1//===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an iterator that enumerates the intervals in a control flow
11// graph of some sort.  This iterator is parametric, allowing iterator over the
12// following types of graphs:
13//
14//  1. A Function* object, composed of BasicBlock nodes.
15//  2. An IntervalPartition& object, composed of Interval nodes.
16//
17// This iterator is defined to walk the control flow graph, returning intervals
18// in depth first order.  These intervals are completely filled in except for
19// the predecessor fields (the successor information is filled in however).
20//
21// By default, the intervals created by this iterator are deleted after they
22// are no longer any use to the iterator.  This behavior can be changed by
23// passing a false value into the intervals_begin() function. This causes the
24// IOwnMem member to be set, and the intervals to not be deleted.
25//
26// It is only safe to use this if all of the intervals are deleted by the caller
27// and all of the intervals are processed.  However, the user of the iterator is
28// not allowed to modify or delete the intervals until after the iterator has
29// been used completely.  The IntervalPartition class uses this functionality.
30//
31//===----------------------------------------------------------------------===//
32
33#ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
34#define LLVM_ANALYSIS_INTERVALITERATOR_H
35
36#include "llvm/ADT/GraphTraits.h"
37#include "llvm/Analysis/Interval.h"
38#include "llvm/Analysis/IntervalPartition.h"
39#include "llvm/IR/CFG.h"
40#include "llvm/IR/Function.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <algorithm>
43#include <cassert>
44#include <iterator>
45#include <set>
46#include <utility>
47#include <vector>
48
49namespace llvm {
50
51class BasicBlock;
52
53// getNodeHeader - Given a source graph node and the source graph, return the
54// BasicBlock that is the header node.  This is the opposite of
55// getSourceGraphNode.
56inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
57inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
58
59// getSourceGraphNode - Given a BasicBlock and the source graph, return the
60// source graph node that corresponds to the BasicBlock.  This is the opposite
61// of getNodeHeader.
62inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
63  return BB;
64}
65inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
66  return IP->getBlockInterval(BB);
67}
68
69// addNodeToInterval - This method exists to assist the generic ProcessNode
70// with the task of adding a node to the new interval, depending on the
71// type of the source node.  In the case of a CFG source graph (BasicBlock
72// case), the BasicBlock itself is added to the interval.
73inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
74  Int->Nodes.push_back(BB);
75}
76
77// addNodeToInterval - This method exists to assist the generic ProcessNode
78// with the task of adding a node to the new interval, depending on the
79// type of the source node.  In the case of a CFG source graph (BasicBlock
80// case), the BasicBlock itself is added to the interval.  In the case of
81// an IntervalPartition source graph (Interval case), all of the member
82// BasicBlocks are added to the interval.
83inline void addNodeToInterval(Interval *Int, Interval *I) {
84  // Add all of the nodes in I as new nodes in Int.
85  Int->Nodes.insert(Int->Nodes.end(), I->Nodes.begin(), I->Nodes.end());
86}
87
88template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy *>,
89         class IGT = GraphTraits<Inverse<NodeTy *>>>
90class IntervalIterator {
91  std::vector<std::pair<Interval *, typename Interval::succ_iterator>> IntStack;
92  std::set<BasicBlock *> Visited;
93  OrigContainer_t *OrigContainer;
94  bool IOwnMem;     // If True, delete intervals when done with them
95                    // See file header for conditions of use
96
97public:
98  using iterator_category = std::forward_iterator_tag;
99
100  IntervalIterator() = default; // End iterator, empty stack
101
102  IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
103    OrigContainer = M;
104    if (!ProcessInterval(&M->front())) {
105      llvm_unreachable("ProcessInterval should never fail for first interval!");
106    }
107  }
108
109  IntervalIterator(IntervalIterator &&x)
110      : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
111        OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
112    x.IOwnMem = false;
113  }
114
115  IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
116    OrigContainer = &IP;
117    if (!ProcessInterval(IP.getRootInterval())) {
118      llvm_unreachable("ProcessInterval should never fail for first interval!");
119    }
120  }
121
122  ~IntervalIterator() {
123    if (IOwnMem)
124      while (!IntStack.empty()) {
125        delete operator*();
126        IntStack.pop_back();
127      }
128  }
129
130  bool operator==(const IntervalIterator &x) const {
131    return IntStack == x.IntStack;
132  }
133  bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
134
135  const Interval *operator*() const { return IntStack.back().first; }
136  Interval *operator*() { return IntStack.back().first; }
137  const Interval *operator->() const { return operator*(); }
138  Interval *operator->() { return operator*(); }
139
140  IntervalIterator &operator++() { // Preincrement
141    assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
142    do {
143      // All of the intervals on the stack have been visited.  Try visiting
144      // their successors now.
145      Interval::succ_iterator &SuccIt = IntStack.back().second,
146                                EndIt = succ_end(IntStack.back().first);
147      while (SuccIt != EndIt) {                 // Loop over all interval succs
148        bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
149        ++SuccIt;                               // Increment iterator
150        if (Done) return *this;                 // Found a new interval! Use it!
151      }
152
153      // Free interval memory... if necessary
154      if (IOwnMem) delete IntStack.back().first;
155
156      // We ran out of successors for this interval... pop off the stack
157      IntStack.pop_back();
158    } while (!IntStack.empty());
159
160    return *this;
161  }
162
163  IntervalIterator operator++(int) { // Postincrement
164    IntervalIterator tmp = *this;
165    ++*this;
166    return tmp;
167  }
168
169private:
170  // ProcessInterval - This method is used during the construction of the
171  // interval graph.  It walks through the source graph, recursively creating
172  // an interval per invocation until the entire graph is covered.  This uses
173  // the ProcessNode method to add all of the nodes to the interval.
174  //
175  // This method is templated because it may operate on two different source
176  // graphs: a basic block graph, or a preexisting interval graph.
177  bool ProcessInterval(NodeTy *Node) {
178    BasicBlock *Header = getNodeHeader(Node);
179    if (!Visited.insert(Header).second)
180      return false;
181
182    Interval *Int = new Interval(Header);
183
184    // Check all of our successors to see if they are in the interval...
185    for (typename GT::ChildIteratorType I = GT::child_begin(Node),
186           E = GT::child_end(Node); I != E; ++I)
187      ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
188
189    IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
190    return true;
191  }
192
193  // ProcessNode - This method is called by ProcessInterval to add nodes to the
194  // interval being constructed, and it is also called recursively as it walks
195  // the source graph.  A node is added to the current interval only if all of
196  // its predecessors are already in the graph.  This also takes care of keeping
197  // the successor set of an interval up to date.
198  //
199  // This method is templated because it may operate on two different source
200  // graphs: a basic block graph, or a preexisting interval graph.
201  void ProcessNode(Interval *Int, NodeTy *Node) {
202    assert(Int && "Null interval == bad!");
203    assert(Node && "Null Node == bad!");
204
205    BasicBlock *NodeHeader = getNodeHeader(Node);
206
207    if (Visited.count(NodeHeader)) {     // Node already been visited?
208      if (Int->contains(NodeHeader)) {   // Already in this interval...
209        return;
210      } else {                           // In other interval, add as successor
211        if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
212          Int->Successors.push_back(NodeHeader);
213      }
214    } else {                             // Otherwise, not in interval yet
215      for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
216             E = IGT::child_end(Node); I != E; ++I) {
217        if (!Int->contains(*I)) {        // If pred not in interval, we can't be
218          if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
219            Int->Successors.push_back(NodeHeader);
220          return;                        // See you later
221        }
222      }
223
224      // If we get here, then all of the predecessors of BB are in the interval
225      // already.  In this case, we must add BB to the interval!
226      addNodeToInterval(Int, Node);
227      Visited.insert(NodeHeader);     // The node has now been visited!
228
229      if (Int->isSuccessor(NodeHeader)) {
230        // If we were in the successor list from before... remove from succ list
231        Int->Successors.erase(std::remove(Int->Successors.begin(),
232                                          Int->Successors.end(), NodeHeader),
233                              Int->Successors.end());
234      }
235
236      // Now that we have discovered that Node is in the interval, perhaps some
237      // of its successors are as well?
238      for (typename GT::ChildIteratorType It = GT::child_begin(Node),
239             End = GT::child_end(Node); It != End; ++It)
240        ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
241    }
242  }
243};
244
245using function_interval_iterator = IntervalIterator<BasicBlock, Function>;
246using interval_part_interval_iterator =
247    IntervalIterator<Interval, IntervalPartition>;
248
249inline function_interval_iterator intervals_begin(Function *F,
250                                                  bool DeleteInts = true) {
251  return function_interval_iterator(F, DeleteInts);
252}
253inline function_interval_iterator intervals_end(Function *) {
254  return function_interval_iterator();
255}
256
257inline interval_part_interval_iterator
258   intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
259  return interval_part_interval_iterator(IP, DeleteIntervals);
260}
261
262inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
263  return interval_part_interval_iterator();
264}
265
266} // end namespace llvm
267
268#endif // LLVM_ANALYSIS_INTERVALITERATOR_H
269