant *getPointerBitCastOrAddrSpaceCast(
1049    Constant *C,   ///< The constant to addrspacecast or bitcast
1050    Type *Ty ///< The type to bitcast or addrspacecast C to
1051  );
1052
1053  /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
1054  static Constant *getIntegerCast(
1055    Constant *C,    ///< The integer constant to be casted
1056    Type *Ty, ///< The integer type to cast to
1057    bool isSigned   ///< Whether C should be treated as signed or not
1058  );
1059
1060  /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1061  static Constant *getFPCast(
1062    Constant *C,    ///< The integer constant to be casted
1063    Type *Ty ///< The integer type to cast to
1064  );
1065
1066  /// @brief Return true if this is a convert constant expression
1067  bool isCast() const;
1068
1069  /// @brief Return true if this is a compare constant expression
1070  bool isCompare() const;
1071
1072  /// @brief Return true if this is an insertvalue or extractvalue expression,
1073  /// and the getIndices() method may be used.
1074  bool hasIndices() const;
1075
1076  /// @brief Return true if this is a getelementptr expression and all
1077  /// the index operands are compile-time known integers within the
1078  /// corresponding notional static array extents. Note that this is
1079  /// not equivalant to, a subset of, or a superset of the "inbounds"
1080  /// property.
1081  bool isGEPWithNoNotionalOverIndexing() const;
1082
1083  /// Select constant expr
1084  ///
1085  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1086  static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1087                             Type *OnlyIfReducedTy = nullptr);
1088
1089  /// get - Return a binary or shift operator constant expression,
1090  /// folding if possible.
1091  ///
1092  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1093  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1094                       unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1095
1096  /// \brief Return an ICmp or FCmp comparison operator constant expression.
1097  ///
1098  /// \param OnlyIfReduced see \a getWithOperands() docs.
1099  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1100                              bool OnlyIfReduced = false);
1101
1102  /// get* - Return some common constants without having to
1103  /// specify the full Instruction::OPCODE identifier.
1104  ///
1105  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1106                           bool OnlyIfReduced = false);
1107  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1108                           bool OnlyIfReduced = false);
1109
1110  /// Getelementptr form.  Value* is only accepted for convenience;
1111  /// all elements must be Constants.
1112  ///
1113  /// \param InRangeIndex the inrange index if present or None.
1114  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1115  static Constant *getGetElementPtr(Type *Ty, Constant *C,
1116                                    ArrayRef<Constant *> IdxList,
1117                                    bool InBounds = false,
1118                                    Optional<unsigned> InRangeIndex = None,
1119                                    Type *OnlyIfReducedTy = nullptr) {
1120    return getGetElementPtr(
1121        Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
1122        InBounds, InRangeIndex, OnlyIfReducedTy);
1123  }
1124  static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1125                                    bool InBounds = false,
1126                                    Optional<unsigned> InRangeIndex = None,
1127                                    Type *OnlyIfReducedTy = nullptr) {
1128    // This form of the function only exists to avoid ambiguous overload
1129    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1130    // ArrayRef<Value *>.
1131    return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1132                            OnlyIfReducedTy);
1133  }
1134  static Constant *getGetElementPtr(Type *Ty, Constant *C,
1135                                    ArrayRef<Value *> IdxList,
1136                                    bool InBounds = false,
1137                                    Optional<unsigned> InRangeIndex = None,
1138                                    Type *OnlyIfReducedTy = nullptr);
1139
1140  /// Create an "inbounds" getelementptr. See the documentation for the
1141  /// "inbounds" flag in LangRef.html for details.
1142  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1143                                            ArrayRef<Constant *> IdxList) {
1144    return getGetElementPtr(Ty, C, IdxList, true);
1145  }
1146  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1147                                            Constant *Idx) {
1148    // This form of the function only exists to avoid ambiguous overload
1149    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1150    // ArrayRef<Value *>.
1151    return getGetElementPtr(Ty, C, Idx, true);
1152  }
1153  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1154                                            ArrayRef<Value *> IdxList) {
1155    return getGetElementPtr(Ty, C, IdxList, true);
1156  }
1157
1158  static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1159                                     Type *OnlyIfReducedTy = nullptr);
1160  static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1161                                    Type *OnlyIfReducedTy = nullptr);
1162  static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
1163                                    Type *OnlyIfReducedTy = nullptr);
1164  static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
1165                                   Type *OnlyIfReducedTy = nullptr);
1166  static Constant *getInsertValue(Constant *Agg, Constant *Val,
1167                                  ArrayRef<unsigned> Idxs,
1168                                  Type *OnlyIfReducedTy = nullptr);
1169
1170  /// Return the opcode at the root of this constant expression
1171  unsigned getOpcode() const { return getSubclassDataFromValue(); }
1172
1173  /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1174  /// FCMP constant expression.
1175  unsigned getPredicate() const;
1176
1177  /// Assert that this is an insertvalue or exactvalue
1178  /// expression and return the list of indices.
1179  ArrayRef<unsigned> getIndices() const;
1180
1181  /// Return a string representation for an opcode.
1182  const char *getOpcodeName() const;
1183
1184  /// Return a constant expression identical to this one, but with the specified
1185  /// operand set to the specified value.
1186  Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1187
1188  /// This returns the current constant expression with the operands replaced
1189  /// with the specified values. The specified array must have the same number
1190  /// of operands as our current one.
1191  Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
1192    return getWithOperands(Ops, getType());
1193  }
1194
1195  /// Get the current expression with the operands replaced.
1196  ///
1197  /// Return the current constant expression with the operands replaced with \c
1198  /// Ops and the type with \c Ty.  The new operands must have the same number
1199  /// as the current ones.
1200  ///
1201  /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1202  /// gets constant-folded, the type changes, or the expression is otherwise
1203  /// canonicalized.  This parameter should almost always be \c false.
1204  Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1205                            bool OnlyIfReduced = false,
1206                            Type *SrcTy = nullptr) const;
1207
1208  /// Returns an Instruction which implements the same operation as this
1209  /// ConstantExpr. The instruction is not linked to any basic block.
1210  ///
1211  /// A better approach to this could be to have a constructor for Instruction
1212  /// which would take a ConstantExpr parameter, but that would have spread
1213  /// implementation details of ConstantExpr outside of Constants.cpp, which
1214  /// would make it harder to remove ConstantExprs altogether.
1215  Instruction *getAsInstruction();
1216
1217  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1218  static bool classof(const Value *V) {
1219    return V->getValueID() == ConstantExprVal;
1220  }
1221
1222private:
1223  // Shadow Value::setValueSubclassData with a private forwarding method so that
1224  // subclasses cannot accidentally use it.
1225  void setValueSubclassData(unsigned short D) {
1226    Value::setValueSubclassData(D);
1227  }
1228};
1229
1230template <>
1231struct OperandTraits<ConstantExpr> :
1232  public VariadicOperandTraits<ConstantExpr, 1> {
1233};
1234
1235DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1236
1237//===----------------------------------------------------------------------===//
1238/// 'undef' values are things that do not have specified contents.
1239/// These are used for a variety of purposes, including global variable
1240/// initializers and operands to instructions.  'undef' values can occur with
1241/// any first-class type.
1242///
1243/// Undef values aren't exactly constants; if they have multiple uses, they
1244/// can appear to have different bit patterns at each use. See
1245/// LangRef.html#undefvalues for details.
1246///
1247class UndefValue final : public ConstantData {
1248  friend class Constant;
1249
1250  explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1251
1252  void destroyConstantImpl();
1253
1254public:
1255  UndefValue(const UndefValue &) = delete;
1256
1257  /// Static factory methods - Return an 'undef' object of the specified type.
1258  static UndefValue *get(Type *T);
1259
1260  /// If this Undef has array or vector type, return a undef with the right
1261  /// element type.
1262  UndefValue *getSequentialElement() const;
1263
1264  /// If this undef has struct type, return a undef with the right element type
1265  /// for the specified element.
1266  UndefValue *getStructElement(unsigned Elt) const;
1267
1268  /// Return an undef of the right value for the specified GEP index if we can,
1269  /// otherwise return null (e.g. if C is a ConstantExpr).
1270  UndefValue *getElementValue(Constant *C) const;
1271
1272  /// Return an undef of the right value for the specified GEP index.
1273  UndefValue *getElementValue(unsigned Idx) const;
1274
1275  /// Return the number of elements in the array, vector, or struct.
1276  unsigned getNumElements() const;
1277
1278  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1279  static bool classof(const Value *V) {
1280    return V->getValueID() == UndefValueVal;
1281  }
1282};
1283
1284} // end namespace llvm
1285
1286#endif // LLVM_IR_CONSTANTS_H
1287