1//===- llvm/Target/TargetInstrInfo.h - Instruction Info ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DenseMapInfo.h"
20#include "llvm/ADT/None.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineCombinerPattern.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineLoopInfo.h"
27#include "llvm/CodeGen/MachineOperand.h"
28#include "llvm/CodeGen/PseudoSourceValue.h"
29#include "llvm/MC/MCInstrInfo.h"
30#include "llvm/Support/BranchProbability.h"
31#include "llvm/Support/ErrorHandling.h"
32#include <cassert>
33#include <cstddef>
34#include <cstdint>
35#include <utility>
36#include <vector>
37
38namespace llvm {
39
40class DFAPacketizer;
41class InstrItineraryData;
42class LiveVariables;
43class MachineMemOperand;
44class MachineRegisterInfo;
45class MCAsmInfo;
46class MCInst;
47struct MCSchedModel;
48class Module;
49class ScheduleDAG;
50class ScheduleHazardRecognizer;
51class SDNode;
52class SelectionDAG;
53class RegScavenger;
54class TargetRegisterClass;
55class TargetRegisterInfo;
56class TargetSchedModel;
57class TargetSubtargetInfo;
58
59template <class T> class SmallVectorImpl;
60
61//---------------------------------------------------------------------------
62///
63/// TargetInstrInfo - Interface to description of machine instruction set
64///
65class TargetInstrInfo : public MCInstrInfo {
66public:
67  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
68                  unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
69      : CallFrameSetupOpcode(CFSetupOpcode),
70        CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
71        ReturnOpcode(ReturnOpcode) {}
72  TargetInstrInfo(const TargetInstrInfo &) = delete;
73  TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
74  virtual ~TargetInstrInfo();
75
76  static bool isGenericOpcode(unsigned Opc) {
77    return Opc <= TargetOpcode::GENERIC_OP_END;
78  }
79
80  /// Given a machine instruction descriptor, returns the register
81  /// class constraint for OpNum, or NULL.
82  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum,
83                                         const TargetRegisterInfo *TRI,
84                                         const MachineFunction &MF) const;
85
86  /// Return true if the instruction is trivially rematerializable, meaning it
87  /// has no side effects and requires no operands that aren't always available.
88  /// This means the only allowed uses are constants and unallocatable physical
89  /// registers so that the instructions result is independent of the place
90  /// in the function.
91  bool isTriviallyReMaterializable(const MachineInstr &MI,
92                                   AliasAnalysis *AA = nullptr) const {
93    return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
94           (MI.getDesc().isRematerializable() &&
95            (isReallyTriviallyReMaterializable(MI, AA) ||
96             isReallyTriviallyReMaterializableGeneric(MI, AA)));
97  }
98
99protected:
100  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
101  /// set, this hook lets the target specify whether the instruction is actually
102  /// trivially rematerializable, taking into consideration its operands. This
103  /// predicate must return false if the instruction has any side effects other
104  /// than producing a value, or if it requres any address registers that are
105  /// not always available.
106  /// Requirements must be check as stated in isTriviallyReMaterializable() .
107  virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
108                                                 AliasAnalysis *AA) const {
109    return false;
110  }
111
112  /// This method commutes the operands of the given machine instruction MI.
113  /// The operands to be commuted are specified by their indices OpIdx1 and
114  /// OpIdx2.
115  ///
116  /// If a target has any instructions that are commutable but require
117  /// converting to different instructions or making non-trivial changes
118  /// to commute them, this method can be overloaded to do that.
119  /// The default implementation simply swaps the commutable operands.
120  ///
121  /// If NewMI is false, MI is modified in place and returned; otherwise, a
122  /// new machine instruction is created and returned.
123  ///
124  /// Do not call this method for a non-commutable instruction.
125  /// Even though the instruction is commutable, the method may still
126  /// fail to commute the operands, null pointer is returned in such cases.
127  virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
128                                               unsigned OpIdx1,
129                                               unsigned OpIdx2) const;
130
131  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
132  /// operand indices to (ResultIdx1, ResultIdx2).
133  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
134  /// predefined to some indices or be undefined (designated by the special
135  /// value 'CommuteAnyOperandIndex').
136  /// The predefined result indices cannot be re-defined.
137  /// The function returns true iff after the result pair redefinition
138  /// the fixed result pair is equal to or equivalent to the source pair of
139  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
140  /// the pairs (x,y) and (y,x) are equivalent.
141  static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
142                                   unsigned CommutableOpIdx1,
143                                   unsigned CommutableOpIdx2);
144
145private:
146  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
147  /// set and the target hook isReallyTriviallyReMaterializable returns false,
148  /// this function does target-independent tests to determine if the
149  /// instruction is really trivially rematerializable.
150  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
151                                                AliasAnalysis *AA) const;
152
153public:
154  /// These methods return the opcode of the frame setup/destroy instructions
155  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
156  /// order to abstract away the difference between operating with a frame
157  /// pointer and operating without, through the use of these two instructions.
158  ///
159  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
160  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
161
162  /// Returns true if the argument is a frame pseudo instruction.
163  bool isFrameInstr(const MachineInstr &I) const {
164    return I.getOpcode() == getCallFrameSetupOpcode() ||
165           I.getOpcode() == getCallFrameDestroyOpcode();
166  }
167
168  /// Returns true if the argument is a frame setup pseudo instruction.
169  bool isFrameSetup(const MachineInstr &I) const {
170    return I.getOpcode() == getCallFrameSetupOpcode();
171  }
172
173  /// Returns size of the frame associated with the given frame instruction.
174  /// For frame setup instruction this is frame that is set up space set up
175  /// after the instruction. For frame destroy instruction this is the frame
176  /// freed by the caller.
177  /// Note, in some cases a call frame (or a part of it) may be prepared prior
178  /// to the frame setup instruction. It occurs in the calls that involve
179  /// inalloca arguments. This function reports only the size of the frame part
180  /// that is set up between the frame setup and destroy pseudo instructions.
181  int64_t getFrameSize(const MachineInstr &I) const {
182    assert(isFrameInstr(I) && "Not a frame instruction");
183    assert(I.getOperand(0).getImm() >= 0);
184    return I.getOperand(0).getImm();
185  }
186
187  /// Returns the total frame size, which is made up of the space set up inside
188  /// the pair of frame start-stop instructions and the space that is set up
189  /// prior to the pair.
190  int64_t getFrameTotalSize(const MachineInstr &I) const {
191    if (isFrameSetup(I)) {
192      assert(I.getOperand(1).getImm() >= 0 &&
193             "Frame size must not be negative");
194      return getFrameSize(I) + I.getOperand(1).getImm();
195    }
196    return getFrameSize(I);
197  }
198
199  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
200  unsigned getReturnOpcode() const { return ReturnOpcode; }
201
202  /// Returns the actual stack pointer adjustment made by an instruction
203  /// as part of a call sequence. By default, only call frame setup/destroy
204  /// instructions adjust the stack, but targets may want to override this
205  /// to enable more fine-grained adjustment, or adjust by a different value.
206  virtual int getSPAdjust(const MachineInstr &MI) const;
207
208  /// Return true if the instruction is a "coalescable" extension instruction.
209  /// That is, it's like a copy where it's legal for the source to overlap the
210  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
211  /// expected the pre-extension value is available as a subreg of the result
212  /// register. This also returns the sub-register index in SubIdx.
213  virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
214                                     unsigned &DstReg, unsigned &SubIdx) const {
215    return false;
216  }
217
218  /// If the specified machine instruction is a direct
219  /// load from a stack slot, return the virtual or physical register number of
220  /// the destination along with the FrameIndex of the loaded stack slot.  If
221  /// not, return 0.  This predicate must return 0 if the instruction has
222  /// any side effects other than loading from the stack slot.
223  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
224                                       int &FrameIndex) const {
225    return 0;
226  }
227
228  /// Check for post-frame ptr elimination stack locations as well.
229  /// This uses a heuristic so it isn't reliable for correctness.
230  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
231                                             int &FrameIndex) const {
232    return 0;
233  }
234
235  /// If the specified machine instruction has a load from a stack slot,
236  /// return true along with the FrameIndex of the loaded stack slot and the
237  /// machine mem operand containing the reference.
238  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
239  /// any instructions that loads from the stack.  This is just a hint, as some
240  /// cases may be missed.
241  virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
242                                    const MachineMemOperand *&MMO,
243                                    int &FrameIndex) const;
244
245  /// If the specified machine instruction is a direct
246  /// store to a stack slot, return the virtual or physical register number of
247  /// the source reg along with the FrameIndex of the loaded stack slot.  If
248  /// not, return 0.  This predicate must return 0 if the instruction has
249  /// any side effects other than storing to the stack slot.
250  virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
251                                      int &FrameIndex) const {
252    return 0;
253  }
254
255  /// Check for post-frame ptr elimination stack locations as well.
256  /// This uses a heuristic, so it isn't reliable for correctness.
257  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
258                                            int &FrameIndex) const {
259    return 0;
260  }
261
262  /// If the specified machine instruction has a store to a stack slot,
263  /// return true along with the FrameIndex of the loaded stack slot and the
264  /// machine mem operand containing the reference.
265  /// If not, return false.  Unlike isStoreToStackSlot,
266  /// this returns true for any instructions that stores to the
267  /// stack.  This is just a hint, as some cases may be missed.
268  virtual bool hasStoreToStackSlot(const MachineInstr &MI,
269                                   const MachineMemOperand *&MMO,
270                                   int &FrameIndex) const;
271
272  /// Return true if the specified machine instruction
273  /// is a copy of one stack slot to another and has no other effect.
274  /// Provide the identity of the two frame indices.
275  virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
276                               int &SrcFrameIndex) const {
277    return false;
278  }
279
280  /// Compute the size in bytes and offset within a stack slot of a spilled
281  /// register or subregister.
282  ///
283  /// \param [out] Size in bytes of the spilled value.
284  /// \param [out] Offset in bytes within the stack slot.
285  /// \returns true if both Size and Offset are successfully computed.
286  ///
287  /// Not all subregisters have computable spill slots. For example,
288  /// subregisters registers may not be byte-sized, and a pair of discontiguous
289  /// subregisters has no single offset.
290  ///
291  /// Targets with nontrivial bigendian implementations may need to override
292  /// this, particularly to support spilled vector registers.
293  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
294                                 unsigned &Size, unsigned &Offset,
295                                 const MachineFunction &MF) const;
296
297  /// Returns the size in bytes of the specified MachineInstr, or ~0U
298  /// when this function is not implemented by a target.
299  virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
300    return ~0U;
301  }
302
303  /// Return true if the instruction is as cheap as a move instruction.
304  ///
305  /// Targets for different archs need to override this, and different
306  /// micro-architectures can also be finely tuned inside.
307  virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
308    return MI.isAsCheapAsAMove();
309  }
310
311  /// Return true if the instruction should be sunk by MachineSink.
312  ///
313  /// MachineSink determines on its own whether the instruction is safe to sink;
314  /// this gives the target a hook to override the default behavior with regards
315  /// to which instructions should be sunk.
316  virtual bool shouldSink(const MachineInstr &MI) const { return true; }
317
318  /// Re-issue the specified 'original' instruction at the
319  /// specific location targeting a new destination register.
320  /// The register in Orig->getOperand(0).getReg() will be substituted by
321  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
322  /// SubIdx.
323  virtual void reMaterialize(MachineBasicBlock &MBB,
324                             MachineBasicBlock::iterator MI, unsigned DestReg,
325                             unsigned SubIdx, const MachineInstr &Orig,
326                             const TargetRegisterInfo &TRI) const;
327
328  /// \brief Clones instruction or the whole instruction bundle \p Orig and
329  /// insert into \p MBB before \p InsertBefore. The target may update operands
330  /// that are required to be unique.
331  ///
332  /// \p Orig must not return true for MachineInstr::isNotDuplicable().
333  virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
334                                  MachineBasicBlock::iterator InsertBefore,
335                                  const MachineInstr &Orig) const;
336
337  /// This method must be implemented by targets that
338  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
339  /// may be able to convert a two-address instruction into one or more true
340  /// three-address instructions on demand.  This allows the X86 target (for
341  /// example) to convert ADD and SHL instructions into LEA instructions if they
342  /// would require register copies due to two-addressness.
343  ///
344  /// This method returns a null pointer if the transformation cannot be
345  /// performed, otherwise it returns the last new instruction.
346  ///
347  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
348                                              MachineInstr &MI,
349                                              LiveVariables *LV) const {
350    return nullptr;
351  }
352
353  // This constant can be used as an input value of operand index passed to
354  // the method findCommutedOpIndices() to tell the method that the
355  // corresponding operand index is not pre-defined and that the method
356  // can pick any commutable operand.
357  static const unsigned CommuteAnyOperandIndex = ~0U;
358
359  /// This method commutes the operands of the given machine instruction MI.
360  ///
361  /// The operands to be commuted are specified by their indices OpIdx1 and
362  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
363  /// 'CommuteAnyOperandIndex', which means that the method is free to choose
364  /// any arbitrarily chosen commutable operand. If both arguments are set to
365  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
366  /// operands; then commutes them if such operands could be found.
367  ///
368  /// If NewMI is false, MI is modified in place and returned; otherwise, a
369  /// new machine instruction is created and returned.
370  ///
371  /// Do not call this method for a non-commutable instruction or
372  /// for non-commuable operands.
373  /// Even though the instruction is commutable, the method may still
374  /// fail to commute the operands, null pointer is returned in such cases.
375  MachineInstr *
376  commuteInstruction(MachineInstr &MI, bool NewMI = false,
377                     unsigned OpIdx1 = CommuteAnyOperandIndex,
378                     unsigned OpIdx2 = CommuteAnyOperandIndex) const;
379
380  /// Returns true iff the routine could find two commutable operands in the
381  /// given machine instruction.
382  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
383  /// If any of the INPUT values is set to the special value
384  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
385  /// operand, then returns its index in the corresponding argument.
386  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
387  /// looks for 2 commutable operands.
388  /// If INPUT values refer to some operands of MI, then the method simply
389  /// returns true if the corresponding operands are commutable and returns
390  /// false otherwise.
391  ///
392  /// For example, calling this method this way:
393  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
394  ///     findCommutedOpIndices(MI, Op1, Op2);
395  /// can be interpreted as a query asking to find an operand that would be
396  /// commutable with the operand#1.
397  virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
398                                     unsigned &SrcOpIdx2) const;
399
400  /// A pair composed of a register and a sub-register index.
401  /// Used to give some type checking when modeling Reg:SubReg.
402  struct RegSubRegPair {
403    unsigned Reg;
404    unsigned SubReg;
405
406    RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
407        : Reg(Reg), SubReg(SubReg) {}
408  };
409
410  /// A pair composed of a pair of a register and a sub-register index,
411  /// and another sub-register index.
412  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
413  struct RegSubRegPairAndIdx : RegSubRegPair {
414    unsigned SubIdx;
415
416    RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
417                        unsigned SubIdx = 0)
418        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
419  };
420
421  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
422  /// and \p DefIdx.
423  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
424  /// the list is modeled as <Reg:SubReg, SubIdx>.
425  /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
426  /// two elements:
427  /// - vreg1:sub1, sub0
428  /// - vreg2<:0>, sub1
429  ///
430  /// \returns true if it is possible to build such an input sequence
431  /// with the pair \p MI, \p DefIdx. False otherwise.
432  ///
433  /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
434  ///
435  /// \note The generic implementation does not provide any support for
436  /// MI.isRegSequenceLike(). In other words, one has to override
437  /// getRegSequenceLikeInputs for target specific instructions.
438  bool
439  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
440                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
441
442  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
443  /// and \p DefIdx.
444  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
445  /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
446  /// - vreg1:sub1, sub0
447  ///
448  /// \returns true if it is possible to build such an input sequence
449  /// with the pair \p MI, \p DefIdx. False otherwise.
450  ///
451  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
452  ///
453  /// \note The generic implementation does not provide any support for
454  /// MI.isExtractSubregLike(). In other words, one has to override
455  /// getExtractSubregLikeInputs for target specific instructions.
456  bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
457                              RegSubRegPairAndIdx &InputReg) const;
458
459  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
460  /// and \p DefIdx.
461  /// \p [out] BaseReg and \p [out] InsertedReg contain
462  /// the equivalent inputs of INSERT_SUBREG.
463  /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
464  /// - BaseReg: vreg0:sub0
465  /// - InsertedReg: vreg1:sub1, sub3
466  ///
467  /// \returns true if it is possible to build such an input sequence
468  /// with the pair \p MI, \p DefIdx. False otherwise.
469  ///
470  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
471  ///
472  /// \note The generic implementation does not provide any support for
473  /// MI.isInsertSubregLike(). In other words, one has to override
474  /// getInsertSubregLikeInputs for target specific instructions.
475  bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
476                             RegSubRegPair &BaseReg,
477                             RegSubRegPairAndIdx &InsertedReg) const;
478
479  /// Return true if two machine instructions would produce identical values.
480  /// By default, this is only true when the two instructions
481  /// are deemed identical except for defs. If this function is called when the
482  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
483  /// aggressive checks.
484  virtual bool produceSameValue(const MachineInstr &MI0,
485                                const MachineInstr &MI1,
486                                const MachineRegisterInfo *MRI = nullptr) const;
487
488  /// \returns true if a branch from an instruction with opcode \p BranchOpc
489  ///  bytes is capable of jumping to a position \p BrOffset bytes away.
490  virtual bool isBranchOffsetInRange(unsigned BranchOpc,
491                                     int64_t BrOffset) const {
492    llvm_unreachable("target did not implement");
493  }
494
495  /// \returns The block that branch instruction \p MI jumps to.
496  virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
497    llvm_unreachable("target did not implement");
498  }
499
500  /// Insert an unconditional indirect branch at the end of \p MBB to \p
501  /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to
502  /// the offset of the position to insert the new branch.
503  ///
504  /// \returns The number of bytes added to the block.
505  virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
506                                        MachineBasicBlock &NewDestBB,
507                                        const DebugLoc &DL,
508                                        int64_t BrOffset = 0,
509                                        RegScavenger *RS = nullptr) const {
510    llvm_unreachable("target did not implement");
511  }
512
513  /// Analyze the branching code at the end of MBB, returning
514  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
515  /// implemented for a target).  Upon success, this returns false and returns
516  /// with the following information in various cases:
517  ///
518  /// 1. If this block ends with no branches (it just falls through to its succ)
519  ///    just return false, leaving TBB/FBB null.
520  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
521  ///    the destination block.
522  /// 3. If this block ends with a conditional branch and it falls through to a
523  ///    successor block, it sets TBB to be the branch destination block and a
524  ///    list of operands that evaluate the condition. These operands can be
525  ///    passed to other TargetInstrInfo methods to create new branches.
526  /// 4. If this block ends with a conditional branch followed by an
527  ///    unconditional branch, it returns the 'true' destination in TBB, the
528  ///    'false' destination in FBB, and a list of operands that evaluate the
529  ///    condition.  These operands can be passed to other TargetInstrInfo
530  ///    methods to create new branches.
531  ///
532  /// Note that removeBranch and insertBranch must be implemented to support
533  /// cases where this method returns success.
534  ///
535  /// If AllowModify is true, then this routine is allowed to modify the basic
536  /// block (e.g. delete instructions after the unconditional branch).
537  ///
538  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
539  /// before calling this function.
540  virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
541                             MachineBasicBlock *&FBB,
542                             SmallVectorImpl<MachineOperand> &Cond,
543                             bool AllowModify = false) const {
544    return true;
545  }
546
547  /// Represents a predicate at the MachineFunction level.  The control flow a
548  /// MachineBranchPredicate represents is:
549  ///
550  ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
551  ///  if Reg then goto TrueDest else goto FalseDest
552  ///
553  struct MachineBranchPredicate {
554    enum ComparePredicate {
555      PRED_EQ,     // True if two values are equal
556      PRED_NE,     // True if two values are not equal
557      PRED_INVALID // Sentinel value
558    };
559
560    ComparePredicate Predicate = PRED_INVALID;
561    MachineOperand LHS = MachineOperand::CreateImm(0);
562    MachineOperand RHS = MachineOperand::CreateImm(0);
563    MachineBasicBlock *TrueDest = nullptr;
564    MachineBasicBlock *FalseDest = nullptr;
565    MachineInstr *ConditionDef = nullptr;
566
567    /// SingleUseCondition is true if ConditionDef is dead except for the
568    /// branch(es) at the end of the basic block.
569    ///
570    bool SingleUseCondition = false;
571
572    explicit MachineBranchPredicate() = default;
573  };
574
575  /// Analyze the branching code at the end of MBB and parse it into the
576  /// MachineBranchPredicate structure if possible.  Returns false on success
577  /// and true on failure.
578  ///
579  /// If AllowModify is true, then this routine is allowed to modify the basic
580  /// block (e.g. delete instructions after the unconditional branch).
581  ///
582  virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
583                                      MachineBranchPredicate &MBP,
584                                      bool AllowModify = false) const {
585    return true;
586  }
587
588  /// Remove the branching code at the end of the specific MBB.
589  /// This is only invoked in cases where AnalyzeBranch returns success. It
590  /// returns the number of instructions that were removed.
591  /// If \p BytesRemoved is non-null, report the change in code size from the
592  /// removed instructions.
593  virtual unsigned removeBranch(MachineBasicBlock &MBB,
594                                int *BytesRemoved = nullptr) const {
595    llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
596  }
597
598  /// Insert branch code into the end of the specified MachineBasicBlock. The
599  /// operands to this method are the same as those returned by AnalyzeBranch.
600  /// This is only invoked in cases where AnalyzeBranch returns success. It
601  /// returns the number of instructions inserted. If \p BytesAdded is non-null,
602  /// report the change in code size from the added instructions.
603  ///
604  /// It is also invoked by tail merging to add unconditional branches in
605  /// cases where AnalyzeBranch doesn't apply because there was no original
606  /// branch to analyze.  At least this much must be implemented, else tail
607  /// merging needs to be disabled.
608  ///
609  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
610  /// before calling this function.
611  virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
612                                MachineBasicBlock *FBB,
613                                ArrayRef<MachineOperand> Cond,
614                                const DebugLoc &DL,
615                                int *BytesAdded = nullptr) const {
616    llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
617  }
618
619  unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
620                                     MachineBasicBlock *DestBB,
621                                     const DebugLoc &DL,
622                                     int *BytesAdded = nullptr) const {
623    return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
624                        BytesAdded);
625  }
626
627  /// Analyze the loop code, return true if it cannot be understoo. Upon
628  /// success, this function returns false and returns information about the
629  /// induction variable and compare instruction used at the end.
630  virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
631                           MachineInstr *&CmpInst) const {
632    return true;
633  }
634
635  /// Generate code to reduce the loop iteration by one and check if the loop is
636  /// finished.  Return the value/register of the the new loop count.  We need
637  /// this function when peeling off one or more iterations of a loop. This
638  /// function assumes the nth iteration is peeled first.
639  virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar,
640                                   MachineInstr &Cmp,
641                                   SmallVectorImpl<MachineOperand> &Cond,
642                                   SmallVectorImpl<MachineInstr *> &PrevInsts,
643                                   unsigned Iter, unsigned MaxIter) const {
644    llvm_unreachable("Target didn't implement ReduceLoopCount");
645  }
646
647  /// Delete the instruction OldInst and everything after it, replacing it with
648  /// an unconditional branch to NewDest. This is used by the tail merging pass.
649  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
650                                       MachineBasicBlock *NewDest) const;
651
652  /// Return true if it's legal to split the given basic
653  /// block at the specified instruction (i.e. instruction would be the start
654  /// of a new basic block).
655  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
656                                   MachineBasicBlock::iterator MBBI) const {
657    return true;
658  }
659
660  /// Return true if it's profitable to predicate
661  /// instructions with accumulated instruction latency of "NumCycles"
662  /// of the specified basic block, where the probability of the instructions
663  /// being executed is given by Probability, and Confidence is a measure
664  /// of our confidence that it will be properly predicted.
665  virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
666                                   unsigned ExtraPredCycles,
667                                   BranchProbability Probability) const {
668    return false;
669  }
670
671  /// Second variant of isProfitableToIfCvt. This one
672  /// checks for the case where two basic blocks from true and false path
673  /// of a if-then-else (diamond) are predicated on mutally exclusive
674  /// predicates, where the probability of the true path being taken is given
675  /// by Probability, and Confidence is a measure of our confidence that it
676  /// will be properly predicted.
677  virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
678                                   unsigned ExtraTCycles,
679                                   MachineBasicBlock &FMBB, unsigned NumFCycles,
680                                   unsigned ExtraFCycles,
681                                   BranchProbability Probability) const {
682    return false;
683  }
684
685  /// Return true if it's profitable for if-converter to duplicate instructions
686  /// of specified accumulated instruction latencies in the specified MBB to
687  /// enable if-conversion.
688  /// The probability of the instructions being executed is given by
689  /// Probability, and Confidence is a measure of our confidence that it
690  /// will be properly predicted.
691  virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
692                                         unsigned NumCycles,
693                                         BranchProbability Probability) const {
694    return false;
695  }
696
697  /// Return true if it's profitable to unpredicate
698  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
699  /// exclusive predicates.
700  /// e.g.
701  ///   subeq  r0, r1, #1
702  ///   addne  r0, r1, #1
703  /// =>
704  ///   sub    r0, r1, #1
705  ///   addne  r0, r1, #1
706  ///
707  /// This may be profitable is conditional instructions are always executed.
708  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
709                                         MachineBasicBlock &FMBB) const {
710    return false;
711  }
712
713  /// Return true if it is possible to insert a select
714  /// instruction that chooses between TrueReg and FalseReg based on the
715  /// condition code in Cond.
716  ///
717  /// When successful, also return the latency in cycles from TrueReg,
718  /// FalseReg, and Cond to the destination register. In most cases, a select
719  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
720  ///
721  /// Some x86 implementations have 2-cycle cmov instructions.
722  ///
723  /// @param MBB         Block where select instruction would be inserted.
724  /// @param Cond        Condition returned by AnalyzeBranch.
725  /// @param TrueReg     Virtual register to select when Cond is true.
726  /// @param FalseReg    Virtual register to select when Cond is false.
727  /// @param CondCycles  Latency from Cond+Branch to select output.
728  /// @param TrueCycles  Latency from TrueReg to select output.
729  /// @param FalseCycles Latency from FalseReg to select output.
730  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
731                               ArrayRef<MachineOperand> Cond, unsigned TrueReg,
732                               unsigned FalseReg, int &CondCycles,
733                               int &TrueCycles, int &FalseCycles) const {
734    return false;
735  }
736
737  /// Insert a select instruction into MBB before I that will copy TrueReg to
738  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
739  ///
740  /// This function can only be called after canInsertSelect() returned true.
741  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
742  /// that the same flags or registers required by Cond are available at the
743  /// insertion point.
744  ///
745  /// @param MBB      Block where select instruction should be inserted.
746  /// @param I        Insertion point.
747  /// @param DL       Source location for debugging.
748  /// @param DstReg   Virtual register to be defined by select instruction.
749  /// @param Cond     Condition as computed by AnalyzeBranch.
750  /// @param TrueReg  Virtual register to copy when Cond is true.
751  /// @param FalseReg Virtual register to copy when Cons is false.
752  virtual void insertSelect(MachineBasicBlock &MBB,
753                            MachineBasicBlock::iterator I, const DebugLoc &DL,
754                            unsigned DstReg, ArrayRef<MachineOperand> Cond,
755                            unsigned TrueReg, unsigned FalseReg) const {
756    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
757  }
758
759  /// Analyze the given select instruction, returning true if
760  /// it cannot be understood. It is assumed that MI->isSelect() is true.
761  ///
762  /// When successful, return the controlling condition and the operands that
763  /// determine the true and false result values.
764  ///
765  ///   Result = SELECT Cond, TrueOp, FalseOp
766  ///
767  /// Some targets can optimize select instructions, for example by predicating
768  /// the instruction defining one of the operands. Such targets should set
769  /// Optimizable.
770  ///
771  /// @param         MI Select instruction to analyze.
772  /// @param Cond    Condition controlling the select.
773  /// @param TrueOp  Operand number of the value selected when Cond is true.
774  /// @param FalseOp Operand number of the value selected when Cond is false.
775  /// @param Optimizable Returned as true if MI is optimizable.
776  /// @returns False on success.
777  virtual bool analyzeSelect(const MachineInstr &MI,
778                             SmallVectorImpl<MachineOperand> &Cond,
779                             unsigned &TrueOp, unsigned &FalseOp,
780                             bool &Optimizable) const {
781    assert(MI.getDesc().isSelect() && "MI must be a select instruction");
782    return true;
783  }
784
785  /// Given a select instruction that was understood by
786  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
787  /// merging it with one of its operands. Returns NULL on failure.
788  ///
789  /// When successful, returns the new select instruction. The client is
790  /// responsible for deleting MI.
791  ///
792  /// If both sides of the select can be optimized, PreferFalse is used to pick
793  /// a side.
794  ///
795  /// @param MI          Optimizable select instruction.
796  /// @param NewMIs     Set that record all MIs in the basic block up to \p
797  /// MI. Has to be updated with any newly created MI or deleted ones.
798  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
799  /// @returns Optimized instruction or NULL.
800  virtual MachineInstr *optimizeSelect(MachineInstr &MI,
801                                       SmallPtrSetImpl<MachineInstr *> &NewMIs,
802                                       bool PreferFalse = false) const {
803    // This function must be implemented if Optimizable is ever set.
804    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
805  }
806
807  /// Emit instructions to copy a pair of physical registers.
808  ///
809  /// This function should support copies within any legal register class as
810  /// well as any cross-class copies created during instruction selection.
811  ///
812  /// The source and destination registers may overlap, which may require a
813  /// careful implementation when multiple copy instructions are required for
814  /// large registers. See for example the ARM target.
815  virtual void copyPhysReg(MachineBasicBlock &MBB,
816                           MachineBasicBlock::iterator MI, const DebugLoc &DL,
817                           unsigned DestReg, unsigned SrcReg,
818                           bool KillSrc) const {
819    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
820  }
821
822  /// Store the specified register of the given register class to the specified
823  /// stack frame index. The store instruction is to be added to the given
824  /// machine basic block before the specified machine instruction. If isKill
825  /// is true, the register operand is the last use and must be marked kill.
826  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
827                                   MachineBasicBlock::iterator MI,
828                                   unsigned SrcReg, bool isKill, int FrameIndex,
829                                   const TargetRegisterClass *RC,
830                                   const TargetRegisterInfo *TRI) const {
831    llvm_unreachable("Target didn't implement "
832                     "TargetInstrInfo::storeRegToStackSlot!");
833  }
834
835  /// Load the specified register of the given register class from the specified
836  /// stack frame index. The load instruction is to be added to the given
837  /// machine basic block before the specified machine instruction.
838  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
839                                    MachineBasicBlock::iterator MI,
840                                    unsigned DestReg, int FrameIndex,
841                                    const TargetRegisterClass *RC,
842                                    const TargetRegisterInfo *TRI) const {
843    llvm_unreachable("Target didn't implement "
844                     "TargetInstrInfo::loadRegFromStackSlot!");
845  }
846
847  /// This function is called for all pseudo instructions
848  /// that remain after register allocation. Many pseudo instructions are
849  /// created to help register allocation. This is the place to convert them
850  /// into real instructions. The target can edit MI in place, or it can insert
851  /// new instructions and erase MI. The function should return true if
852  /// anything was changed.
853  virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
854
855  /// Check whether the target can fold a load that feeds a subreg operand
856  /// (or a subreg operand that feeds a store).
857  /// For example, X86 may want to return true if it can fold
858  /// movl (%esp), %eax
859  /// subb, %al, ...
860  /// Into:
861  /// subb (%esp), ...
862  ///
863  /// Ideally, we'd like the target implementation of foldMemoryOperand() to
864  /// reject subregs - but since this behavior used to be enforced in the
865  /// target-independent code, moving this responsibility to the targets
866  /// has the potential of causing nasty silent breakage in out-of-tree targets.
867  virtual bool isSubregFoldable() const { return false; }
868
869  /// Attempt to fold a load or store of the specified stack
870  /// slot into the specified machine instruction for the specified operand(s).
871  /// If this is possible, a new instruction is returned with the specified
872  /// operand folded, otherwise NULL is returned.
873  /// The new instruction is inserted before MI, and the client is responsible
874  /// for removing the old instruction.
875  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
876                                  int FrameIndex,
877                                  LiveIntervals *LIS = nullptr) const;
878
879  /// Same as the previous version except it allows folding of any load and
880  /// store from / to any address, not just from a specific stack slot.
881  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
882                                  MachineInstr &LoadMI,
883                                  LiveIntervals *LIS = nullptr) const;
884
885  /// Return true when there is potentially a faster code sequence
886  /// for an instruction chain ending in \p Root. All potential patterns are
887  /// returned in the \p Pattern vector. Pattern should be sorted in priority
888  /// order since the pattern evaluator stops checking as soon as it finds a
889  /// faster sequence.
890  /// \param Root - Instruction that could be combined with one of its operands
891  /// \param Patterns - Vector of possible combination patterns
892  virtual bool getMachineCombinerPatterns(
893      MachineInstr &Root,
894      SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
895
896  /// Return true when a code sequence can improve throughput. It
897  /// should be called only for instructions in loops.
898  /// \param Pattern - combiner pattern
899  virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
900
901  /// Return true if the input \P Inst is part of a chain of dependent ops
902  /// that are suitable for reassociation, otherwise return false.
903  /// If the instruction's operands must be commuted to have a previous
904  /// instruction of the same type define the first source operand, \P Commuted
905  /// will be set to true.
906  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
907
908  /// Return true when \P Inst is both associative and commutative.
909  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
910    return false;
911  }
912
913  /// Return true when \P Inst has reassociable operands in the same \P MBB.
914  virtual bool hasReassociableOperands(const MachineInstr &Inst,
915                                       const MachineBasicBlock *MBB) const;
916
917  /// Return true when \P Inst has reassociable sibling.
918  bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
919
920  /// When getMachineCombinerPatterns() finds patterns, this function generates
921  /// the instructions that could replace the original code sequence. The client
922  /// has to decide whether the actual replacement is beneficial or not.
923  /// \param Root - Instruction that could be combined with one of its operands
924  /// \param Pattern - Combination pattern for Root
925  /// \param InsInstrs - Vector of new instructions that implement P
926  /// \param DelInstrs - Old instructions, including Root, that could be
927  /// replaced by InsInstr
928  /// \param InstrIdxForVirtReg - map of virtual register to instruction in
929  /// InsInstr that defines it
930  virtual void genAlternativeCodeSequence(
931      MachineInstr &Root, MachineCombinerPattern Pattern,
932      SmallVectorImpl<MachineInstr *> &InsInstrs,
933      SmallVectorImpl<MachineInstr *> &DelInstrs,
934      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
935
936  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
937  /// reduce critical path length.
938  void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
939                      MachineCombinerPattern Pattern,
940                      SmallVectorImpl<MachineInstr *> &InsInstrs,
941                      SmallVectorImpl<MachineInstr *> &DelInstrs,
942                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
943
944  /// This is an architecture-specific helper function of reassociateOps.
945  /// Set special operand attributes for new instructions after reassociation.
946  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
947                                     MachineInstr &NewMI1,
948                                     MachineInstr &NewMI2) const {}
949
950  /// Return true when a target supports MachineCombiner.
951  virtual bool useMachineCombiner() const { return false; }
952
953protected:
954  /// Target-dependent implementation for foldMemoryOperand.
955  /// Target-independent code in foldMemoryOperand will
956  /// take care of adding a MachineMemOperand to the newly created instruction.
957  /// The instruction and any auxiliary instructions necessary will be inserted
958  /// at InsertPt.
959  virtual MachineInstr *
960  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
961                        ArrayRef<unsigned> Ops,
962                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
963                        LiveIntervals *LIS = nullptr) const {
964    return nullptr;
965  }
966
967  /// Target-dependent implementation for foldMemoryOperand.
968  /// Target-independent code in foldMemoryOperand will
969  /// take care of adding a MachineMemOperand to the newly created instruction.
970  /// The instruction and any auxiliary instructions necessary will be inserted
971  /// at InsertPt.
972  virtual MachineInstr *foldMemoryOperandImpl(
973      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
974      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
975      LiveIntervals *LIS = nullptr) const {
976    return nullptr;
977  }
978
979  /// \brief Target-dependent implementation of getRegSequenceInputs.
980  ///
981  /// \returns true if it is possible to build the equivalent
982  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
983  ///
984  /// \pre MI.isRegSequenceLike().
985  ///
986  /// \see TargetInstrInfo::getRegSequenceInputs.
987  virtual bool getRegSequenceLikeInputs(
988      const MachineInstr &MI, unsigned DefIdx,
989      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
990    return false;
991  }
992
993  /// \brief Target-dependent implementation of getExtractSubregInputs.
994  ///
995  /// \returns true if it is possible to build the equivalent
996  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
997  ///
998  /// \pre MI.isExtractSubregLike().
999  ///
1000  /// \see TargetInstrInfo::getExtractSubregInputs.
1001  virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1002                                          unsigned DefIdx,
1003                                          RegSubRegPairAndIdx &InputReg) const {
1004    return false;
1005  }
1006
1007  /// \brief Target-dependent implementation of getInsertSubregInputs.
1008  ///
1009  /// \returns true if it is possible to build the equivalent
1010  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1011  ///
1012  /// \pre MI.isInsertSubregLike().
1013  ///
1014  /// \see TargetInstrInfo::getInsertSubregInputs.
1015  virtual bool
1016  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1017                            RegSubRegPair &BaseReg,
1018                            RegSubRegPairAndIdx &InsertedReg) const {
1019    return false;
1020  }
1021
1022public:
1023  /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1024  /// (e.g. stack) the target returns the corresponding address space.
1025  virtual unsigned
1026  getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const {
1027    return 0;
1028  }
1029
1030  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1031  /// a store or a load and a store into two or more instruction. If this is
1032  /// possible, returns true as well as the new instructions by reference.
1033  virtual bool
1034  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1035                      bool UnfoldLoad, bool UnfoldStore,
1036                      SmallVectorImpl<MachineInstr *> &NewMIs) const {
1037    return false;
1038  }
1039
1040  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1041                                   SmallVectorImpl<SDNode *> &NewNodes) const {
1042    return false;
1043  }
1044
1045  /// Returns the opcode of the would be new
1046  /// instruction after load / store are unfolded from an instruction of the
1047  /// specified opcode. It returns zero if the specified unfolding is not
1048  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1049  /// index of the operand which will hold the register holding the loaded
1050  /// value.
1051  virtual unsigned
1052  getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1053                             unsigned *LoadRegIndex = nullptr) const {
1054    return 0;
1055  }
1056
1057  /// This is used by the pre-regalloc scheduler to determine if two loads are
1058  /// loading from the same base address. It should only return true if the base
1059  /// pointers are the same and the only differences between the two addresses
1060  /// are the offset. It also returns the offsets by reference.
1061  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1062                                       int64_t &Offset1,
1063                                       int64_t &Offset2) const {
1064    return false;
1065  }
1066
1067  /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1068  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1069  /// On some targets if two loads are loading from
1070  /// addresses in the same cache line, it's better if they are scheduled
1071  /// together. This function takes two integers that represent the load offsets
1072  /// from the common base address. It returns true if it decides it's desirable
1073  /// to schedule the two loads together. "NumLoads" is the number of loads that
1074  /// have already been scheduled after Load1.
1075  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1076                                       int64_t Offset1, int64_t Offset2,
1077                                       unsigned NumLoads) const {
1078    return false;
1079  }
1080
1081  /// Get the base register and byte offset of an instruction that reads/writes
1082  /// memory.
1083  virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1084                                     int64_t &Offset,
1085                                     const TargetRegisterInfo *TRI) const {
1086    return false;
1087  }
1088
1089  /// Return true if the instruction contains a base register and offset. If
1090  /// true, the function also sets the operand position in the instruction
1091  /// for the base register and offset.
1092  virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1093                                        unsigned &BasePos,
1094                                        unsigned &OffsetPos) const {
1095    return false;
1096  }
1097
1098  /// If the instruction is an increment of a constant value, return the amount.
1099  virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1100    return false;
1101  }
1102
1103  /// Returns true if the two given memory operations should be scheduled
1104  /// adjacent. Note that you have to add:
1105  ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1106  /// or
1107  ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1108  /// to TargetPassConfig::createMachineScheduler() to have an effect.
1109  virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1,
1110                                   MachineInstr &SecondLdSt, unsigned BaseReg2,
1111                                   unsigned NumLoads) const {
1112    llvm_unreachable("target did not implement shouldClusterMemOps()");
1113  }
1114
1115  /// Reverses the branch condition of the specified condition list,
1116  /// returning false on success and true if it cannot be reversed.
1117  virtual bool
1118  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1119    return true;
1120  }
1121
1122  /// Insert a noop into the instruction stream at the specified point.
1123  virtual void insertNoop(MachineBasicBlock &MBB,
1124                          MachineBasicBlock::iterator MI) const;
1125
1126  /// Return the noop instruction to use for a noop.
1127  virtual void getNoop(MCInst &NopInst) const;
1128
1129  /// Return true for post-incremented instructions.
1130  virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1131
1132  /// Returns true if the instruction is already predicated.
1133  virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1134
1135  /// Returns true if the instruction is a
1136  /// terminator instruction that has not been predicated.
1137  virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1138
1139  /// Returns true if MI is an unconditional tail call.
1140  virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1141    return false;
1142  }
1143
1144  /// Returns true if the tail call can be made conditional on BranchCond.
1145  virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1146                                          const MachineInstr &TailCall) const {
1147    return false;
1148  }
1149
1150  /// Replace the conditional branch in MBB with a conditional tail call.
1151  virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1152                                         SmallVectorImpl<MachineOperand> &Cond,
1153                                         const MachineInstr &TailCall) const {
1154    llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1155  }
1156
1157  /// Convert the instruction into a predicated instruction.
1158  /// It returns true if the operation was successful.
1159  virtual bool PredicateInstruction(MachineInstr &MI,
1160                                    ArrayRef<MachineOperand> Pred) const;
1161
1162  /// Returns true if the first specified predicate
1163  /// subsumes the second, e.g. GE subsumes GT.
1164  virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1165                                 ArrayRef<MachineOperand> Pred2) const {
1166    return false;
1167  }
1168
1169  /// If the specified instruction defines any predicate
1170  /// or condition code register(s) used for predication, returns true as well
1171  /// as the definition predicate(s) by reference.
1172  virtual bool DefinesPredicate(MachineInstr &MI,
1173                                std::vector<MachineOperand> &Pred) const {
1174    return false;
1175  }
1176
1177  /// Return true if the specified instruction can be predicated.
1178  /// By default, this returns true for every instruction with a
1179  /// PredicateOperand.
1180  virtual bool isPredicable(const MachineInstr &MI) const {
1181    return MI.getDesc().isPredicable();
1182  }
1183
1184  /// Return true if it's safe to move a machine
1185  /// instruction that defines the specified register class.
1186  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1187    return true;
1188  }
1189
1190  /// Test if the given instruction should be considered a scheduling boundary.
1191  /// This primarily includes labels and terminators.
1192  virtual bool isSchedulingBoundary(const MachineInstr &MI,
1193                                    const MachineBasicBlock *MBB,
1194                                    const MachineFunction &MF) const;
1195
1196  /// Measure the specified inline asm to determine an approximation of its
1197  /// length.
1198  virtual unsigned getInlineAsmLength(const char *Str,
1199                                      const MCAsmInfo &MAI) const;
1200
1201  /// Allocate and return a hazard recognizer to use for this target when
1202  /// scheduling the machine instructions before register allocation.
1203  virtual ScheduleHazardRecognizer *
1204  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1205                               const ScheduleDAG *DAG) const;
1206
1207  /// Allocate and return a hazard recognizer to use for this target when
1208  /// scheduling the machine instructions before register allocation.
1209  virtual ScheduleHazardRecognizer *
1210  CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1211                                 const ScheduleDAG *DAG) const;
1212
1213  /// Allocate and return a hazard recognizer to use for this target when
1214  /// scheduling the machine instructions after register allocation.
1215  virtual ScheduleHazardRecognizer *
1216  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1217                                     const ScheduleDAG *DAG) const;
1218
1219  /// Allocate and return a hazard recognizer to use for by non-scheduling
1220  /// passes.
1221  virtual ScheduleHazardRecognizer *
1222  CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1223    return nullptr;
1224  }
1225
1226  /// Provide a global flag for disabling the PreRA hazard recognizer that
1227  /// targets may choose to honor.
1228  bool usePreRAHazardRecognizer() const;
1229
1230  /// For a comparison instruction, return the source registers
1231  /// in SrcReg and SrcReg2 if having two register operands, and the value it
1232  /// compares against in CmpValue. Return true if the comparison instruction
1233  /// can be analyzed.
1234  virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1235                              unsigned &SrcReg2, int &Mask, int &Value) const {
1236    return false;
1237  }
1238
1239  /// See if the comparison instruction can be converted
1240  /// into something more efficient. E.g., on ARM most instructions can set the
1241  /// flags register, obviating the need for a separate CMP.
1242  virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1243                                    unsigned SrcReg2, int Mask, int Value,
1244                                    const MachineRegisterInfo *MRI) const {
1245    return false;
1246  }
1247  virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1248
1249  /// Try to remove the load by folding it to a register operand at the use.
1250  /// We fold the load instructions if and only if the
1251  /// def and use are in the same BB. We only look at one load and see
1252  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1253  /// defined by the load we are trying to fold. DefMI returns the machine
1254  /// instruction that defines FoldAsLoadDefReg, and the function returns
1255  /// the machine instruction generated due to folding.
1256  virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1257                                          const MachineRegisterInfo *MRI,
1258                                          unsigned &FoldAsLoadDefReg,
1259                                          MachineInstr *&DefMI) const {
1260    return nullptr;
1261  }
1262
1263  /// 'Reg' is known to be defined by a move immediate instruction,
1264  /// try to fold the immediate into the use instruction.
1265  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1266  /// then the caller may assume that DefMI has been erased from its parent
1267  /// block. The caller may assume that it will not be erased by this
1268  /// function otherwise.
1269  virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1270                             unsigned Reg, MachineRegisterInfo *MRI) const {
1271    return false;
1272  }
1273
1274  /// Return the number of u-operations the given machine
1275  /// instruction will be decoded to on the target cpu. The itinerary's
1276  /// IssueWidth is the number of microops that can be dispatched each
1277  /// cycle. An instruction with zero microops takes no dispatch resources.
1278  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1279                                  const MachineInstr &MI) const;
1280
1281  /// Return true for pseudo instructions that don't consume any
1282  /// machine resources in their current form. These are common cases that the
1283  /// scheduler should consider free, rather than conservatively handling them
1284  /// as instructions with no itinerary.
1285  bool isZeroCost(unsigned Opcode) const {
1286    return Opcode <= TargetOpcode::COPY;
1287  }
1288
1289  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1290                                SDNode *DefNode, unsigned DefIdx,
1291                                SDNode *UseNode, unsigned UseIdx) const;
1292
1293  /// Compute and return the use operand latency of a given pair of def and use.
1294  /// In most cases, the static scheduling itinerary was enough to determine the
1295  /// operand latency. But it may not be possible for instructions with variable
1296  /// number of defs / uses.
1297  ///
1298  /// This is a raw interface to the itinerary that may be directly overridden
1299  /// by a target. Use computeOperandLatency to get the best estimate of
1300  /// latency.
1301  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1302                                const MachineInstr &DefMI, unsigned DefIdx,
1303                                const MachineInstr &UseMI,
1304                                unsigned UseIdx) const;
1305
1306  /// Compute the instruction latency of a given instruction.
1307  /// If the instruction has higher cost when predicated, it's returned via
1308  /// PredCost.
1309  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1310                                   const MachineInstr &MI,
1311                                   unsigned *PredCost = nullptr) const;
1312
1313  virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1314
1315  virtual int getInstrLatency(const InstrItineraryData *ItinData,
1316                              SDNode *Node) const;
1317
1318  /// Return the default expected latency for a def based on its opcode.
1319  unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1320                             const MachineInstr &DefMI) const;
1321
1322  int computeDefOperandLatency(const InstrItineraryData *ItinData,
1323                               const MachineInstr &DefMI) const;
1324
1325  /// Return true if this opcode has high latency to its result.
1326  virtual bool isHighLatencyDef(int opc) const { return false; }
1327
1328  /// Compute operand latency between a def of 'Reg'
1329  /// and a use in the current loop. Return true if the target considered
1330  /// it 'high'. This is used by optimization passes such as machine LICM to
1331  /// determine whether it makes sense to hoist an instruction out even in a
1332  /// high register pressure situation.
1333  virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1334                                     const MachineRegisterInfo *MRI,
1335                                     const MachineInstr &DefMI, unsigned DefIdx,
1336                                     const MachineInstr &UseMI,
1337                                     unsigned UseIdx) const {
1338    return false;
1339  }
1340
1341  /// Compute operand latency of a def of 'Reg'. Return true
1342  /// if the target considered it 'low'.
1343  virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1344                                const MachineInstr &DefMI,
1345                                unsigned DefIdx) const;
1346
1347  /// Perform target-specific instruction verification.
1348  virtual bool verifyInstruction(const MachineInstr &MI,
1349                                 StringRef &ErrInfo) const {
1350    return true;
1351  }
1352
1353  /// Return the current execution domain and bit mask of
1354  /// possible domains for instruction.
1355  ///
1356  /// Some micro-architectures have multiple execution domains, and multiple
1357  /// opcodes that perform the same operation in different domains.  For
1358  /// example, the x86 architecture provides the por, orps, and orpd
1359  /// instructions that all do the same thing.  There is a latency penalty if a
1360  /// register is written in one domain and read in another.
1361  ///
1362  /// This function returns a pair (domain, mask) containing the execution
1363  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1364  /// function can be used to change the opcode to one of the domains in the
1365  /// bit mask.  Instructions whose execution domain can't be changed should
1366  /// return a 0 mask.
1367  ///
1368  /// The execution domain numbers don't have any special meaning except domain
1369  /// 0 is used for instructions that are not associated with any interesting
1370  /// execution domain.
1371  ///
1372  virtual std::pair<uint16_t, uint16_t>
1373  getExecutionDomain(const MachineInstr &MI) const {
1374    return std::make_pair(0, 0);
1375  }
1376
1377  /// Change the opcode of MI to execute in Domain.
1378  ///
1379  /// The bit (1 << Domain) must be set in the mask returned from
1380  /// getExecutionDomain(MI).
1381  virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1382
1383  /// Returns the preferred minimum clearance
1384  /// before an instruction with an unwanted partial register update.
1385  ///
1386  /// Some instructions only write part of a register, and implicitly need to
1387  /// read the other parts of the register.  This may cause unwanted stalls
1388  /// preventing otherwise unrelated instructions from executing in parallel in
1389  /// an out-of-order CPU.
1390  ///
1391  /// For example, the x86 instruction cvtsi2ss writes its result to bits
1392  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1393  /// the instruction needs to wait for the old value of the register to become
1394  /// available:
1395  ///
1396  ///   addps %xmm1, %xmm0
1397  ///   movaps %xmm0, (%rax)
1398  ///   cvtsi2ss %rbx, %xmm0
1399  ///
1400  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1401  /// instruction before it can issue, even though the high bits of %xmm0
1402  /// probably aren't needed.
1403  ///
1404  /// This hook returns the preferred clearance before MI, measured in
1405  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1406  /// instructions before MI.  It should only return a positive value for
1407  /// unwanted dependencies.  If the old bits of the defined register have
1408  /// useful values, or if MI is determined to otherwise read the dependency,
1409  /// the hook should return 0.
1410  ///
1411  /// The unwanted dependency may be handled by:
1412  ///
1413  /// 1. Allocating the same register for an MI def and use.  That makes the
1414  ///    unwanted dependency identical to a required dependency.
1415  ///
1416  /// 2. Allocating a register for the def that has no defs in the previous N
1417  ///    instructions.
1418  ///
1419  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1420  ///    allows the target to insert a dependency breaking instruction.
1421  ///
1422  virtual unsigned
1423  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1424                               const TargetRegisterInfo *TRI) const {
1425    // The default implementation returns 0 for no partial register dependency.
1426    return 0;
1427  }
1428
1429  /// \brief Return the minimum clearance before an instruction that reads an
1430  /// unused register.
1431  ///
1432  /// For example, AVX instructions may copy part of a register operand into
1433  /// the unused high bits of the destination register.
1434  ///
1435  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
1436  ///
1437  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1438  /// false dependence on any previous write to %xmm0.
1439  ///
1440  /// This hook works similarly to getPartialRegUpdateClearance, except that it
1441  /// does not take an operand index. Instead sets \p OpNum to the index of the
1442  /// unused register.
1443  virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1444                                        const TargetRegisterInfo *TRI) const {
1445    // The default implementation returns 0 for no undef register dependency.
1446    return 0;
1447  }
1448
1449  /// Insert a dependency-breaking instruction
1450  /// before MI to eliminate an unwanted dependency on OpNum.
1451  ///
1452  /// If it wasn't possible to avoid a def in the last N instructions before MI
1453  /// (see getPartialRegUpdateClearance), this hook will be called to break the
1454  /// unwanted dependency.
1455  ///
1456  /// On x86, an xorps instruction can be used as a dependency breaker:
1457  ///
1458  ///   addps %xmm1, %xmm0
1459  ///   movaps %xmm0, (%rax)
1460  ///   xorps %xmm0, %xmm0
1461  ///   cvtsi2ss %rbx, %xmm0
1462  ///
1463  /// An <imp-kill> operand should be added to MI if an instruction was
1464  /// inserted.  This ties the instructions together in the post-ra scheduler.
1465  ///
1466  virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1467                                         const TargetRegisterInfo *TRI) const {}
1468
1469  /// Create machine specific model for scheduling.
1470  virtual DFAPacketizer *
1471  CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1472    return nullptr;
1473  }
1474
1475  /// Sometimes, it is possible for the target
1476  /// to tell, even without aliasing information, that two MIs access different
1477  /// memory addresses. This function returns true if two MIs access different
1478  /// memory addresses and false otherwise.
1479  ///
1480  /// Assumes any physical registers used to compute addresses have the same
1481  /// value for both instructions. (This is the most useful assumption for
1482  /// post-RA scheduling.)
1483  ///
1484  /// See also MachineInstr::mayAlias, which is implemented on top of this
1485  /// function.
1486  virtual bool
1487  areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1488                                  AliasAnalysis *AA = nullptr) const {
1489    assert((MIa.mayLoad() || MIa.mayStore()) &&
1490           "MIa must load from or modify a memory location");
1491    assert((MIb.mayLoad() || MIb.mayStore()) &&
1492           "MIb must load from or modify a memory location");
1493    return false;
1494  }
1495
1496  /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
1497  /// which is a heuristic used for CSE'ing phys reg defs.
1498  virtual unsigned getMachineCSELookAheadLimit() const {
1499    // The default lookahead is small to prevent unprofitable quadratic
1500    // behavior.
1501    return 5;
1502  }
1503
1504  /// Return an array that contains the ids of the target indices (used for the
1505  /// TargetIndex machine operand) and their names.
1506  ///
1507  /// MIR Serialization is able to serialize only the target indices that are
1508  /// defined by this method.
1509  virtual ArrayRef<std::pair<int, const char *>>
1510  getSerializableTargetIndices() const {
1511    return None;
1512  }
1513
1514  /// Decompose the machine operand's target flags into two values - the direct
1515  /// target flag value and any of bit flags that are applied.
1516  virtual std::pair<unsigned, unsigned>
1517  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1518    return std::make_pair(0u, 0u);
1519  }
1520
1521  /// Return an array that contains the direct target flag values and their
1522  /// names.
1523  ///
1524  /// MIR Serialization is able to serialize only the target flags that are
1525  /// defined by this method.
1526  virtual ArrayRef<std::pair<unsigned, const char *>>
1527  getSerializableDirectMachineOperandTargetFlags() const {
1528    return None;
1529  }
1530
1531  /// Return an array that contains the bitmask target flag values and their
1532  /// names.
1533  ///
1534  /// MIR Serialization is able to serialize only the target flags that are
1535  /// defined by this method.
1536  virtual ArrayRef<std::pair<unsigned, const char *>>
1537  getSerializableBitmaskMachineOperandTargetFlags() const {
1538    return None;
1539  }
1540
1541  /// Return an array that contains the MMO target flag values and their
1542  /// names.
1543  ///
1544  /// MIR Serialization is able to serialize only the MMO target flags that are
1545  /// defined by this method.
1546  virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1547  getSerializableMachineMemOperandTargetFlags() const {
1548    return None;
1549  }
1550
1551  /// Determines whether \p Inst is a tail call instruction. Override this
1552  /// method on targets that do not properly set MCID::Return and MCID::Call on
1553  /// tail call instructions."
1554  virtual bool isTailCall(const MachineInstr &Inst) const {
1555    return Inst.isReturn() && Inst.isCall();
1556  }
1557
1558  /// True if the instruction is bound to the top of its basic block and no
1559  /// other instructions shall be inserted before it. This can be implemented
1560  /// to prevent register allocator to insert spills before such instructions.
1561  virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1562    return false;
1563  }
1564
1565  /// \brief Describes the number of instructions that it will take to call and
1566  /// construct a frame for a given outlining candidate.
1567  struct MachineOutlinerInfo {
1568    /// Number of instructions to call an outlined function for this candidate.
1569    unsigned CallOverhead;
1570
1571    /// \brief Number of instructions to construct an outlined function frame
1572    /// for this candidate.
1573    unsigned FrameOverhead;
1574
1575    /// \brief Represents the specific instructions that must be emitted to
1576    /// construct a call to this candidate.
1577    unsigned CallConstructionID;
1578
1579    /// \brief Represents the specific instructions that must be emitted to
1580    /// construct a frame for this candidate's outlined function.
1581    unsigned FrameConstructionID;
1582
1583    MachineOutlinerInfo() {}
1584    MachineOutlinerInfo(unsigned CallOverhead, unsigned FrameOverhead,
1585                        unsigned CallConstructionID,
1586                        unsigned FrameConstructionID)
1587        : CallOverhead(CallOverhead), FrameOverhead(FrameOverhead),
1588          CallConstructionID(CallConstructionID),
1589          FrameConstructionID(FrameConstructionID) {}
1590  };
1591
1592  /// \brief Returns a \p MachineOutlinerInfo struct containing target-specific
1593  /// information for a set of outlining candidates.
1594  virtual MachineOutlinerInfo getOutlininingCandidateInfo(
1595      std::vector<
1596          std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
1597          &RepeatedSequenceLocs) const {
1598    llvm_unreachable(
1599        "Target didn't implement TargetInstrInfo::getOutliningOverhead!");
1600  }
1601
1602  /// Represents how an instruction should be mapped by the outliner.
1603  /// \p Legal instructions are those which are safe to outline.
1604  /// \p Illegal instructions are those which cannot be outlined.
1605  /// \p Invisible instructions are instructions which can be outlined, but
1606  /// shouldn't actually impact the outlining result.
1607  enum MachineOutlinerInstrType { Legal, Illegal, Invisible };
1608
1609  /// Returns how or if \p MI should be outlined.
1610  virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
1611    llvm_unreachable(
1612        "Target didn't implement TargetInstrInfo::getOutliningType!");
1613  }
1614
1615  /// Insert a custom epilogue for outlined functions.
1616  /// This may be empty, in which case no epilogue or return statement will be
1617  /// emitted.
1618  virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
1619                                      MachineFunction &MF,
1620                                      const MachineOutlinerInfo &MInfo) const {
1621    llvm_unreachable(
1622        "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
1623  }
1624
1625  /// Insert a call to an outlined function into the program.
1626  /// Returns an iterator to the spot where we inserted the call. This must be
1627  /// implemented by the target.
1628  virtual MachineBasicBlock::iterator
1629  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1630                     MachineBasicBlock::iterator &It, MachineFunction &MF,
1631                     const MachineOutlinerInfo &MInfo) const {
1632    llvm_unreachable(
1633        "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1634  }
1635
1636  /// Insert a custom prologue for outlined functions.
1637  /// This may be empty, in which case no prologue will be emitted.
1638  virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
1639                                      MachineFunction &MF,
1640                                      const MachineOutlinerInfo &MInfo) const {
1641    llvm_unreachable(
1642        "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
1643  }
1644
1645  /// Return true if the function can safely be outlined from.
1646  /// A function \p MF is considered safe for outlining if an outlined function
1647  /// produced from instructions in F will produce a program which produces the
1648  /// same output for any set of given inputs.
1649  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1650                                           bool OutlineFromLinkOnceODRs) const {
1651    llvm_unreachable("Target didn't implement "
1652                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1653  }
1654
1655private:
1656  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1657  unsigned CatchRetOpcode;
1658  unsigned ReturnOpcode;
1659};
1660
1661/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1662template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1663  using RegInfo = DenseMapInfo<unsigned>;
1664
1665  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1666    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1667                                          RegInfo::getEmptyKey());
1668  }
1669
1670  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1671    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1672                                          RegInfo::getTombstoneKey());
1673  }
1674
1675  /// \brief Reuse getHashValue implementation from
1676  /// std::pair<unsigned, unsigned>.
1677  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1678    std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
1679    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1680  }
1681
1682  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1683                      const TargetInstrInfo::RegSubRegPair &RHS) {
1684    return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1685           RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1686  }
1687};
1688
1689} // end namespace llvm
1690
1691#endif // LLVM_TARGET_TARGETINSTRINFO_H
1692