1//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10/// @file 11/// This file contains the declarations for the subclasses of Constant, 12/// which represent the different flavors of constant values that live in LLVM. 13/// Note that Constants are immutable (once created they never change) and are 14/// fully shared by structural equivalence. This means that two structurally 15/// equivalent constants will always have the same address. Constants are 16/// created on demand as needed and never deleted: thus clients don't have to 17/// worry about the lifetime of the objects. 18// 19//===----------------------------------------------------------------------===// 20 21#ifndef LLVM_IR_CONSTANTS_H 22#define LLVM_IR_CONSTANTS_H 23 24#include "llvm/ADT/APFloat.h" 25#include "llvm/ADT/APInt.h" 26#include "llvm/ADT/ArrayRef.h" 27#include "llvm/ADT/None.h" 28#include "llvm/ADT/Optional.h" 29#include "llvm/ADT/STLExtras.h" 30#include "llvm/ADT/StringRef.h" 31#include "llvm/IR/Constant.h" 32#include "llvm/IR/DerivedTypes.h" 33#include "llvm/IR/OperandTraits.h" 34#include "llvm/IR/User.h" 35#include "llvm/IR/Value.h" 36#include "llvm/Support/Casting.h" 37#include "llvm/Support/Compiler.h" 38#include "llvm/Support/ErrorHandling.h" 39#include <cassert> 40#include <cstddef> 41#include <cstdint> 42 43namespace llvm { 44 45class ArrayType; 46class IntegerType; 47class PointerType; 48class SequentialType; 49class StructType; 50class VectorType; 51template <class ConstantClass> struct ConstantAggrKeyType; 52 53/// Base class for constants with no operands. 54/// 55/// These constants have no operands; they represent their data directly. 56/// Since they can be in use by unrelated modules (and are never based on 57/// GlobalValues), it never makes sense to RAUW them. 58class ConstantData : public Constant { 59 friend class Constant; 60 61 Value *handleOperandChangeImpl(Value *From, Value *To) { 62 llvm_unreachable("Constant data does not have operands!"); 63 } 64 65protected: 66 explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} 67 68 void *operator new(size_t s) { return User::operator new(s, 0); } 69 70public: 71 ConstantData(const ConstantData &) = delete; 72 73 /// Methods to support type inquiry through isa, cast, and dyn_cast. 74 static bool classof(const Value *V) { 75 return V->getValueID() >= ConstantDataFirstVal && 76 V->getValueID() <= ConstantDataLastVal; 77 } 78}; 79 80//===----------------------------------------------------------------------===// 81/// This is the shared class of boolean and integer constants. This class 82/// represents both boolean and integral constants. 83/// @brief Class for constant integers. 84class ConstantInt final : public ConstantData { 85 friend class Constant; 86 87 APInt Val; 88 89 ConstantInt(IntegerType *Ty, const APInt& V); 90 91 void destroyConstantImpl(); 92 93public: 94 ConstantInt(const ConstantInt &) = delete; 95 96 static ConstantInt *getTrue(LLVMContext &Context); 97 static ConstantInt *getFalse(LLVMContext &Context); 98 static Constant *getTrue(Type *Ty); 99 static Constant *getFalse(Type *Ty); 100 101 /// If Ty is a vector type, return a Constant with a splat of the given 102 /// value. Otherwise return a ConstantInt for the given value. 103 static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); 104 105 /// Return a ConstantInt with the specified integer value for the specified 106 /// type. If the type is wider than 64 bits, the value will be zero-extended 107 /// to fit the type, unless isSigned is true, in which case the value will 108 /// be interpreted as a 64-bit signed integer and sign-extended to fit 109 /// the type. 110 /// @brief Get a ConstantInt for a specific value. 111 static ConstantInt *get(IntegerType *Ty, uint64_t V, 112 bool isSigned = false); 113 114 /// Return a ConstantInt with the specified value for the specified type. The 115 /// value V will be canonicalized to a an unsigned APInt. Accessing it with 116 /// either getSExtValue() or getZExtValue() will yield a correctly sized and 117 /// signed value for the type Ty. 118 /// @brief Get a ConstantInt for a specific signed value. 119 static ConstantInt *getSigned(IntegerType *Ty, int64_t V); 120 static Constant *getSigned(Type *Ty, int64_t V); 121 122 /// Return a ConstantInt with the specified value and an implied Type. The 123 /// type is the integer type that corresponds to the bit width of the value. 124 static ConstantInt *get(LLVMContext &Context, const APInt &V); 125 126 /// Return a ConstantInt constructed from the string strStart with the given 127 /// radix. 128 static ConstantInt *get(IntegerType *Ty, StringRef Str, 129 uint8_t radix); 130 131 /// If Ty is a vector type, return a Constant with a splat of the given 132 /// value. Otherwise return a ConstantInt for the given value. 133 static Constant *get(Type* Ty, const APInt& V); 134 135 /// Return the constant as an APInt value reference. This allows clients to 136 /// obtain a full-precision copy of the value. 137 /// @brief Return the constant's value. 138 inline const APInt &getValue() const { 139 return Val; 140 } 141 142 /// getBitWidth - Return the bitwidth of this constant. 143 unsigned getBitWidth() const { return Val.getBitWidth(); } 144 145 /// Return the constant as a 64-bit unsigned integer value after it 146 /// has been zero extended as appropriate for the type of this constant. Note 147 /// that this method can assert if the value does not fit in 64 bits. 148 /// @brief Return the zero extended value. 149 inline uint64_t getZExtValue() const { 150 return Val.getZExtValue(); 151 } 152 153 /// Return the constant as a 64-bit integer value after it has been sign 154 /// extended as appropriate for the type of this constant. Note that 155 /// this method can assert if the value does not fit in 64 bits. 156 /// @brief Return the sign extended value. 157 inline int64_t getSExtValue() const { 158 return Val.getSExtValue(); 159 } 160 161 /// A helper method that can be used to determine if the constant contained 162 /// within is equal to a constant. This only works for very small values, 163 /// because this is all that can be represented with all types. 164 /// @brief Determine if this constant's value is same as an unsigned char. 165 bool equalsInt(uint64_t V) const { 166 return Val == V; 167 } 168 169 /// getType - Specialize the getType() method to always return an IntegerType, 170 /// which reduces the amount of casting needed in parts of the compiler. 171 /// 172 inline IntegerType *getType() const { 173 return cast<IntegerType>(Value::getType()); 174 } 175 176 /// This static method returns true if the type Ty is big enough to 177 /// represent the value V. This can be used to avoid having the get method 178 /// assert when V is larger than Ty can represent. Note that there are two 179 /// versions of this method, one for unsigned and one for signed integers. 180 /// Although ConstantInt canonicalizes everything to an unsigned integer, 181 /// the signed version avoids callers having to convert a signed quantity 182 /// to the appropriate unsigned type before calling the method. 183 /// @returns true if V is a valid value for type Ty 184 /// @brief Determine if the value is in range for the given type. 185 static bool isValueValidForType(Type *Ty, uint64_t V); 186 static bool isValueValidForType(Type *Ty, int64_t V); 187 188 bool isNegative() const { return Val.isNegative(); } 189 190 /// This is just a convenience method to make client code smaller for a 191 /// common code. It also correctly performs the comparison without the 192 /// potential for an assertion from getZExtValue(). 193 bool isZero() const { 194 return Val.isNullValue(); 195 } 196 197 /// This is just a convenience method to make client code smaller for a 198 /// common case. It also correctly performs the comparison without the 199 /// potential for an assertion from getZExtValue(). 200 /// @brief Determine if the value is one. 201 bool isOne() const { 202 return Val.isOneValue(); 203 } 204 205 /// This function will return true iff every bit in this constant is set 206 /// to true. 207 /// @returns true iff this constant's bits are all set to true. 208 /// @brief Determine if the value is all ones. 209 bool isMinusOne() const { 210 return Val.isAllOnesValue(); 211 } 212 213 /// This function will return true iff this constant represents the largest 214 /// value that may be represented by the constant's type. 215 /// @returns true iff this is the largest value that may be represented 216 /// by this type. 217 /// @brief Determine if the value is maximal. 218 bool isMaxValue(bool isSigned) const { 219 if (isSigned) 220 return Val.isMaxSignedValue(); 221 else 222 return Val.isMaxValue(); 223 } 224 225 /// This function will return true iff this constant represents the smallest 226 /// value that may be represented by this constant's type. 227 /// @returns true if this is the smallest value that may be represented by 228 /// this type. 229 /// @brief Determine if the value is minimal. 230 bool isMinValue(bool isSigned) const { 231 if (isSigned) 232 return Val.isMinSignedValue(); 233 else 234 return Val.isMinValue(); 235 } 236 237 /// This function will return true iff this constant represents a value with 238 /// active bits bigger than 64 bits or a value greater than the given uint64_t 239 /// value. 240 /// @returns true iff this constant is greater or equal to the given number. 241 /// @brief Determine if the value is greater or equal to the given number. 242 bool uge(uint64_t Num) const { 243 return Val.uge(Num); 244 } 245 246 /// getLimitedValue - If the value is smaller than the specified limit, 247 /// return it, otherwise return the limit value. This causes the value 248 /// to saturate to the limit. 249 /// @returns the min of the value of the constant and the specified value 250 /// @brief Get the constant's value with a saturation limit 251 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { 252 return Val.getLimitedValue(Limit); 253 } 254 255 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 256 static bool classof(const Value *V) { 257 return V->getValueID() == ConstantIntVal; 258 } 259}; 260 261//===----------------------------------------------------------------------===// 262/// ConstantFP - Floating Point Values [float, double] 263/// 264class ConstantFP final : public ConstantData { 265 friend class Constant; 266 267 APFloat Val; 268 269 ConstantFP(Type *Ty, const APFloat& V); 270 271 void destroyConstantImpl(); 272 273public: 274 ConstantFP(const ConstantFP &) = delete; 275 276 /// Floating point negation must be implemented with f(x) = -0.0 - x. This 277 /// method returns the negative zero constant for floating point or vector 278 /// floating point types; for all other types, it returns the null value. 279 static Constant *getZeroValueForNegation(Type *Ty); 280 281 /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, 282 /// for the specified value in the specified type. This should only be used 283 /// for simple constant values like 2.0/1.0 etc, that are known-valid both as 284 /// host double and as the target format. 285 static Constant *get(Type* Ty, double V); 286 static Constant *get(Type* Ty, StringRef Str); 287 static ConstantFP *get(LLVMContext &Context, const APFloat &V); 288 static Constant *getNaN(Type *Ty, bool Negative = false, unsigned type = 0); 289 static Constant *getNegativeZero(Type *Ty); 290 static Constant *getInfinity(Type *Ty, bool Negative = false); 291 292 /// Return true if Ty is big enough to represent V. 293 static bool isValueValidForType(Type *Ty, const APFloat &V); 294 inline const APFloat &getValueAPF() const { return Val; } 295 296 /// Return true if the value is positive or negative zero. 297 bool isZero() const { return Val.isZero(); } 298 299 /// Return true if the sign bit is set. 300 bool isNegative() const { return Val.isNegative(); } 301 302 /// Return true if the value is infinity 303 bool isInfinity() const { return Val.isInfinity(); } 304 305 /// Return true if the value is a NaN. 306 bool isNaN() const { return Val.isNaN(); } 307 308 /// We don't rely on operator== working on double values, as it returns true 309 /// for things that are clearly not equal, like -0.0 and 0.0. 310 /// As such, this method can be used to do an exact bit-for-bit comparison of 311 /// two floating point values. The version with a double operand is retained 312 /// because it's so convenient to write isExactlyValue(2.0), but please use 313 /// it only for simple constants. 314 bool isExactlyValue(const APFloat &V) const; 315 316 bool isExactlyValue(double V) const { 317 bool ignored; 318 APFloat FV(V); 319 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); 320 return isExactlyValue(FV); 321 } 322 323 /// Methods for support type inquiry through isa, cast, and dyn_cast: 324 static bool classof(const Value *V) { 325 return V->getValueID() == ConstantFPVal; 326 } 327}; 328 329//===----------------------------------------------------------------------===// 330/// All zero aggregate value 331/// 332class ConstantAggregateZero final : public ConstantData { 333 friend class Constant; 334 335 explicit ConstantAggregateZero(Type *Ty) 336 : ConstantData(Ty, ConstantAggregateZeroVal) {} 337 338 void destroyConstantImpl(); 339 340public: 341 ConstantAggregateZero(const ConstantAggregateZero &) = delete; 342 343 static ConstantAggregateZero *get(Type *Ty); 344 345 /// If this CAZ has array or vector type, return a zero with the right element 346 /// type. 347 Constant *getSequentialElement() const; 348 349 /// If this CAZ has struct type, return a zero with the right element type for 350 /// the specified element. 351 Constant *getStructElement(unsigned Elt) const; 352 353 /// Return a zero of the right value for the specified GEP index if we can, 354 /// otherwise return null (e.g. if C is a ConstantExpr). 355 Constant *getElementValue(Constant *C) const; 356 357 /// Return a zero of the right value for the specified GEP index. 358 Constant *getElementValue(unsigned Idx) const; 359 360 /// Return the number of elements in the array, vector, or struct. 361 unsigned getNumElements() const; 362 363 /// Methods for support type inquiry through isa, cast, and dyn_cast: 364 /// 365 static bool classof(const Value *V) { 366 return V->getValueID() == ConstantAggregateZeroVal; 367 } 368}; 369 370/// Base class for aggregate constants (with operands). 371/// 372/// These constants are aggregates of other constants, which are stored as 373/// operands. 374/// 375/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a 376/// ConstantVector. 377/// 378/// \note Some subclasses of \a ConstantData are semantically aggregates -- 379/// such as \a ConstantDataArray -- but are not subclasses of this because they 380/// use operands. 381class ConstantAggregate : public Constant { 382protected: 383 ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V); 384 385public: 386 /// Transparently provide more efficient getOperand methods. 387 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 388 389 /// Methods for support type inquiry through isa, cast, and dyn_cast: 390 static bool classof(const Value *V) { 391 return V->getValueID() >= ConstantAggregateFirstVal && 392 V->getValueID() <= ConstantAggregateLastVal; 393 } 394}; 395 396template <> 397struct OperandTraits<ConstantAggregate> 398 : public VariadicOperandTraits<ConstantAggregate> {}; 399 400DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) 401 402//===----------------------------------------------------------------------===// 403/// ConstantArray - Constant Array Declarations 404/// 405class ConstantArray final : public ConstantAggregate { 406 friend struct ConstantAggrKeyType<ConstantArray>; 407 friend class Constant; 408 409 ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); 410 411 void destroyConstantImpl(); 412 Value *handleOperandChangeImpl(Value *From, Value *To); 413 414public: 415 // ConstantArray accessors 416 static Constant *get(ArrayType *T, ArrayRef<Constant*> V); 417 418private: 419 static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); 420 421public: 422 /// Specialize the getType() method to always return an ArrayType, 423 /// which reduces the amount of casting needed in parts of the compiler. 424 inline ArrayType *getType() const { 425 return cast<ArrayType>(Value::getType()); 426 } 427 428 /// Methods for support type inquiry through isa, cast, and dyn_cast: 429 static bool classof(const Value *V) { 430 return V->getValueID() == ConstantArrayVal; 431 } 432}; 433 434//===----------------------------------------------------------------------===// 435// Constant Struct Declarations 436// 437class ConstantStruct final : public ConstantAggregate { 438 friend struct ConstantAggrKeyType<ConstantStruct>; 439 friend class Constant; 440 441 ConstantStruct(StructType *T, ArrayRef<Constant *> Val); 442 443 void destroyConstantImpl(); 444 Value *handleOperandChangeImpl(Value *From, Value *To); 445 446public: 447 // ConstantStruct accessors 448 static Constant *get(StructType *T, ArrayRef<Constant*> V); 449 450 template <typename... Csts> 451 static typename std::enable_if<are_base_of<Constant, Csts...>::value, 452 Constant *>::type 453 get(StructType *T, Csts *... Vs) { 454 SmallVector<Constant *, 8> Values({Vs...}); 455 return get(T, Values); 456 } 457 458 /// Return an anonymous struct that has the specified elements. 459 /// If the struct is possibly empty, then you must specify a context. 460 static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { 461 return get(getTypeForElements(V, Packed), V); 462 } 463 static Constant *getAnon(LLVMContext &Ctx, 464 ArrayRef<Constant*> V, bool Packed = false) { 465 return get(getTypeForElements(Ctx, V, Packed), V); 466 } 467 468 /// Return an anonymous struct type to use for a constant with the specified 469 /// set of elements. The list must not be empty. 470 static StructType *getTypeForElements(ArrayRef<Constant*> V, 471 bool Packed = false); 472 /// This version of the method allows an empty list. 473 static StructType *getTypeForElements(LLVMContext &Ctx, 474 ArrayRef<Constant*> V, 475 bool Packed = false); 476 477 /// Specialization - reduce amount of casting. 478 inline StructType *getType() const { 479 return cast<StructType>(Value::getType()); 480 } 481 482 /// Methods for support type inquiry through isa, cast, and dyn_cast: 483 static bool classof(const Value *V) { 484 return V->getValueID() == ConstantStructVal; 485 } 486}; 487 488//===----------------------------------------------------------------------===// 489/// Constant Vector Declarations 490/// 491class ConstantVector final : public ConstantAggregate { 492 friend struct ConstantAggrKeyType<ConstantVector>; 493 friend class Constant; 494 495 ConstantVector(VectorType *T, ArrayRef<Constant *> Val); 496 497 void destroyConstantImpl(); 498 Value *handleOperandChangeImpl(Value *From, Value *To); 499 500public: 501 // ConstantVector accessors 502 static Constant *get(ArrayRef<Constant*> V); 503 504private: 505 static Constant *getImpl(ArrayRef<Constant *> V); 506 507public: 508 /// Return a ConstantVector with the specified constant in each element. 509 static Constant *getSplat(unsigned NumElts, Constant *Elt); 510 511 /// Specialize the getType() method to always return a VectorType, 512 /// which reduces the amount of casting needed in parts of the compiler. 513 inline VectorType *getType() const { 514 return cast<VectorType>(Value::getType()); 515 } 516 517 /// If this is a splat constant, meaning that all of the elements have the 518 /// same value, return that value. Otherwise return NULL. 519 Constant *getSplatValue() const; 520 521 /// Methods for support type inquiry through isa, cast, and dyn_cast: 522 static bool classof(const Value *V) { 523 return V->getValueID() == ConstantVectorVal; 524 } 525}; 526 527//===----------------------------------------------------------------------===// 528/// A constant pointer value that points to null 529/// 530class ConstantPointerNull final : public ConstantData { 531 friend class Constant; 532 533 explicit ConstantPointerNull(PointerType *T) 534 : ConstantData(T, Value::ConstantPointerNullVal) {} 535 536 void destroyConstantImpl(); 537 538public: 539 ConstantPointerNull(const ConstantPointerNull &) = delete; 540 541 /// Static factory methods - Return objects of the specified value 542 static ConstantPointerNull *get(PointerType *T); 543 544 /// Specialize the getType() method to always return an PointerType, 545 /// which reduces the amount of casting needed in parts of the compiler. 546 inline PointerType *getType() const { 547 return cast<PointerType>(Value::getType()); 548 } 549 550 /// Methods for support type inquiry through isa, cast, and dyn_cast: 551 static bool classof(const Value *V) { 552 return V->getValueID() == ConstantPointerNullVal; 553 } 554}; 555 556//===----------------------------------------------------------------------===// 557/// ConstantDataSequential - A vector or array constant whose element type is a 558/// simple 1/2/4/8-byte integer or float/double, and whose elements are just 559/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no 560/// operands because it stores all of the elements of the constant as densely 561/// packed data, instead of as Value*'s. 562/// 563/// This is the common base class of ConstantDataArray and ConstantDataVector. 564/// 565class ConstantDataSequential : public ConstantData { 566 friend class LLVMContextImpl; 567 friend class Constant; 568 569 /// A pointer to the bytes underlying this constant (which is owned by the 570 /// uniquing StringMap). 571 const char *DataElements; 572 573 /// This forms a link list of ConstantDataSequential nodes that have 574 /// the same value but different type. For example, 0,0,0,1 could be a 4 575 /// element array of i8, or a 1-element array of i32. They'll both end up in 576 /// the same StringMap bucket, linked up. 577 ConstantDataSequential *Next; 578 579 void destroyConstantImpl(); 580 581protected: 582 explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) 583 : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {} 584 ~ConstantDataSequential() { delete Next; } 585 586 static Constant *getImpl(StringRef Bytes, Type *Ty); 587 588public: 589 ConstantDataSequential(const ConstantDataSequential &) = delete; 590 591 /// Return true if a ConstantDataSequential can be formed with a vector or 592 /// array of the specified element type. 593 /// ConstantDataArray only works with normal float and int types that are 594 /// stored densely in memory, not with things like i42 or x86_f80. 595 static bool isElementTypeCompatible(Type *Ty); 596 597 /// If this is a sequential container of integers (of any size), return the 598 /// specified element in the low bits of a uint64_t. 599 uint64_t getElementAsInteger(unsigned i) const; 600 601 /// If this is a sequential container of integers (of any size), return the 602 /// specified element as an APInt. 603 APInt getElementAsAPInt(unsigned i) const; 604 605 /// If this is a sequential container of floating point type, return the 606 /// specified element as an APFloat. 607 APFloat getElementAsAPFloat(unsigned i) const; 608 609 /// If this is an sequential container of floats, return the specified element 610 /// as a float. 611 float getElementAsFloat(unsigned i) const; 612 613 /// If this is an sequential container of doubles, return the specified 614 /// element as a double. 615 double getElementAsDouble(unsigned i) const; 616 617 /// Return a Constant for a specified index's element. 618 /// Note that this has to compute a new constant to return, so it isn't as 619 /// efficient as getElementAsInteger/Float/Double. 620 Constant *getElementAsConstant(unsigned i) const; 621 622 /// Specialize the getType() method to always return a SequentialType, which 623 /// reduces the amount of casting needed in parts of the compiler. 624 inline SequentialType *getType() const { 625 return cast<SequentialType>(Value::getType()); 626 } 627 628 /// Return the element type of the array/vector. 629 Type *getElementType() const; 630 631 /// Return the number of elements in the array or vector. 632 unsigned getNumElements() const; 633 634 /// Return the size (in bytes) of each element in the array/vector. 635 /// The size of the elements is known to be a multiple of one byte. 636 uint64_t getElementByteSize() const; 637 638 /// This method returns true if this is an array of \p CharSize integers. 639 bool isString(unsigned CharSize = 8) const; 640 641 /// This method returns true if the array "isString", ends with a null byte, 642 /// and does not contains any other null bytes. 643 bool isCString() const; 644 645 /// If this array is isString(), then this method returns the array as a 646 /// StringRef. Otherwise, it asserts out. 647 StringRef getAsString() const { 648 assert(isString() && "Not a string"); 649 return getRawDataValues(); 650 } 651 652 /// If this array is isCString(), then this method returns the array (without 653 /// the trailing null byte) as a StringRef. Otherwise, it asserts out. 654 StringRef getAsCString() const { 655 assert(isCString() && "Isn't a C string"); 656 StringRef Str = getAsString(); 657 return Str.substr(0, Str.size()-1); 658 } 659 660 /// Return the raw, underlying, bytes of this data. Note that this is an 661 /// extremely tricky thing to work with, as it exposes the host endianness of 662 /// the data elements. 663 StringRef getRawDataValues() const; 664 665 /// Methods for support type inquiry through isa, cast, and dyn_cast: 666 static bool classof(const Value *V) { 667 return V->getValueID() == ConstantDataArrayVal || 668 V->getValueID() == ConstantDataVectorVal; 669 } 670 671private: 672 const char *getElementPointer(unsigned Elt) const; 673}; 674 675//===----------------------------------------------------------------------===// 676/// An array constant whose element type is a simple 1/2/4/8-byte integer or 677/// float/double, and whose elements are just simple data values 678/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 679/// stores all of the elements of the constant as densely packed data, instead 680/// of as Value*'s. 681class ConstantDataArray final : public ConstantDataSequential { 682 friend class ConstantDataSequential; 683 684 explicit ConstantDataArray(Type *ty, const char *Data) 685 : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} 686 687public: 688 ConstantDataArray(const ConstantDataArray &) = delete; 689 690 /// get() constructors - Return a constant with array type with an element 691 /// count and element type matching the ArrayRef passed in. Note that this 692 /// can return a ConstantAggregateZero object. 693 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); 694 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); 695 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); 696 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); 697 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); 698 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); 699 700 /// getFP() constructors - Return a constant with array type with an element 701 /// count and element type of float with precision matching the number of 702 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 703 /// double for 64bits) Note that this can return a ConstantAggregateZero 704 /// object. 705 static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); 706 static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); 707 static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); 708 709 /// This method constructs a CDS and initializes it with a text string. 710 /// The default behavior (AddNull==true) causes a null terminator to 711 /// be placed at the end of the array (increasing the length of the string by 712 /// one more than the StringRef would normally indicate. Pass AddNull=false 713 /// to disable this behavior. 714 static Constant *getString(LLVMContext &Context, StringRef Initializer, 715 bool AddNull = true); 716 717 /// Specialize the getType() method to always return an ArrayType, 718 /// which reduces the amount of casting needed in parts of the compiler. 719 inline ArrayType *getType() const { 720 return cast<ArrayType>(Value::getType()); 721 } 722 723 /// Methods for support type inquiry through isa, cast, and dyn_cast: 724 static bool classof(const Value *V) { 725 return V->getValueID() == ConstantDataArrayVal; 726 } 727}; 728 729//===----------------------------------------------------------------------===// 730/// A vector constant whose element type is a simple 1/2/4/8-byte integer or 731/// float/double, and whose elements are just simple data values 732/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it 733/// stores all of the elements of the constant as densely packed data, instead 734/// of as Value*'s. 735class ConstantDataVector final : public ConstantDataSequential { 736 friend class ConstantDataSequential; 737 738 explicit ConstantDataVector(Type *ty, const char *Data) 739 : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {} 740 741public: 742 ConstantDataVector(const ConstantDataVector &) = delete; 743 744 /// get() constructors - Return a constant with vector type with an element 745 /// count and element type matching the ArrayRef passed in. Note that this 746 /// can return a ConstantAggregateZero object. 747 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); 748 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); 749 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); 750 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); 751 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); 752 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); 753 754 /// getFP() constructors - Return a constant with vector type with an element 755 /// count and element type of float with the precision matching the number of 756 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 757 /// double for 64bits) Note that this can return a ConstantAggregateZero 758 /// object. 759 static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); 760 static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); 761 static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); 762 763 /// Return a ConstantVector with the specified constant in each element. 764 /// The specified constant has to be a of a compatible type (i8/i16/ 765 /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. 766 static Constant *getSplat(unsigned NumElts, Constant *Elt); 767 768 /// Returns true if this is a splat constant, meaning that all elements have 769 /// the same value. 770 bool isSplat() const; 771 772 /// If this is a splat constant, meaning that all of the elements have the 773 /// same value, return that value. Otherwise return NULL. 774 Constant *getSplatValue() const; 775 776 /// Specialize the getType() method to always return a VectorType, 777 /// which reduces the amount of casting needed in parts of the compiler. 778 inline VectorType *getType() const { 779 return cast<VectorType>(Value::getType()); 780 } 781 782 /// Methods for support type inquiry through isa, cast, and dyn_cast: 783 static bool classof(const Value *V) { 784 return V->getValueID() == ConstantDataVectorVal; 785 } 786}; 787 788//===----------------------------------------------------------------------===// 789/// A constant token which is empty 790/// 791class ConstantTokenNone final : public ConstantData { 792 friend class Constant; 793 794 explicit ConstantTokenNone(LLVMContext &Context) 795 : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} 796 797 void destroyConstantImpl(); 798 799public: 800 ConstantTokenNone(const ConstantTokenNone &) = delete; 801 802 /// Return the ConstantTokenNone. 803 static ConstantTokenNone *get(LLVMContext &Context); 804 805 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 806 static bool classof(const Value *V) { 807 return V->getValueID() == ConstantTokenNoneVal; 808 } 809}; 810 811/// The address of a basic block. 812/// 813class BlockAddress final : public Constant { 814 friend class Constant; 815 816 BlockAddress(Function *F, BasicBlock *BB); 817 818 void *operator new(size_t s) { return User::operator new(s, 2); } 819 820 void destroyConstantImpl(); 821 Value *handleOperandChangeImpl(Value *From, Value *To); 822 823public: 824 /// Return a BlockAddress for the specified function and basic block. 825 static BlockAddress *get(Function *F, BasicBlock *BB); 826 827 /// Return a BlockAddress for the specified basic block. The basic 828 /// block must be embedded into a function. 829 static BlockAddress *get(BasicBlock *BB); 830 831 /// Lookup an existing \c BlockAddress constant for the given BasicBlock. 832 /// 833 /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. 834 static BlockAddress *lookup(const BasicBlock *BB); 835 836 /// Transparently provide more efficient getOperand methods. 837 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 838 839 Function *getFunction() const { return (Function*)Op<0>().get(); } 840 BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } 841 842 /// Methods for support type inquiry through isa, cast, and dyn_cast: 843 static bool classof(const Value *V) { 844 return V->getValueID() == BlockAddressVal; 845 } 846}; 847 848template <> 849struct OperandTraits<BlockAddress> : 850 public FixedNumOperandTraits<BlockAddress, 2> { 851}; 852 853DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) 854 855//===----------------------------------------------------------------------===// 856/// A constant value that is initialized with an expression using 857/// other constant values. 858/// 859/// This class uses the standard Instruction opcodes to define the various 860/// constant expressions. The Opcode field for the ConstantExpr class is 861/// maintained in the Value::SubclassData field. 862class ConstantExpr : public Constant { 863 friend struct ConstantExprKeyType; 864 friend class Constant; 865 866 void destroyConstantImpl(); 867 Value *handleOperandChangeImpl(Value *From, Value *To); 868 869protected: 870 ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) 871 : Constant(ty, ConstantExprVal, Ops, NumOps) { 872 // Operation type (an Instruction opcode) is stored as the SubclassData. 873 setValueSubclassData(Opcode); 874 } 875 876public: 877 // Static methods to construct a ConstantExpr of different kinds. Note that 878 // these methods may return a object that is not an instance of the 879 // ConstantExpr class, because they will attempt to fold the constant 880 // expression into something simpler if possible. 881 882 /// getAlignOf constant expr - computes the alignment of a type in a target 883 /// independent way (Note: the return type is an i64). 884 static Constant *getAlignOf(Type *Ty); 885 886 /// getSizeOf constant expr - computes the (alloc) size of a type (in 887 /// address-units, not bits) in a target independent way (Note: the return 888 /// type is an i64). 889 /// 890 static Constant *getSizeOf(Type *Ty); 891 892 /// getOffsetOf constant expr - computes the offset of a struct field in a 893 /// target independent way (Note: the return type is an i64). 894 /// 895 static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); 896 897 /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, 898 /// which supports any aggregate type, and any Constant index. 899 /// 900 static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); 901 902 static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); 903 static Constant *getFNeg(Constant *C); 904 static Constant *getNot(Constant *C); 905 static Constant *getAdd(Constant *C1, Constant *C2, 906 bool HasNUW = false, bool HasNSW = false); 907 static Constant *getFAdd(Constant *C1, Constant *C2); 908 static Constant *getSub(Constant *C1, Constant *C2, 909 bool HasNUW = false, bool HasNSW = false); 910 static Constant *getFSub(Constant *C1, Constant *C2); 911 static Constant *getMul(Constant *C1, Constant *C2, 912 bool HasNUW = false, bool HasNSW = false); 913 static Constant *getFMul(Constant *C1, Constant *C2); 914 static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); 915 static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); 916 static Constant *getFDiv(Constant *C1, Constant *C2); 917 static Constant *getURem(Constant *C1, Constant *C2); 918 static Constant *getSRem(Constant *C1, Constant *C2); 919 static Constant *getFRem(Constant *C1, Constant *C2); 920 static Constant *getAnd(Constant *C1, Constant *C2); 921 static Constant *getOr(Constant *C1, Constant *C2); 922 static Constant *getXor(Constant *C1, Constant *C2); 923 static Constant *getShl(Constant *C1, Constant *C2, 924 bool HasNUW = false, bool HasNSW = false); 925 static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); 926 static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); 927 static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); 928 static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); 929 static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); 930 static Constant *getFPTrunc(Constant *C, Type *Ty, 931 bool OnlyIfReduced = false); 932 static Constant *getFPExtend(Constant *C, Type *Ty, 933 bool OnlyIfReduced = false); 934 static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); 935 static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); 936 static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); 937 static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); 938 static Constant *getPtrToInt(Constant *C, Type *Ty, 939 bool OnlyIfReduced = false); 940 static Constant *getIntToPtr(Constant *C, Type *Ty, 941 bool OnlyIfReduced = false); 942 static Constant *getBitCast(Constant *C, Type *Ty, 943 bool OnlyIfReduced = false); 944 static Constant *getAddrSpaceCast(Constant *C, Type *Ty, 945 bool OnlyIfReduced = false); 946 947 static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } 948 static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } 949 950 static Constant *getNSWAdd(Constant *C1, Constant *C2) { 951 return getAdd(C1, C2, false, true); 952 } 953 954 static Constant *getNUWAdd(Constant *C1, Constant *C2) { 955 return getAdd(C1, C2, true, false); 956 } 957 958 static Constant *getNSWSub(Constant *C1, Constant *C2) { 959 return getSub(C1, C2, false, true); 960 } 961 962 static Constant *getNUWSub(Constant *C1, Constant *C2) { 963 return getSub(C1, C2, true, false); 964 } 965 966 static Constant *getNSWMul(Constant *C1, Constant *C2) { 967 return getMul(C1, C2, false, true); 968 } 969 970 static Constant *getNUWMul(Constant *C1, Constant *C2) { 971 return getMul(C1, C2, true, false); 972 } 973 974 static Constant *getNSWShl(Constant *C1, Constant *C2) { 975 return getShl(C1, C2, false, true); 976 } 977 978 static Constant *getNUWShl(Constant *C1, Constant *C2) { 979 return getShl(C1, C2, true, false); 980 } 981 982 static Constant *getExactSDiv(Constant *C1, Constant *C2) { 983 return getSDiv(C1, C2, true); 984 } 985 986 static Constant *getExactUDiv(Constant *C1, Constant *C2) { 987 return getUDiv(C1, C2, true); 988 } 989 990 static Constant *getExactAShr(Constant *C1, Constant *C2) { 991 return getAShr(C1, C2, true); 992 } 993 994 static Constant *getExactLShr(Constant *C1, Constant *C2) { 995 return getLShr(C1, C2, true); 996 } 997 998 /// Return the identity for the given binary operation, 999 /// i.e. a constant C such that X op C = X and C op X = X for every X. It 1000 /// returns null if the operator doesn't have an identity. 1001 static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty); 1002 1003 /// Return the absorbing element for the given binary 1004 /// operation, i.e. a constant C such that X op C = C and C op X = C for 1005 /// every X. For example, this returns zero for integer multiplication. 1006 /// It returns null if the operator doesn't have an absorbing element. 1007 static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); 1008 1009 /// Transparently provide more efficient getOperand methods. 1010 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); 1011 1012 /// \brief Convenience function for getting a Cast operation. 1013 /// 1014 /// \param ops The opcode for the conversion 1015 /// \param C The constant to be converted 1016 /// \param Ty The type to which the constant is converted 1017 /// \param OnlyIfReduced see \a getWithOperands() docs. 1018 static Constant *getCast(unsigned ops, Constant *C, Type *Ty, 1019 bool OnlyIfReduced = false); 1020 1021 // @brief Create a ZExt or BitCast cast constant expression 1022 static Constant *getZExtOrBitCast( 1023 Constant *C, ///< The constant to zext or bitcast 1024 Type *Ty ///< The type to zext or bitcast C to 1025 ); 1026 1027 // @brief Create a SExt or BitCast cast constant expression 1028 static Constant *getSExtOrBitCast( 1029 Constant *C, ///< The constant to sext or bitcast 1030 Type *Ty ///< The type to sext or bitcast C to 1031 ); 1032 1033 // @brief Create a Trunc or BitCast cast constant expression 1034 static Constant *getTruncOrBitCast( 1035 Constant *C, ///< The constant to trunc or bitcast 1036 Type *Ty ///< The type to trunc or bitcast C to 1037 ); 1038 1039 /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant 1040 /// expression. 1041 static Constant *getPointerCast( 1042 Constant *C, ///< The pointer value to be casted (operand 0) 1043 Type *Ty ///< The type to which cast should be made 1044 ); 1045 1046 /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on 1047 /// the address space. 1048 static Constant *getPointerBitCastOrAddrSpaceCast( 1049 Constant *C, ///< The constant to addrspacecast or bitcast 1050 Type *Ty ///< The type to bitcast or addrspacecast C to 1051 ); 1052 1053 /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts 1054 static Constant *getIntegerCast( 1055 Constant *C, ///< The integer constant to be casted 1056 Type *Ty, ///< The integer type to cast to 1057 bool isSigned ///< Whether C should be treated as signed or not 1058 ); 1059 1060 /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts 1061 static Constant *getFPCast( 1062 Constant *C, ///< The integer constant to be casted 1063 Type *Ty ///< The integer type to cast to 1064 ); 1065 1066 /// @brief Return true if this is a convert constant expression 1067 bool isCast() const; 1068 1069 /// @brief Return true if this is a compare constant expression 1070 bool isCompare() const; 1071 1072 /// @brief Return true if this is an insertvalue or extractvalue expression, 1073 /// and the getIndices() method may be used. 1074 bool hasIndices() const; 1075 1076 /// @brief Return true if this is a getelementptr expression and all 1077 /// the index operands are compile-time known integers within the 1078 /// corresponding notional static array extents. Note that this is 1079 /// not equivalant to, a subset of, or a superset of the "inbounds" 1080 /// property. 1081 bool isGEPWithNoNotionalOverIndexing() const; 1082 1083 /// Select constant expr 1084 /// 1085 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1086 static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, 1087 Type *OnlyIfReducedTy = nullptr); 1088 1089 /// get - Return a binary or shift operator constant expression, 1090 /// folding if possible. 1091 /// 1092 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1093 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, 1094 unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); 1095 1096 /// \brief Return an ICmp or FCmp comparison operator constant expression. 1097 /// 1098 /// \param OnlyIfReduced see \a getWithOperands() docs. 1099 static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, 1100 bool OnlyIfReduced = false); 1101 1102 /// get* - Return some common constants without having to 1103 /// specify the full Instruction::OPCODE identifier. 1104 /// 1105 static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, 1106 bool OnlyIfReduced = false); 1107 static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, 1108 bool OnlyIfReduced = false); 1109 1110 /// Getelementptr form. Value* is only accepted for convenience; 1111 /// all elements must be Constants. 1112 /// 1113 /// \param InRangeIndex the inrange index if present or None. 1114 /// \param OnlyIfReducedTy see \a getWithOperands() docs. 1115 static Constant *getGetElementPtr(Type *Ty, Constant *C, 1116 ArrayRef<Constant *> IdxList, 1117 bool InBounds = false, 1118 Optional<unsigned> InRangeIndex = None, 1119 Type *OnlyIfReducedTy = nullptr) { 1120 return getGetElementPtr( 1121 Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), 1122 InBounds, InRangeIndex, OnlyIfReducedTy); 1123 } 1124 static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, 1125 bool InBounds = false, 1126 Optional<unsigned> InRangeIndex = None, 1127 Type *OnlyIfReducedTy = nullptr) { 1128 // This form of the function only exists to avoid ambiguous overload 1129 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1130 // ArrayRef<Value *>. 1131 return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, 1132 OnlyIfReducedTy); 1133 } 1134 static Constant *getGetElementPtr(Type *Ty, Constant *C, 1135 ArrayRef<Value *> IdxList, 1136 bool InBounds = false, 1137 Optional<unsigned> InRangeIndex = None, 1138 Type *OnlyIfReducedTy = nullptr); 1139 1140 /// Create an "inbounds" getelementptr. See the documentation for the 1141 /// "inbounds" flag in LangRef.html for details. 1142 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1143 ArrayRef<Constant *> IdxList) { 1144 return getGetElementPtr(Ty, C, IdxList, true); 1145 } 1146 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1147 Constant *Idx) { 1148 // This form of the function only exists to avoid ambiguous overload 1149 // warnings about whether to convert Idx to ArrayRef<Constant *> or 1150 // ArrayRef<Value *>. 1151 return getGetElementPtr(Ty, C, Idx, true); 1152 } 1153 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, 1154 ArrayRef<Value *> IdxList) { 1155 return getGetElementPtr(Ty, C, IdxList, true); 1156 } 1157 1158 static Constant *getExtractElement(Constant *Vec, Constant *Idx, 1159 Type *OnlyIfReducedTy = nullptr); 1160 static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, 1161 Type *OnlyIfReducedTy = nullptr); 1162 static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, 1163 Type *OnlyIfReducedTy = nullptr); 1164 static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 1165 Type *OnlyIfReducedTy = nullptr); 1166 static Constant *getInsertValue(Constant *Agg, Constant *Val, 1167 ArrayRef<unsigned> Idxs, 1168 Type *OnlyIfReducedTy = nullptr); 1169 1170 /// Return the opcode at the root of this constant expression 1171 unsigned getOpcode() const { return getSubclassDataFromValue(); } 1172 1173 /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or 1174 /// FCMP constant expression. 1175 unsigned getPredicate() const; 1176 1177 /// Assert that this is an insertvalue or exactvalue 1178 /// expression and return the list of indices. 1179 ArrayRef<unsigned> getIndices() const; 1180 1181 /// Return a string representation for an opcode. 1182 const char *getOpcodeName() const; 1183 1184 /// Return a constant expression identical to this one, but with the specified 1185 /// operand set to the specified value. 1186 Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; 1187 1188 /// This returns the current constant expression with the operands replaced 1189 /// with the specified values. The specified array must have the same number 1190 /// of operands as our current one. 1191 Constant *getWithOperands(ArrayRef<Constant*> Ops) const { 1192 return getWithOperands(Ops, getType()); 1193 } 1194 1195 /// Get the current expression with the operands replaced. 1196 /// 1197 /// Return the current constant expression with the operands replaced with \c 1198 /// Ops and the type with \c Ty. The new operands must have the same number 1199 /// as the current ones. 1200 /// 1201 /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something 1202 /// gets constant-folded, the type changes, or the expression is otherwise 1203 /// canonicalized. This parameter should almost always be \c false. 1204 Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1205 bool OnlyIfReduced = false, 1206 Type *SrcTy = nullptr) const; 1207 1208 /// Returns an Instruction which implements the same operation as this 1209 /// ConstantExpr. The instruction is not linked to any basic block. 1210 /// 1211 /// A better approach to this could be to have a constructor for Instruction 1212 /// which would take a ConstantExpr parameter, but that would have spread 1213 /// implementation details of ConstantExpr outside of Constants.cpp, which 1214 /// would make it harder to remove ConstantExprs altogether. 1215 Instruction *getAsInstruction(); 1216 1217 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1218 static bool classof(const Value *V) { 1219 return V->getValueID() == ConstantExprVal; 1220 } 1221 1222private: 1223 // Shadow Value::setValueSubclassData with a private forwarding method so that 1224 // subclasses cannot accidentally use it. 1225 void setValueSubclassData(unsigned short D) { 1226 Value::setValueSubclassData(D); 1227 } 1228}; 1229 1230template <> 1231struct OperandTraits<ConstantExpr> : 1232 public VariadicOperandTraits<ConstantExpr, 1> { 1233}; 1234 1235DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) 1236 1237//===----------------------------------------------------------------------===// 1238/// 'undef' values are things that do not have specified contents. 1239/// These are used for a variety of purposes, including global variable 1240/// initializers and operands to instructions. 'undef' values can occur with 1241/// any first-class type. 1242/// 1243/// Undef values aren't exactly constants; if they have multiple uses, they 1244/// can appear to have different bit patterns at each use. See 1245/// LangRef.html#undefvalues for details. 1246/// 1247class UndefValue final : public ConstantData { 1248 friend class Constant; 1249 1250 explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} 1251 1252 void destroyConstantImpl(); 1253 1254public: 1255 UndefValue(const UndefValue &) = delete; 1256 1257 /// Static factory methods - Return an 'undef' object of the specified type. 1258 static UndefValue *get(Type *T); 1259 1260 /// If this Undef has array or vector type, return a undef with the right 1261 /// element type. 1262 UndefValue *getSequentialElement() const; 1263 1264 /// If this undef has struct type, return a undef with the right element type 1265 /// for the specified element. 1266 UndefValue *getStructElement(unsigned Elt) const; 1267 1268 /// Return an undef of the right value for the specified GEP index if we can, 1269 /// otherwise return null (e.g. if C is a ConstantExpr). 1270 UndefValue *getElementValue(Constant *C) const; 1271 1272 /// Return an undef of the right value for the specified GEP index. 1273 UndefValue *getElementValue(unsigned Idx) const; 1274 1275 /// Return the number of elements in the array, vector, or struct. 1276 unsigned getNumElements() const; 1277 1278 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1279 static bool classof(const Value *V) { 1280 return V->getValueID() == UndefValueVal; 1281 } 1282}; 1283 1284} // end namespace llvm 1285 1286#endif // LLVM_IR_CONSTANTS_H 1287