1//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief
12/// This file declares a class to represent arbitrary precision floating point
13/// values and provide a variety of arithmetic operations on them.
14///
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_APFLOAT_H
18#define LLVM_ADT_APFLOAT_H
19
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <memory>
24
25#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
26  do {                                                                         \
27    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
28      return U.IEEE.METHOD_CALL;                                               \
29    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
30      return U.Double.METHOD_CALL;                                             \
31    llvm_unreachable("Unexpected semantics");                                  \
32  } while (false)
33
34namespace llvm {
35
36struct fltSemantics;
37class APSInt;
38class StringRef;
39class APFloat;
40class raw_ostream;
41
42template <typename T> class SmallVectorImpl;
43
44/// Enum that represents what fraction of the LSB truncated bits of an fp number
45/// represent.
46///
47/// This essentially combines the roles of guard and sticky bits.
48enum lostFraction { // Example of truncated bits:
49  lfExactlyZero,    // 000000
50  lfLessThanHalf,   // 0xxxxx  x's not all zero
51  lfExactlyHalf,    // 100000
52  lfMoreThanHalf    // 1xxxxx  x's not all zero
53};
54
55/// A self-contained host- and target-independent arbitrary-precision
56/// floating-point software implementation.
57///
58/// APFloat uses bignum integer arithmetic as provided by static functions in
59/// the APInt class.  The library will work with bignum integers whose parts are
60/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
61///
62/// Written for clarity rather than speed, in particular with a view to use in
63/// the front-end of a cross compiler so that target arithmetic can be correctly
64/// performed on the host.  Performance should nonetheless be reasonable,
65/// particularly for its intended use.  It may be useful as a base
66/// implementation for a run-time library during development of a faster
67/// target-specific one.
68///
69/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
70/// implemented operations.  Currently implemented operations are add, subtract,
71/// multiply, divide, fused-multiply-add, conversion-to-float,
72/// conversion-to-integer and conversion-from-integer.  New rounding modes
73/// (e.g. away from zero) can be added with three or four lines of code.
74///
75/// Four formats are built-in: IEEE single precision, double precision,
76/// quadruple precision, and x87 80-bit extended double (when operating with
77/// full extended precision).  Adding a new format that obeys IEEE semantics
78/// only requires adding two lines of code: a declaration and definition of the
79/// format.
80///
81/// All operations return the status of that operation as an exception bit-mask,
82/// so multiple operations can be done consecutively with their results or-ed
83/// together.  The returned status can be useful for compiler diagnostics; e.g.,
84/// inexact, underflow and overflow can be easily diagnosed on constant folding,
85/// and compiler optimizers can determine what exceptions would be raised by
86/// folding operations and optimize, or perhaps not optimize, accordingly.
87///
88/// At present, underflow tininess is detected after rounding; it should be
89/// straight forward to add support for the before-rounding case too.
90///
91/// The library reads hexadecimal floating point numbers as per C99, and
92/// correctly rounds if necessary according to the specified rounding mode.
93/// Syntax is required to have been validated by the caller.  It also converts
94/// floating point numbers to hexadecimal text as per the C99 %a and %A
95/// conversions.  The output precision (or alternatively the natural minimal
96/// precision) can be specified; if the requested precision is less than the
97/// natural precision the output is correctly rounded for the specified rounding
98/// mode.
99///
100/// It also reads decimal floating point numbers and correctly rounds according
101/// to the specified rounding mode.
102///
103/// Conversion to decimal text is not currently implemented.
104///
105/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
106/// signed exponent, and the significand as an array of integer parts.  After
107/// normalization of a number of precision P the exponent is within the range of
108/// the format, and if the number is not denormal the P-th bit of the
109/// significand is set as an explicit integer bit.  For denormals the most
110/// significant bit is shifted right so that the exponent is maintained at the
111/// format's minimum, so that the smallest denormal has just the least
112/// significant bit of the significand set.  The sign of zeroes and infinities
113/// is significant; the exponent and significand of such numbers is not stored,
114/// but has a known implicit (deterministic) value: 0 for the significands, 0
115/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
116/// significand are deterministic, although not really meaningful, and preserved
117/// in non-conversion operations.  The exponent is implicitly all 1 bits.
118///
119/// APFloat does not provide any exception handling beyond default exception
120/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
121/// by encoding Signaling NaNs with the first bit of its trailing significand as
122/// 0.
123///
124/// TODO
125/// ====
126///
127/// Some features that may or may not be worth adding:
128///
129/// Binary to decimal conversion (hard).
130///
131/// Optional ability to detect underflow tininess before rounding.
132///
133/// New formats: x87 in single and double precision mode (IEEE apart from
134/// extended exponent range) (hard).
135///
136/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
137///
138
139// This is the common type definitions shared by APFloat and its internal
140// implementation classes. This struct should not define any non-static data
141// members.
142struct APFloatBase {
143  typedef APInt::WordType integerPart;
144  static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
145
146  /// A signed type to represent a floating point numbers unbiased exponent.
147  typedef signed short ExponentType;
148
149  /// \name Floating Point Semantics.
150  /// @{
151
152  static const fltSemantics &IEEEhalf() LLVM_READNONE;
153  static const fltSemantics &IEEEsingle() LLVM_READNONE;
154  static const fltSemantics &IEEEdouble() LLVM_READNONE;
155  static const fltSemantics &IEEEquad() LLVM_READNONE;
156  static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
157  static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
158
159  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
160  /// anything real.
161  static const fltSemantics &Bogus() LLVM_READNONE;
162
163  /// @}
164
165  /// IEEE-754R 5.11: Floating Point Comparison Relations.
166  enum cmpResult {
167    cmpLessThan,
168    cmpEqual,
169    cmpGreaterThan,
170    cmpUnordered
171  };
172
173  /// IEEE-754R 4.3: Rounding-direction attributes.
174  enum roundingMode {
175    rmNearestTiesToEven,
176    rmTowardPositive,
177    rmTowardNegative,
178    rmTowardZero,
179    rmNearestTiesToAway
180  };
181
182  /// IEEE-754R 7: Default exception handling.
183  ///
184  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
185  enum opStatus {
186    opOK = 0x00,
187    opInvalidOp = 0x01,
188    opDivByZero = 0x02,
189    opOverflow = 0x04,
190    opUnderflow = 0x08,
191    opInexact = 0x10
192  };
193
194  /// Category of internally-represented number.
195  enum fltCategory {
196    fcInfinity,
197    fcNaN,
198    fcNormal,
199    fcZero
200  };
201
202  /// Convenience enum used to construct an uninitialized APFloat.
203  enum uninitializedTag {
204    uninitialized
205  };
206
207  /// Enumeration of \c ilogb error results.
208  enum IlogbErrorKinds {
209    IEK_Zero = INT_MIN + 1,
210    IEK_NaN = INT_MIN,
211    IEK_Inf = INT_MAX
212  };
213
214  static unsigned int semanticsPrecision(const fltSemantics &);
215  static ExponentType semanticsMinExponent(const fltSemantics &);
216  static ExponentType semanticsMaxExponent(const fltSemantics &);
217  static unsigned int semanticsSizeInBits(const fltSemantics &);
218
219  /// Returns the size of the floating point number (in bits) in the given
220  /// semantics.
221  static unsigned getSizeInBits(const fltSemantics &Sem);
222};
223
224namespace detail {
225
226class IEEEFloat final : public APFloatBase {
227public:
228  /// \name Constructors
229  /// @{
230
231  IEEEFloat(const fltSemantics &); // Default construct to 0.0
232  IEEEFloat(const fltSemantics &, integerPart);
233  IEEEFloat(const fltSemantics &, uninitializedTag);
234  IEEEFloat(const fltSemantics &, const APInt &);
235  explicit IEEEFloat(double d);
236  explicit IEEEFloat(float f);
237  IEEEFloat(const IEEEFloat &);
238  IEEEFloat(IEEEFloat &&);
239  ~IEEEFloat();
240
241  /// @}
242
243  /// Returns whether this instance allocated memory.
244  bool needsCleanup() const { return partCount() > 1; }
245
246  /// \name Convenience "constructors"
247  /// @{
248
249  /// @}
250
251  /// \name Arithmetic
252  /// @{
253
254  opStatus add(const IEEEFloat &, roundingMode);
255  opStatus subtract(const IEEEFloat &, roundingMode);
256  opStatus multiply(const IEEEFloat &, roundingMode);
257  opStatus divide(const IEEEFloat &, roundingMode);
258  /// IEEE remainder.
259  opStatus remainder(const IEEEFloat &);
260  /// C fmod, or llvm frem.
261  opStatus mod(const IEEEFloat &);
262  opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
263  opStatus roundToIntegral(roundingMode);
264  /// IEEE-754R 5.3.1: nextUp/nextDown.
265  opStatus next(bool nextDown);
266
267  /// @}
268
269  /// \name Sign operations.
270  /// @{
271
272  void changeSign();
273
274  /// @}
275
276  /// \name Conversions
277  /// @{
278
279  opStatus convert(const fltSemantics &, roundingMode, bool *);
280  opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
281                            roundingMode, bool *) const;
282  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
283  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
284                                          bool, roundingMode);
285  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
286                                          bool, roundingMode);
287  opStatus convertFromString(StringRef, roundingMode);
288  APInt bitcastToAPInt() const;
289  double convertToDouble() const;
290  float convertToFloat() const;
291
292  /// @}
293
294  /// The definition of equality is not straightforward for floating point, so
295  /// we won't use operator==.  Use one of the following, or write whatever it
296  /// is you really mean.
297  bool operator==(const IEEEFloat &) const = delete;
298
299  /// IEEE comparison with another floating point number (NaNs compare
300  /// unordered, 0==-0).
301  cmpResult compare(const IEEEFloat &) const;
302
303  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
304  bool bitwiseIsEqual(const IEEEFloat &) const;
305
306  /// Write out a hexadecimal representation of the floating point value to DST,
307  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
308  /// Return the number of characters written, excluding the terminating NUL.
309  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
310                                  bool upperCase, roundingMode) const;
311
312  /// \name IEEE-754R 5.7.2 General operations.
313  /// @{
314
315  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
316  /// negative.
317  ///
318  /// This applies to zeros and NaNs as well.
319  bool isNegative() const { return sign; }
320
321  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
322  ///
323  /// This implies that the current value of the float is not zero, subnormal,
324  /// infinite, or NaN following the definition of normality from IEEE-754R.
325  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
326
327  /// Returns true if and only if the current value is zero, subnormal, or
328  /// normal.
329  ///
330  /// This means that the value is not infinite or NaN.
331  bool isFinite() const { return !isNaN() && !isInfinity(); }
332
333  /// Returns true if and only if the float is plus or minus zero.
334  bool isZero() const { return category == fcZero; }
335
336  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
337  /// denormal.
338  bool isDenormal() const;
339
340  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
341  bool isInfinity() const { return category == fcInfinity; }
342
343  /// Returns true if and only if the float is a quiet or signaling NaN.
344  bool isNaN() const { return category == fcNaN; }
345
346  /// Returns true if and only if the float is a signaling NaN.
347  bool isSignaling() const;
348
349  /// @}
350
351  /// \name Simple Queries
352  /// @{
353
354  fltCategory getCategory() const { return category; }
355  const fltSemantics &getSemantics() const { return *semantics; }
356  bool isNonZero() const { return category != fcZero; }
357  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
358  bool isPosZero() const { return isZero() && !isNegative(); }
359  bool isNegZero() const { return isZero() && isNegative(); }
360
361  /// Returns true if and only if the number has the smallest possible non-zero
362  /// magnitude in the current semantics.
363  bool isSmallest() const;
364
365  /// Returns true if and only if the number has the largest possible finite
366  /// magnitude in the current semantics.
367  bool isLargest() const;
368
369  /// Returns true if and only if the number is an exact integer.
370  bool isInteger() const;
371
372  /// @}
373
374  IEEEFloat &operator=(const IEEEFloat &);
375  IEEEFloat &operator=(IEEEFloat &&);
376
377  /// Overload to compute a hash code for an APFloat value.
378  ///
379  /// Note that the use of hash codes for floating point values is in general
380  /// frought with peril. Equality is hard to define for these values. For
381  /// example, should negative and positive zero hash to different codes? Are
382  /// they equal or not? This hash value implementation specifically
383  /// emphasizes producing different codes for different inputs in order to
384  /// be used in canonicalization and memoization. As such, equality is
385  /// bitwiseIsEqual, and 0 != -0.
386  friend hash_code hash_value(const IEEEFloat &Arg);
387
388  /// Converts this value into a decimal string.
389  ///
390  /// \param FormatPrecision The maximum number of digits of
391  ///   precision to output.  If there are fewer digits available,
392  ///   zero padding will not be used unless the value is
393  ///   integral and small enough to be expressed in
394  ///   FormatPrecision digits.  0 means to use the natural
395  ///   precision of the number.
396  /// \param FormatMaxPadding The maximum number of zeros to
397  ///   consider inserting before falling back to scientific
398  ///   notation.  0 means to always use scientific notation.
399  ///
400  /// \param TruncateZero Indicate whether to remove the trailing zero in
401  ///   fraction part or not. Also setting this parameter to false forcing
402  ///   producing of output more similar to default printf behavior.
403  ///   Specifically the lower e is used as exponent delimiter and exponent
404  ///   always contains no less than two digits.
405  ///
406  /// Number       Precision    MaxPadding      Result
407  /// ------       ---------    ----------      ------
408  /// 1.01E+4              5             2       10100
409  /// 1.01E+4              4             2       1.01E+4
410  /// 1.01E+4              5             1       1.01E+4
411  /// 1.01E-2              5             2       0.0101
412  /// 1.01E-2              4             2       0.0101
413  /// 1.01E-2              4             1       1.01E-2
414  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
415                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
416
417  /// If this value has an exact multiplicative inverse, store it in inv and
418  /// return true.
419  bool getExactInverse(APFloat *inv) const;
420
421  /// Returns the exponent of the internal representation of the APFloat.
422  ///
423  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
424  /// For special APFloat values, this returns special error codes:
425  ///
426  ///   NaN -> \c IEK_NaN
427  ///   0   -> \c IEK_Zero
428  ///   Inf -> \c IEK_Inf
429  ///
430  friend int ilogb(const IEEEFloat &Arg);
431
432  /// Returns: X * 2^Exp for integral exponents.
433  friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
434
435  friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
436
437  /// \name Special value setters.
438  /// @{
439
440  void makeLargest(bool Neg = false);
441  void makeSmallest(bool Neg = false);
442  void makeNaN(bool SNaN = false, bool Neg = false,
443               const APInt *fill = nullptr);
444  void makeInf(bool Neg = false);
445  void makeZero(bool Neg = false);
446  void makeQuiet();
447
448  /// Returns the smallest (by magnitude) normalized finite number in the given
449  /// semantics.
450  ///
451  /// \param Negative - True iff the number should be negative
452  void makeSmallestNormalized(bool Negative = false);
453
454  /// @}
455
456  cmpResult compareAbsoluteValue(const IEEEFloat &) const;
457
458private:
459  /// \name Simple Queries
460  /// @{
461
462  integerPart *significandParts();
463  const integerPart *significandParts() const;
464  unsigned int partCount() const;
465
466  /// @}
467
468  /// \name Significand operations.
469  /// @{
470
471  integerPart addSignificand(const IEEEFloat &);
472  integerPart subtractSignificand(const IEEEFloat &, integerPart);
473  lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
474  lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
475  lostFraction divideSignificand(const IEEEFloat &);
476  void incrementSignificand();
477  void initialize(const fltSemantics *);
478  void shiftSignificandLeft(unsigned int);
479  lostFraction shiftSignificandRight(unsigned int);
480  unsigned int significandLSB() const;
481  unsigned int significandMSB() const;
482  void zeroSignificand();
483  /// Return true if the significand excluding the integral bit is all ones.
484  bool isSignificandAllOnes() const;
485  /// Return true if the significand excluding the integral bit is all zeros.
486  bool isSignificandAllZeros() const;
487
488  /// @}
489
490  /// \name Arithmetic on special values.
491  /// @{
492
493  opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
494  opStatus divideSpecials(const IEEEFloat &);
495  opStatus multiplySpecials(const IEEEFloat &);
496  opStatus modSpecials(const IEEEFloat &);
497
498  /// @}
499
500  /// \name Miscellany
501  /// @{
502
503  bool convertFromStringSpecials(StringRef str);
504  opStatus normalize(roundingMode, lostFraction);
505  opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
506  opStatus handleOverflow(roundingMode);
507  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
508  opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
509                                        unsigned int, bool, roundingMode,
510                                        bool *) const;
511  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
512                                    roundingMode);
513  opStatus convertFromHexadecimalString(StringRef, roundingMode);
514  opStatus convertFromDecimalString(StringRef, roundingMode);
515  char *convertNormalToHexString(char *, unsigned int, bool,
516                                 roundingMode) const;
517  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
518                                        roundingMode);
519
520  /// @}
521
522  APInt convertHalfAPFloatToAPInt() const;
523  APInt convertFloatAPFloatToAPInt() const;
524  APInt convertDoubleAPFloatToAPInt() const;
525  APInt convertQuadrupleAPFloatToAPInt() const;
526  APInt convertF80LongDoubleAPFloatToAPInt() const;
527  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
528  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
529  void initFromHalfAPInt(const APInt &api);
530  void initFromFloatAPInt(const APInt &api);
531  void initFromDoubleAPInt(const APInt &api);
532  void initFromQuadrupleAPInt(const APInt &api);
533  void initFromF80LongDoubleAPInt(const APInt &api);
534  void initFromPPCDoubleDoubleAPInt(const APInt &api);
535
536  void assign(const IEEEFloat &);
537  void copySignificand(const IEEEFloat &);
538  void freeSignificand();
539
540  /// Note: this must be the first data member.
541  /// The semantics that this value obeys.
542  const fltSemantics *semantics;
543
544  /// A binary fraction with an explicit integer bit.
545  ///
546  /// The significand must be at least one bit wider than the target precision.
547  union Significand {
548    integerPart part;
549    integerPart *parts;
550  } significand;
551
552  /// The signed unbiased exponent of the value.
553  ExponentType exponent;
554
555  /// What kind of floating point number this is.
556  ///
557  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
558  /// Using the extra bit keeps it from failing under VisualStudio.
559  fltCategory category : 3;
560
561  /// Sign bit of the number.
562  unsigned int sign : 1;
563};
564
565hash_code hash_value(const IEEEFloat &Arg);
566int ilogb(const IEEEFloat &Arg);
567IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
568IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
569
570// This mode implements more precise float in terms of two APFloats.
571// The interface and layout is designed for arbitray underlying semantics,
572// though currently only PPCDoubleDouble semantics are supported, whose
573// corresponding underlying semantics are IEEEdouble.
574class DoubleAPFloat final : public APFloatBase {
575  // Note: this must be the first data member.
576  const fltSemantics *Semantics;
577  std::unique_ptr<APFloat[]> Floats;
578
579  opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
580                   const APFloat &cc, roundingMode RM);
581
582  opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
583                          DoubleAPFloat &Out, roundingMode RM);
584
585public:
586  DoubleAPFloat(const fltSemantics &S);
587  DoubleAPFloat(const fltSemantics &S, uninitializedTag);
588  DoubleAPFloat(const fltSemantics &S, integerPart);
589  DoubleAPFloat(const fltSemantics &S, const APInt &I);
590  DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
591  DoubleAPFloat(const DoubleAPFloat &RHS);
592  DoubleAPFloat(DoubleAPFloat &&RHS);
593
594  DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
595
596  DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
597    if (this != &RHS) {
598      this->~DoubleAPFloat();
599      new (this) DoubleAPFloat(std::move(RHS));
600    }
601    return *this;
602  }
603
604  bool needsCleanup() const { return Floats != nullptr; }
605
606  APFloat &getFirst() { return Floats[0]; }
607  const APFloat &getFirst() const { return Floats[0]; }
608  APFloat &getSecond() { return Floats[1]; }
609  const APFloat &getSecond() const { return Floats[1]; }
610
611  opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
612  opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
613  opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
614  opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
615  opStatus remainder(const DoubleAPFloat &RHS);
616  opStatus mod(const DoubleAPFloat &RHS);
617  opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
618                            const DoubleAPFloat &Addend, roundingMode RM);
619  opStatus roundToIntegral(roundingMode RM);
620  void changeSign();
621  cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
622
623  fltCategory getCategory() const;
624  bool isNegative() const;
625
626  void makeInf(bool Neg);
627  void makeZero(bool Neg);
628  void makeLargest(bool Neg);
629  void makeSmallest(bool Neg);
630  void makeSmallestNormalized(bool Neg);
631  void makeNaN(bool SNaN, bool Neg, const APInt *fill);
632
633  cmpResult compare(const DoubleAPFloat &RHS) const;
634  bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
635  APInt bitcastToAPInt() const;
636  opStatus convertFromString(StringRef, roundingMode);
637  opStatus next(bool nextDown);
638
639  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
640                            unsigned int Width, bool IsSigned, roundingMode RM,
641                            bool *IsExact) const;
642  opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
643  opStatus convertFromSignExtendedInteger(const integerPart *Input,
644                                          unsigned int InputSize, bool IsSigned,
645                                          roundingMode RM);
646  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
647                                          unsigned int InputSize, bool IsSigned,
648                                          roundingMode RM);
649  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
650                                  bool UpperCase, roundingMode RM) const;
651
652  bool isDenormal() const;
653  bool isSmallest() const;
654  bool isLargest() const;
655  bool isInteger() const;
656
657  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
658                unsigned FormatMaxPadding, bool TruncateZero = true) const;
659
660  bool getExactInverse(APFloat *inv) const;
661
662  friend int ilogb(const DoubleAPFloat &Arg);
663  friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
664  friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
665  friend hash_code hash_value(const DoubleAPFloat &Arg);
666};
667
668hash_code hash_value(const DoubleAPFloat &Arg);
669
670} // End detail namespace
671
672// This is a interface class that is currently forwarding functionalities from
673// detail::IEEEFloat.
674class APFloat : public APFloatBase {
675  typedef detail::IEEEFloat IEEEFloat;
676  typedef detail::DoubleAPFloat DoubleAPFloat;
677
678  static_assert(std::is_standard_layout<IEEEFloat>::value, "");
679
680  union Storage {
681    const fltSemantics *semantics;
682    IEEEFloat IEEE;
683    DoubleAPFloat Double;
684
685    explicit Storage(IEEEFloat F, const fltSemantics &S);
686    explicit Storage(DoubleAPFloat F, const fltSemantics &S)
687        : Double(std::move(F)) {
688      assert(&S == &PPCDoubleDouble());
689    }
690
691    template <typename... ArgTypes>
692    Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
693      if (usesLayout<IEEEFloat>(Semantics)) {
694        new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
695        return;
696      }
697      if (usesLayout<DoubleAPFloat>(Semantics)) {
698        new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
699        return;
700      }
701      llvm_unreachable("Unexpected semantics");
702    }
703
704    ~Storage() {
705      if (usesLayout<IEEEFloat>(*semantics)) {
706        IEEE.~IEEEFloat();
707        return;
708      }
709      if (usesLayout<DoubleAPFloat>(*semantics)) {
710        Double.~DoubleAPFloat();
711        return;
712      }
713      llvm_unreachable("Unexpected semantics");
714    }
715
716    Storage(const Storage &RHS) {
717      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
718        new (this) IEEEFloat(RHS.IEEE);
719        return;
720      }
721      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
722        new (this) DoubleAPFloat(RHS.Double);
723        return;
724      }
725      llvm_unreachable("Unexpected semantics");
726    }
727
728    Storage(Storage &&RHS) {
729      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
730        new (this) IEEEFloat(std::move(RHS.IEEE));
731        return;
732      }
733      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
734        new (this) DoubleAPFloat(std::move(RHS.Double));
735        return;
736      }
737      llvm_unreachable("Unexpected semantics");
738    }
739
740    Storage &operator=(const Storage &RHS) {
741      if (usesLayout<IEEEFloat>(*semantics) &&
742          usesLayout<IEEEFloat>(*RHS.semantics)) {
743        IEEE = RHS.IEEE;
744      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
745                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
746        Double = RHS.Double;
747      } else if (this != &RHS) {
748        this->~Storage();
749        new (this) Storage(RHS);
750      }
751      return *this;
752    }
753
754    Storage &operator=(Storage &&RHS) {
755      if (usesLayout<IEEEFloat>(*semantics) &&
756          usesLayout<IEEEFloat>(*RHS.semantics)) {
757        IEEE = std::move(RHS.IEEE);
758      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
759                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
760        Double = std::move(RHS.Double);
761      } else if (this != &RHS) {
762        this->~Storage();
763        new (this) Storage(std::move(RHS));
764      }
765      return *this;
766    }
767  } U;
768
769  template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
770    static_assert(std::is_same<T, IEEEFloat>::value ||
771                  std::is_same<T, DoubleAPFloat>::value, "");
772    if (std::is_same<T, DoubleAPFloat>::value) {
773      return &Semantics == &PPCDoubleDouble();
774    }
775    return &Semantics != &PPCDoubleDouble();
776  }
777
778  IEEEFloat &getIEEE() {
779    if (usesLayout<IEEEFloat>(*U.semantics))
780      return U.IEEE;
781    if (usesLayout<DoubleAPFloat>(*U.semantics))
782      return U.Double.getFirst().U.IEEE;
783    llvm_unreachable("Unexpected semantics");
784  }
785
786  const IEEEFloat &getIEEE() const {
787    if (usesLayout<IEEEFloat>(*U.semantics))
788      return U.IEEE;
789    if (usesLayout<DoubleAPFloat>(*U.semantics))
790      return U.Double.getFirst().U.IEEE;
791    llvm_unreachable("Unexpected semantics");
792  }
793
794  void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
795
796  void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
797
798  void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
799    APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
800  }
801
802  void makeLargest(bool Neg) {
803    APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
804  }
805
806  void makeSmallest(bool Neg) {
807    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
808  }
809
810  void makeSmallestNormalized(bool Neg) {
811    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
812  }
813
814  // FIXME: This is due to clang 3.3 (or older version) always checks for the
815  // default constructor in an array aggregate initialization, even if no
816  // elements in the array is default initialized.
817  APFloat() : U(IEEEdouble()) {
818    llvm_unreachable("This is a workaround for old clang.");
819  }
820
821  explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
822  explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
823      : U(std::move(F), S) {}
824
825  cmpResult compareAbsoluteValue(const APFloat &RHS) const {
826    assert(&getSemantics() == &RHS.getSemantics() &&
827           "Should only compare APFloats with the same semantics");
828    if (usesLayout<IEEEFloat>(getSemantics()))
829      return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
830    if (usesLayout<DoubleAPFloat>(getSemantics()))
831      return U.Double.compareAbsoluteValue(RHS.U.Double);
832    llvm_unreachable("Unexpected semantics");
833  }
834
835public:
836  APFloat(const fltSemantics &Semantics) : U(Semantics) {}
837  APFloat(const fltSemantics &Semantics, StringRef S);
838  APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
839  // TODO: Remove this constructor. This isn't faster than the first one.
840  APFloat(const fltSemantics &Semantics, uninitializedTag)
841      : U(Semantics, uninitialized) {}
842  APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
843  explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
844  explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
845  APFloat(const APFloat &RHS) = default;
846  APFloat(APFloat &&RHS) = default;
847
848  ~APFloat() = default;
849
850  bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
851
852  /// Factory for Positive and Negative Zero.
853  ///
854  /// \param Negative True iff the number should be negative.
855  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
856    APFloat Val(Sem, uninitialized);
857    Val.makeZero(Negative);
858    return Val;
859  }
860
861  /// Factory for Positive and Negative Infinity.
862  ///
863  /// \param Negative True iff the number should be negative.
864  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
865    APFloat Val(Sem, uninitialized);
866    Val.makeInf(Negative);
867    return Val;
868  }
869
870  /// Factory for NaN values.
871  ///
872  /// \param Negative - True iff the NaN generated should be negative.
873  /// \param type - The unspecified fill bits for creating the NaN, 0 by
874  /// default.  The value is truncated as necessary.
875  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
876                        unsigned type = 0) {
877    if (type) {
878      APInt fill(64, type);
879      return getQNaN(Sem, Negative, &fill);
880    } else {
881      return getQNaN(Sem, Negative, nullptr);
882    }
883  }
884
885  /// Factory for QNaN values.
886  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
887                         const APInt *payload = nullptr) {
888    APFloat Val(Sem, uninitialized);
889    Val.makeNaN(false, Negative, payload);
890    return Val;
891  }
892
893  /// Factory for SNaN values.
894  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
895                         const APInt *payload = nullptr) {
896    APFloat Val(Sem, uninitialized);
897    Val.makeNaN(true, Negative, payload);
898    return Val;
899  }
900
901  /// Returns the largest finite number in the given semantics.
902  ///
903  /// \param Negative - True iff the number should be negative
904  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
905    APFloat Val(Sem, uninitialized);
906    Val.makeLargest(Negative);
907    return Val;
908  }
909
910  /// Returns the smallest (by magnitude) finite number in the given semantics.
911  /// Might be denormalized, which implies a relative loss of precision.
912  ///
913  /// \param Negative - True iff the number should be negative
914  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
915    APFloat Val(Sem, uninitialized);
916    Val.makeSmallest(Negative);
917    return Val;
918  }
919
920  /// Returns the smallest (by magnitude) normalized finite number in the given
921  /// semantics.
922  ///
923  /// \param Negative - True iff the number should be negative
924  static APFloat getSmallestNormalized(const fltSemantics &Sem,
925                                       bool Negative = false) {
926    APFloat Val(Sem, uninitialized);
927    Val.makeSmallestNormalized(Negative);
928    return Val;
929  }
930
931  /// Returns a float which is bitcasted from an all one value int.
932  ///
933  /// \param BitWidth - Select float type
934  /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
935  static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
936
937  /// Used to insert APFloat objects, or objects that contain APFloat objects,
938  /// into FoldingSets.
939  void Profile(FoldingSetNodeID &NID) const;
940
941  opStatus add(const APFloat &RHS, roundingMode RM) {
942    assert(&getSemantics() == &RHS.getSemantics() &&
943           "Should only call on two APFloats with the same semantics");
944    if (usesLayout<IEEEFloat>(getSemantics()))
945      return U.IEEE.add(RHS.U.IEEE, RM);
946    if (usesLayout<DoubleAPFloat>(getSemantics()))
947      return U.Double.add(RHS.U.Double, RM);
948    llvm_unreachable("Unexpected semantics");
949  }
950  opStatus subtract(const APFloat &RHS, roundingMode RM) {
951    assert(&getSemantics() == &RHS.getSemantics() &&
952           "Should only call on two APFloats with the same semantics");
953    if (usesLayout<IEEEFloat>(getSemantics()))
954      return U.IEEE.subtract(RHS.U.IEEE, RM);
955    if (usesLayout<DoubleAPFloat>(getSemantics()))
956      return U.Double.subtract(RHS.U.Double, RM);
957    llvm_unreachable("Unexpected semantics");
958  }
959  opStatus multiply(const APFloat &RHS, roundingMode RM) {
960    assert(&getSemantics() == &RHS.getSemantics() &&
961           "Should only call on two APFloats with the same semantics");
962    if (usesLayout<IEEEFloat>(getSemantics()))
963      return U.IEEE.multiply(RHS.U.IEEE, RM);
964    if (usesLayout<DoubleAPFloat>(getSemantics()))
965      return U.Double.multiply(RHS.U.Double, RM);
966    llvm_unreachable("Unexpected semantics");
967  }
968  opStatus divide(const APFloat &RHS, roundingMode RM) {
969    assert(&getSemantics() == &RHS.getSemantics() &&
970           "Should only call on two APFloats with the same semantics");
971    if (usesLayout<IEEEFloat>(getSemantics()))
972      return U.IEEE.divide(RHS.U.IEEE, RM);
973    if (usesLayout<DoubleAPFloat>(getSemantics()))
974      return U.Double.divide(RHS.U.Double, RM);
975    llvm_unreachable("Unexpected semantics");
976  }
977  opStatus remainder(const APFloat &RHS) {
978    assert(&getSemantics() == &RHS.getSemantics() &&
979           "Should only call on two APFloats with the same semantics");
980    if (usesLayout<IEEEFloat>(getSemantics()))
981      return U.IEEE.remainder(RHS.U.IEEE);
982    if (usesLayout<DoubleAPFloat>(getSemantics()))
983      return U.Double.remainder(RHS.U.Double);
984    llvm_unreachable("Unexpected semantics");
985  }
986  opStatus mod(const APFloat &RHS) {
987    assert(&getSemantics() == &RHS.getSemantics() &&
988           "Should only call on two APFloats with the same semantics");
989    if (usesLayout<IEEEFloat>(getSemantics()))
990      return U.IEEE.mod(RHS.U.IEEE);
991    if (usesLayout<DoubleAPFloat>(getSemantics()))
992      return U.Double.mod(RHS.U.Double);
993    llvm_unreachable("Unexpected semantics");
994  }
995  opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
996                            roundingMode RM) {
997    assert(&getSemantics() == &Multiplicand.getSemantics() &&
998           "Should only call on APFloats with the same semantics");
999    assert(&getSemantics() == &Addend.getSemantics() &&
1000           "Should only call on APFloats with the same semantics");
1001    if (usesLayout<IEEEFloat>(getSemantics()))
1002      return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1003    if (usesLayout<DoubleAPFloat>(getSemantics()))
1004      return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1005                                       RM);
1006    llvm_unreachable("Unexpected semantics");
1007  }
1008  opStatus roundToIntegral(roundingMode RM) {
1009    APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1010  }
1011
1012  // TODO: bool parameters are not readable and a source of bugs.
1013  // Do something.
1014  opStatus next(bool nextDown) {
1015    APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1016  }
1017
1018  /// Add two APFloats, rounding ties to the nearest even.
1019  /// No error checking.
1020  APFloat operator+(const APFloat &RHS) const {
1021    APFloat Result(*this);
1022    (void)Result.add(RHS, rmNearestTiesToEven);
1023    return Result;
1024  }
1025
1026  /// Subtract two APFloats, rounding ties to the nearest even.
1027  /// No error checking.
1028  APFloat operator-(const APFloat &RHS) const {
1029    APFloat Result(*this);
1030    (void)Result.subtract(RHS, rmNearestTiesToEven);
1031    return Result;
1032  }
1033
1034  /// Multiply two APFloats, rounding ties to the nearest even.
1035  /// No error checking.
1036  APFloat operator*(const APFloat &RHS) const {
1037    APFloat Result(*this);
1038    (void)Result.multiply(RHS, rmNearestTiesToEven);
1039    return Result;
1040  }
1041
1042  /// Divide the first APFloat by the second, rounding ties to the nearest even.
1043  /// No error checking.
1044  APFloat operator/(const APFloat &RHS) const {
1045    APFloat Result(*this);
1046    (void)Result.divide(RHS, rmNearestTiesToEven);
1047    return Result;
1048  }
1049
1050  void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
1051  void clearSign() {
1052    if (isNegative())
1053      changeSign();
1054  }
1055  void copySign(const APFloat &RHS) {
1056    if (isNegative() != RHS.isNegative())
1057      changeSign();
1058  }
1059
1060  /// A static helper to produce a copy of an APFloat value with its sign
1061  /// copied from some other APFloat.
1062  static APFloat copySign(APFloat Value, const APFloat &Sign) {
1063    Value.copySign(Sign);
1064    return Value;
1065  }
1066
1067  opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1068                   bool *losesInfo);
1069  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1070                            unsigned int Width, bool IsSigned, roundingMode RM,
1071                            bool *IsExact) const {
1072    APFLOAT_DISPATCH_ON_SEMANTICS(
1073        convertToInteger(Input, Width, IsSigned, RM, IsExact));
1074  }
1075  opStatus convertToInteger(APSInt &Result, roundingMode RM,
1076                            bool *IsExact) const;
1077  opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1078                            roundingMode RM) {
1079    APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1080  }
1081  opStatus convertFromSignExtendedInteger(const integerPart *Input,
1082                                          unsigned int InputSize, bool IsSigned,
1083                                          roundingMode RM) {
1084    APFLOAT_DISPATCH_ON_SEMANTICS(
1085        convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1086  }
1087  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1088                                          unsigned int InputSize, bool IsSigned,
1089                                          roundingMode RM) {
1090    APFLOAT_DISPATCH_ON_SEMANTICS(
1091        convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1092  }
1093  opStatus convertFromString(StringRef, roundingMode);
1094  APInt bitcastToAPInt() const {
1095    APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1096  }
1097  double convertToDouble() const { return getIEEE().convertToDouble(); }
1098  float convertToFloat() const { return getIEEE().convertToFloat(); }
1099
1100  bool operator==(const APFloat &) const = delete;
1101
1102  cmpResult compare(const APFloat &RHS) const {
1103    assert(&getSemantics() == &RHS.getSemantics() &&
1104           "Should only compare APFloats with the same semantics");
1105    if (usesLayout<IEEEFloat>(getSemantics()))
1106      return U.IEEE.compare(RHS.U.IEEE);
1107    if (usesLayout<DoubleAPFloat>(getSemantics()))
1108      return U.Double.compare(RHS.U.Double);
1109    llvm_unreachable("Unexpected semantics");
1110  }
1111
1112  bool bitwiseIsEqual(const APFloat &RHS) const {
1113    if (&getSemantics() != &RHS.getSemantics())
1114      return false;
1115    if (usesLayout<IEEEFloat>(getSemantics()))
1116      return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1117    if (usesLayout<DoubleAPFloat>(getSemantics()))
1118      return U.Double.bitwiseIsEqual(RHS.U.Double);
1119    llvm_unreachable("Unexpected semantics");
1120  }
1121
1122  /// We don't rely on operator== working on double values, as
1123  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1124  /// As such, this method can be used to do an exact bit-for-bit comparison of
1125  /// two floating point values.
1126  ///
1127  /// We leave the version with the double argument here because it's just so
1128  /// convenient to write "2.0" and the like.  Without this function we'd
1129  /// have to duplicate its logic everywhere it's called.
1130  bool isExactlyValue(double V) const {
1131    bool ignored;
1132    APFloat Tmp(V);
1133    Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1134    return bitwiseIsEqual(Tmp);
1135  }
1136
1137  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1138                                  bool UpperCase, roundingMode RM) const {
1139    APFLOAT_DISPATCH_ON_SEMANTICS(
1140        convertToHexString(DST, HexDigits, UpperCase, RM));
1141  }
1142
1143  bool isZero() const { return getCategory() == fcZero; }
1144  bool isInfinity() const { return getCategory() == fcInfinity; }
1145  bool isNaN() const { return getCategory() == fcNaN; }
1146
1147  bool isNegative() const { return getIEEE().isNegative(); }
1148  bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
1149  bool isSignaling() const { return getIEEE().isSignaling(); }
1150
1151  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
1152  bool isFinite() const { return !isNaN() && !isInfinity(); }
1153
1154  fltCategory getCategory() const { return getIEEE().getCategory(); }
1155  const fltSemantics &getSemantics() const { return *U.semantics; }
1156  bool isNonZero() const { return !isZero(); }
1157  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
1158  bool isPosZero() const { return isZero() && !isNegative(); }
1159  bool isNegZero() const { return isZero() && isNegative(); }
1160  bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
1161  bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
1162  bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
1163
1164  APFloat &operator=(const APFloat &RHS) = default;
1165  APFloat &operator=(APFloat &&RHS) = default;
1166
1167  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1168                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1169    APFLOAT_DISPATCH_ON_SEMANTICS(
1170        toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1171  }
1172
1173  void print(raw_ostream &) const;
1174  void dump() const;
1175
1176  bool getExactInverse(APFloat *inv) const {
1177    APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1178  }
1179
1180  friend hash_code hash_value(const APFloat &Arg);
1181  friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1182  friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1183  friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1184  friend IEEEFloat;
1185  friend DoubleAPFloat;
1186};
1187
1188/// See friend declarations above.
1189///
1190/// These additional declarations are required in order to compile LLVM with IBM
1191/// xlC compiler.
1192hash_code hash_value(const APFloat &Arg);
1193inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1194  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1195    return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1196  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1197    return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1198  llvm_unreachable("Unexpected semantics");
1199}
1200
1201/// Equivalent of C standard library function.
1202///
1203/// While the C standard says Exp is an unspecified value for infinity and nan,
1204/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
1205inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1206  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1207    return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1208  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1209    return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1210  llvm_unreachable("Unexpected semantics");
1211}
1212/// Returns the absolute value of the argument.
1213inline APFloat abs(APFloat X) {
1214  X.clearSign();
1215  return X;
1216}
1217
1218/// \brief Returns the negated value of the argument.
1219inline APFloat neg(APFloat X) {
1220  X.changeSign();
1221  return X;
1222}
1223
1224/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
1225/// both are not NaN. If either argument is a NaN, returns the other argument.
1226LLVM_READONLY
1227inline APFloat minnum(const APFloat &A, const APFloat &B) {
1228  if (A.isNaN())
1229    return B;
1230  if (B.isNaN())
1231    return A;
1232  return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
1233}
1234
1235/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
1236/// both are not NaN. If either argument is a NaN, returns the other argument.
1237LLVM_READONLY
1238inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1239  if (A.isNaN())
1240    return B;
1241  if (B.isNaN())
1242    return A;
1243  return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
1244}
1245
1246} // namespace llvm
1247
1248#undef APFLOAT_DISPATCH_ON_SEMANTICS
1249#endif // LLVM_ADT_APFLOAT_H
1250