1//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interface for the loop memory dependence framework that
11// was originally developed for the Loop Vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
17
18#include "llvm/ADT/EquivalenceClasses.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/AliasSetTracker.h"
23#include "llvm/Analysis/LoopAnalysisManager.h"
24#include "llvm/Analysis/ScalarEvolutionExpressions.h"
25#include "llvm/IR/DiagnosticInfo.h"
26#include "llvm/IR/ValueHandle.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/raw_ostream.h"
29
30namespace llvm {
31
32class Value;
33class DataLayout;
34class ScalarEvolution;
35class Loop;
36class SCEV;
37class SCEVUnionPredicate;
38class LoopAccessInfo;
39class OptimizationRemarkEmitter;
40
41/// \brief Collection of parameters shared beetween the Loop Vectorizer and the
42/// Loop Access Analysis.
43struct VectorizerParams {
44  /// \brief Maximum SIMD width.
45  static const unsigned MaxVectorWidth;
46
47  /// \brief VF as overridden by the user.
48  static unsigned VectorizationFactor;
49  /// \brief Interleave factor as overridden by the user.
50  static unsigned VectorizationInterleave;
51  /// \brief True if force-vector-interleave was specified by the user.
52  static bool isInterleaveForced();
53
54  /// \\brief When performing memory disambiguation checks at runtime do not
55  /// make more than this number of comparisons.
56  static unsigned RuntimeMemoryCheckThreshold;
57};
58
59/// \brief Checks memory dependences among accesses to the same underlying
60/// object to determine whether there vectorization is legal or not (and at
61/// which vectorization factor).
62///
63/// Note: This class will compute a conservative dependence for access to
64/// different underlying pointers. Clients, such as the loop vectorizer, will
65/// sometimes deal these potential dependencies by emitting runtime checks.
66///
67/// We use the ScalarEvolution framework to symbolically evalutate access
68/// functions pairs. Since we currently don't restructure the loop we can rely
69/// on the program order of memory accesses to determine their safety.
70/// At the moment we will only deem accesses as safe for:
71///  * A negative constant distance assuming program order.
72///
73///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
74///            a[i] = tmp;                y = a[i];
75///
76///   The latter case is safe because later checks guarantuee that there can't
77///   be a cycle through a phi node (that is, we check that "x" and "y" is not
78///   the same variable: a header phi can only be an induction or a reduction, a
79///   reduction can't have a memory sink, an induction can't have a memory
80///   source). This is important and must not be violated (or we have to
81///   resort to checking for cycles through memory).
82///
83///  * A positive constant distance assuming program order that is bigger
84///    than the biggest memory access.
85///
86///     tmp = a[i]        OR              b[i] = x
87///     a[i+2] = tmp                      y = b[i+2];
88///
89///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
90///
91///  * Zero distances and all accesses have the same size.
92///
93class MemoryDepChecker {
94public:
95  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
96  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
97  /// \brief Set of potential dependent memory accesses.
98  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
99
100  /// \brief Dependece between memory access instructions.
101  struct Dependence {
102    /// \brief The type of the dependence.
103    enum DepType {
104      // No dependence.
105      NoDep,
106      // We couldn't determine the direction or the distance.
107      Unknown,
108      // Lexically forward.
109      //
110      // FIXME: If we only have loop-independent forward dependences (e.g. a
111      // read and write of A[i]), LAA will locally deem the dependence "safe"
112      // without querying the MemoryDepChecker.  Therefore we can miss
113      // enumerating loop-independent forward dependences in
114      // getDependences.  Note that as soon as there are different
115      // indices used to access the same array, the MemoryDepChecker *is*
116      // queried and the dependence list is complete.
117      Forward,
118      // Forward, but if vectorized, is likely to prevent store-to-load
119      // forwarding.
120      ForwardButPreventsForwarding,
121      // Lexically backward.
122      Backward,
123      // Backward, but the distance allows a vectorization factor of
124      // MaxSafeDepDistBytes.
125      BackwardVectorizable,
126      // Same, but may prevent store-to-load forwarding.
127      BackwardVectorizableButPreventsForwarding
128    };
129
130    /// \brief String version of the types.
131    static const char *DepName[];
132
133    /// \brief Index of the source of the dependence in the InstMap vector.
134    unsigned Source;
135    /// \brief Index of the destination of the dependence in the InstMap vector.
136    unsigned Destination;
137    /// \brief The type of the dependence.
138    DepType Type;
139
140    Dependence(unsigned Source, unsigned Destination, DepType Type)
141        : Source(Source), Destination(Destination), Type(Type) {}
142
143    /// \brief Return the source instruction of the dependence.
144    Instruction *getSource(const LoopAccessInfo &LAI) const;
145    /// \brief Return the destination instruction of the dependence.
146    Instruction *getDestination(const LoopAccessInfo &LAI) const;
147
148    /// \brief Dependence types that don't prevent vectorization.
149    static bool isSafeForVectorization(DepType Type);
150
151    /// \brief Lexically forward dependence.
152    bool isForward() const;
153    /// \brief Lexically backward dependence.
154    bool isBackward() const;
155
156    /// \brief May be a lexically backward dependence type (includes Unknown).
157    bool isPossiblyBackward() const;
158
159    /// \brief Print the dependence.  \p Instr is used to map the instruction
160    /// indices to instructions.
161    void print(raw_ostream &OS, unsigned Depth,
162               const SmallVectorImpl<Instruction *> &Instrs) const;
163  };
164
165  MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
166      : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeRegisterWidth(-1U),
167        ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
168        RecordDependences(true) {}
169
170  /// \brief Register the location (instructions are given increasing numbers)
171  /// of a write access.
172  void addAccess(StoreInst *SI) {
173    Value *Ptr = SI->getPointerOperand();
174    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
175    InstMap.push_back(SI);
176    ++AccessIdx;
177  }
178
179  /// \brief Register the location (instructions are given increasing numbers)
180  /// of a write access.
181  void addAccess(LoadInst *LI) {
182    Value *Ptr = LI->getPointerOperand();
183    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
184    InstMap.push_back(LI);
185    ++AccessIdx;
186  }
187
188  /// \brief Check whether the dependencies between the accesses are safe.
189  ///
190  /// Only checks sets with elements in \p CheckDeps.
191  bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
192                   const ValueToValueMap &Strides);
193
194  /// \brief No memory dependence was encountered that would inhibit
195  /// vectorization.
196  bool isSafeForVectorization() const { return SafeForVectorization; }
197
198  /// \brief The maximum number of bytes of a vector register we can vectorize
199  /// the accesses safely with.
200  uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
201
202  /// \brief Return the number of elements that are safe to operate on
203  /// simultaneously, multiplied by the size of the element in bits.
204  uint64_t getMaxSafeRegisterWidth() const { return MaxSafeRegisterWidth; }
205
206  /// \brief In same cases when the dependency check fails we can still
207  /// vectorize the loop with a dynamic array access check.
208  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
209
210  /// \brief Returns the memory dependences.  If null is returned we exceeded
211  /// the MaxDependences threshold and this information is not
212  /// available.
213  const SmallVectorImpl<Dependence> *getDependences() const {
214    return RecordDependences ? &Dependences : nullptr;
215  }
216
217  void clearDependences() { Dependences.clear(); }
218
219  /// \brief The vector of memory access instructions.  The indices are used as
220  /// instruction identifiers in the Dependence class.
221  const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
222    return InstMap;
223  }
224
225  /// \brief Generate a mapping between the memory instructions and their
226  /// indices according to program order.
227  DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
228    DenseMap<Instruction *, unsigned> OrderMap;
229
230    for (unsigned I = 0; I < InstMap.size(); ++I)
231      OrderMap[InstMap[I]] = I;
232
233    return OrderMap;
234  }
235
236  /// \brief Find the set of instructions that read or write via \p Ptr.
237  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
238                                                         bool isWrite) const;
239
240private:
241  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
242  /// applies dynamic knowledge to simplify SCEV expressions and convert them
243  /// to a more usable form. We need this in case assumptions about SCEV
244  /// expressions need to be made in order to avoid unknown dependences. For
245  /// example we might assume a unit stride for a pointer in order to prove
246  /// that a memory access is strided and doesn't wrap.
247  PredicatedScalarEvolution &PSE;
248  const Loop *InnermostLoop;
249
250  /// \brief Maps access locations (ptr, read/write) to program order.
251  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
252
253  /// \brief Memory access instructions in program order.
254  SmallVector<Instruction *, 16> InstMap;
255
256  /// \brief The program order index to be used for the next instruction.
257  unsigned AccessIdx;
258
259  // We can access this many bytes in parallel safely.
260  uint64_t MaxSafeDepDistBytes;
261
262  /// \brief Number of elements (from consecutive iterations) that are safe to
263  /// operate on simultaneously, multiplied by the size of the element in bits.
264  /// The size of the element is taken from the memory access that is most
265  /// restrictive.
266  uint64_t MaxSafeRegisterWidth;
267
268  /// \brief If we see a non-constant dependence distance we can still try to
269  /// vectorize this loop with runtime checks.
270  bool ShouldRetryWithRuntimeCheck;
271
272  /// \brief No memory dependence was encountered that would inhibit
273  /// vectorization.
274  bool SafeForVectorization;
275
276  //// \brief True if Dependences reflects the dependences in the
277  //// loop.  If false we exceeded MaxDependences and
278  //// Dependences is invalid.
279  bool RecordDependences;
280
281  /// \brief Memory dependences collected during the analysis.  Only valid if
282  /// RecordDependences is true.
283  SmallVector<Dependence, 8> Dependences;
284
285  /// \brief Check whether there is a plausible dependence between the two
286  /// accesses.
287  ///
288  /// Access \p A must happen before \p B in program order. The two indices
289  /// identify the index into the program order map.
290  ///
291  /// This function checks  whether there is a plausible dependence (or the
292  /// absence of such can't be proved) between the two accesses. If there is a
293  /// plausible dependence but the dependence distance is bigger than one
294  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
295  /// distance is smaller than any other distance encountered so far).
296  /// Otherwise, this function returns true signaling a possible dependence.
297  Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
298                                  const MemAccessInfo &B, unsigned BIdx,
299                                  const ValueToValueMap &Strides);
300
301  /// \brief Check whether the data dependence could prevent store-load
302  /// forwarding.
303  ///
304  /// \return false if we shouldn't vectorize at all or avoid larger
305  /// vectorization factors by limiting MaxSafeDepDistBytes.
306  bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
307};
308
309/// \brief Holds information about the memory runtime legality checks to verify
310/// that a group of pointers do not overlap.
311class RuntimePointerChecking {
312public:
313  struct PointerInfo {
314    /// Holds the pointer value that we need to check.
315    TrackingVH<Value> PointerValue;
316    /// Holds the smallest byte address accessed by the pointer throughout all
317    /// iterations of the loop.
318    const SCEV *Start;
319    /// Holds the largest byte address accessed by the pointer throughout all
320    /// iterations of the loop, plus 1.
321    const SCEV *End;
322    /// Holds the information if this pointer is used for writing to memory.
323    bool IsWritePtr;
324    /// Holds the id of the set of pointers that could be dependent because of a
325    /// shared underlying object.
326    unsigned DependencySetId;
327    /// Holds the id of the disjoint alias set to which this pointer belongs.
328    unsigned AliasSetId;
329    /// SCEV for the access.
330    const SCEV *Expr;
331
332    PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
333                bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
334                const SCEV *Expr)
335        : PointerValue(PointerValue), Start(Start), End(End),
336          IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
337          AliasSetId(AliasSetId), Expr(Expr) {}
338  };
339
340  RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
341
342  /// Reset the state of the pointer runtime information.
343  void reset() {
344    Need = false;
345    Pointers.clear();
346    Checks.clear();
347  }
348
349  /// Insert a pointer and calculate the start and end SCEVs.
350  /// We need \p PSE in order to compute the SCEV expression of the pointer
351  /// according to the assumptions that we've made during the analysis.
352  /// The method might also version the pointer stride according to \p Strides,
353  /// and add new predicates to \p PSE.
354  void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
355              unsigned ASId, const ValueToValueMap &Strides,
356              PredicatedScalarEvolution &PSE);
357
358  /// \brief No run-time memory checking is necessary.
359  bool empty() const { return Pointers.empty(); }
360
361  /// A grouping of pointers. A single memcheck is required between
362  /// two groups.
363  struct CheckingPtrGroup {
364    /// \brief Create a new pointer checking group containing a single
365    /// pointer, with index \p Index in RtCheck.
366    CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
367        : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
368          Low(RtCheck.Pointers[Index].Start) {
369      Members.push_back(Index);
370    }
371
372    /// \brief Tries to add the pointer recorded in RtCheck at index
373    /// \p Index to this pointer checking group. We can only add a pointer
374    /// to a checking group if we will still be able to get
375    /// the upper and lower bounds of the check. Returns true in case
376    /// of success, false otherwise.
377    bool addPointer(unsigned Index);
378
379    /// Constitutes the context of this pointer checking group. For each
380    /// pointer that is a member of this group we will retain the index
381    /// at which it appears in RtCheck.
382    RuntimePointerChecking &RtCheck;
383    /// The SCEV expression which represents the upper bound of all the
384    /// pointers in this group.
385    const SCEV *High;
386    /// The SCEV expression which represents the lower bound of all the
387    /// pointers in this group.
388    const SCEV *Low;
389    /// Indices of all the pointers that constitute this grouping.
390    SmallVector<unsigned, 2> Members;
391  };
392
393  /// \brief A memcheck which made up of a pair of grouped pointers.
394  ///
395  /// These *have* to be const for now, since checks are generated from
396  /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
397  /// function.  FIXME: once check-generation is moved inside this class (after
398  /// the PtrPartition hack is removed), we could drop const.
399  typedef std::pair<const CheckingPtrGroup *, const CheckingPtrGroup *>
400      PointerCheck;
401
402  /// \brief Generate the checks and store it.  This also performs the grouping
403  /// of pointers to reduce the number of memchecks necessary.
404  void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
405                      bool UseDependencies);
406
407  /// \brief Returns the checks that generateChecks created.
408  const SmallVector<PointerCheck, 4> &getChecks() const { return Checks; }
409
410  /// \brief Decide if we need to add a check between two groups of pointers,
411  /// according to needsChecking.
412  bool needsChecking(const CheckingPtrGroup &M,
413                     const CheckingPtrGroup &N) const;
414
415  /// \brief Returns the number of run-time checks required according to
416  /// needsChecking.
417  unsigned getNumberOfChecks() const { return Checks.size(); }
418
419  /// \brief Print the list run-time memory checks necessary.
420  void print(raw_ostream &OS, unsigned Depth = 0) const;
421
422  /// Print \p Checks.
423  void printChecks(raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
424                   unsigned Depth = 0) const;
425
426  /// This flag indicates if we need to add the runtime check.
427  bool Need;
428
429  /// Information about the pointers that may require checking.
430  SmallVector<PointerInfo, 2> Pointers;
431
432  /// Holds a partitioning of pointers into "check groups".
433  SmallVector<CheckingPtrGroup, 2> CheckingGroups;
434
435  /// \brief Check if pointers are in the same partition
436  ///
437  /// \p PtrToPartition contains the partition number for pointers (-1 if the
438  /// pointer belongs to multiple partitions).
439  static bool
440  arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
441                             unsigned PtrIdx1, unsigned PtrIdx2);
442
443  /// \brief Decide whether we need to issue a run-time check for pointer at
444  /// index \p I and \p J to prove their independence.
445  bool needsChecking(unsigned I, unsigned J) const;
446
447  /// \brief Return PointerInfo for pointer at index \p PtrIdx.
448  const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
449    return Pointers[PtrIdx];
450  }
451
452private:
453  /// \brief Groups pointers such that a single memcheck is required
454  /// between two different groups. This will clear the CheckingGroups vector
455  /// and re-compute it. We will only group dependecies if \p UseDependencies
456  /// is true, otherwise we will create a separate group for each pointer.
457  void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
458                   bool UseDependencies);
459
460  /// Generate the checks and return them.
461  SmallVector<PointerCheck, 4>
462  generateChecks() const;
463
464  /// Holds a pointer to the ScalarEvolution analysis.
465  ScalarEvolution *SE;
466
467  /// \brief Set of run-time checks required to establish independence of
468  /// otherwise may-aliasing pointers in the loop.
469  SmallVector<PointerCheck, 4> Checks;
470};
471
472/// \brief Drive the analysis of memory accesses in the loop
473///
474/// This class is responsible for analyzing the memory accesses of a loop.  It
475/// collects the accesses and then its main helper the AccessAnalysis class
476/// finds and categorizes the dependences in buildDependenceSets.
477///
478/// For memory dependences that can be analyzed at compile time, it determines
479/// whether the dependence is part of cycle inhibiting vectorization.  This work
480/// is delegated to the MemoryDepChecker class.
481///
482/// For memory dependences that cannot be determined at compile time, it
483/// generates run-time checks to prove independence.  This is done by
484/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
485/// RuntimePointerCheck class.
486///
487/// If pointers can wrap or can't be expressed as affine AddRec expressions by
488/// ScalarEvolution, we will generate run-time checks by emitting a
489/// SCEVUnionPredicate.
490///
491/// Checks for both memory dependences and the SCEV predicates contained in the
492/// PSE must be emitted in order for the results of this analysis to be valid.
493class LoopAccessInfo {
494public:
495  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
496                 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI);
497
498  /// Return true we can analyze the memory accesses in the loop and there are
499  /// no memory dependence cycles.
500  bool canVectorizeMemory() const { return CanVecMem; }
501
502  const RuntimePointerChecking *getRuntimePointerChecking() const {
503    return PtrRtChecking.get();
504  }
505
506  /// \brief Number of memchecks required to prove independence of otherwise
507  /// may-alias pointers.
508  unsigned getNumRuntimePointerChecks() const {
509    return PtrRtChecking->getNumberOfChecks();
510  }
511
512  /// Return true if the block BB needs to be predicated in order for the loop
513  /// to be vectorized.
514  static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
515                                    DominatorTree *DT);
516
517  /// Returns true if the value V is uniform within the loop.
518  bool isUniform(Value *V) const;
519
520  uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
521  unsigned getNumStores() const { return NumStores; }
522  unsigned getNumLoads() const { return NumLoads;}
523
524  /// \brief Add code that checks at runtime if the accessed arrays overlap.
525  ///
526  /// Returns a pair of instructions where the first element is the first
527  /// instruction generated in possibly a sequence of instructions and the
528  /// second value is the final comparator value or NULL if no check is needed.
529  std::pair<Instruction *, Instruction *>
530  addRuntimeChecks(Instruction *Loc) const;
531
532  /// \brief Generete the instructions for the checks in \p PointerChecks.
533  ///
534  /// Returns a pair of instructions where the first element is the first
535  /// instruction generated in possibly a sequence of instructions and the
536  /// second value is the final comparator value or NULL if no check is needed.
537  std::pair<Instruction *, Instruction *>
538  addRuntimeChecks(Instruction *Loc,
539                   const SmallVectorImpl<RuntimePointerChecking::PointerCheck>
540                       &PointerChecks) const;
541
542  /// \brief The diagnostics report generated for the analysis.  E.g. why we
543  /// couldn't analyze the loop.
544  const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
545
546  /// \brief the Memory Dependence Checker which can determine the
547  /// loop-independent and loop-carried dependences between memory accesses.
548  const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
549
550  /// \brief Return the list of instructions that use \p Ptr to read or write
551  /// memory.
552  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
553                                                         bool isWrite) const {
554    return DepChecker->getInstructionsForAccess(Ptr, isWrite);
555  }
556
557  /// \brief If an access has a symbolic strides, this maps the pointer value to
558  /// the stride symbol.
559  const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
560
561  /// \brief Pointer has a symbolic stride.
562  bool hasStride(Value *V) const { return StrideSet.count(V); }
563
564  /// \brief Print the information about the memory accesses in the loop.
565  void print(raw_ostream &OS, unsigned Depth = 0) const;
566
567  /// \brief Checks existence of store to invariant address inside loop.
568  /// If the loop has any store to invariant address, then it returns true,
569  /// else returns false.
570  bool hasStoreToLoopInvariantAddress() const {
571    return StoreToLoopInvariantAddress;
572  }
573
574  /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
575  /// them to a more usable form.  All SCEV expressions during the analysis
576  /// should be re-written (and therefore simplified) according to PSE.
577  /// A user of LoopAccessAnalysis will need to emit the runtime checks
578  /// associated with this predicate.
579  const PredicatedScalarEvolution &getPSE() const { return *PSE; }
580
581private:
582  /// \brief Analyze the loop.
583  void analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
584                   const TargetLibraryInfo *TLI, DominatorTree *DT);
585
586  /// \brief Check if the structure of the loop allows it to be analyzed by this
587  /// pass.
588  bool canAnalyzeLoop();
589
590  /// \brief Save the analysis remark.
591  ///
592  /// LAA does not directly emits the remarks.  Instead it stores it which the
593  /// client can retrieve and presents as its own analysis
594  /// (e.g. -Rpass-analysis=loop-vectorize).
595  OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
596                                             Instruction *Instr = nullptr);
597
598  /// \brief Collect memory access with loop invariant strides.
599  ///
600  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
601  /// invariant.
602  void collectStridedAccess(Value *LoadOrStoreInst);
603
604  std::unique_ptr<PredicatedScalarEvolution> PSE;
605
606  /// We need to check that all of the pointers in this list are disjoint
607  /// at runtime. Using std::unique_ptr to make using move ctor simpler.
608  std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
609
610  /// \brief the Memory Dependence Checker which can determine the
611  /// loop-independent and loop-carried dependences between memory accesses.
612  std::unique_ptr<MemoryDepChecker> DepChecker;
613
614  Loop *TheLoop;
615
616  unsigned NumLoads;
617  unsigned NumStores;
618
619  uint64_t MaxSafeDepDistBytes;
620
621  /// \brief Cache the result of analyzeLoop.
622  bool CanVecMem;
623
624  /// \brief Indicator for storing to uniform addresses.
625  /// If a loop has write to a loop invariant address then it should be true.
626  bool StoreToLoopInvariantAddress;
627
628  /// \brief The diagnostics report generated for the analysis.  E.g. why we
629  /// couldn't analyze the loop.
630  std::unique_ptr<OptimizationRemarkAnalysis> Report;
631
632  /// \brief If an access has a symbolic strides, this maps the pointer value to
633  /// the stride symbol.
634  ValueToValueMap SymbolicStrides;
635
636  /// \brief Set of symbolic strides values.
637  SmallPtrSet<Value *, 8> StrideSet;
638};
639
640Value *stripIntegerCast(Value *V);
641
642/// \brief Return the SCEV corresponding to a pointer with the symbolic stride
643/// replaced with constant one, assuming the SCEV predicate associated with
644/// \p PSE is true.
645///
646/// If necessary this method will version the stride of the pointer according
647/// to \p PtrToStride and therefore add further predicates to \p PSE.
648///
649/// If \p OrigPtr is not null, use it to look up the stride value instead of \p
650/// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
651/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
652const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
653                                      const ValueToValueMap &PtrToStride,
654                                      Value *Ptr, Value *OrigPtr = nullptr);
655
656/// \brief If the pointer has a constant stride return it in units of its
657/// element size.  Otherwise return zero.
658///
659/// Ensure that it does not wrap in the address space, assuming the predicate
660/// associated with \p PSE is true.
661///
662/// If necessary this method will version the stride of the pointer according
663/// to \p PtrToStride and therefore add further predicates to \p PSE.
664/// The \p Assume parameter indicates if we are allowed to make additional
665/// run-time assumptions.
666int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
667                     const ValueToValueMap &StridesMap = ValueToValueMap(),
668                     bool Assume = false, bool ShouldCheckWrap = true);
669
670/// \brief Returns true if the memory operations \p A and \p B are consecutive.
671/// This is a simple API that does not depend on the analysis pass.
672bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
673                         ScalarEvolution &SE, bool CheckType = true);
674
675/// \brief This analysis provides dependence information for the memory accesses
676/// of a loop.
677///
678/// It runs the analysis for a loop on demand.  This can be initiated by
679/// querying the loop access info via LAA::getInfo.  getInfo return a
680/// LoopAccessInfo object.  See this class for the specifics of what information
681/// is provided.
682class LoopAccessLegacyAnalysis : public FunctionPass {
683public:
684  static char ID;
685
686  LoopAccessLegacyAnalysis() : FunctionPass(ID) {
687    initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
688  }
689
690  bool runOnFunction(Function &F) override;
691
692  void getAnalysisUsage(AnalysisUsage &AU) const override;
693
694  /// \brief Query the result of the loop access information for the loop \p L.
695  ///
696  /// If there is no cached result available run the analysis.
697  const LoopAccessInfo &getInfo(Loop *L);
698
699  void releaseMemory() override {
700    // Invalidate the cache when the pass is freed.
701    LoopAccessInfoMap.clear();
702  }
703
704  /// \brief Print the result of the analysis when invoked with -analyze.
705  void print(raw_ostream &OS, const Module *M = nullptr) const override;
706
707private:
708  /// \brief The cache.
709  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
710
711  // The used analysis passes.
712  ScalarEvolution *SE;
713  const TargetLibraryInfo *TLI;
714  AliasAnalysis *AA;
715  DominatorTree *DT;
716  LoopInfo *LI;
717};
718
719/// \brief This analysis provides dependence information for the memory
720/// accesses of a loop.
721///
722/// It runs the analysis for a loop on demand.  This can be initiated by
723/// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
724/// getResult return a LoopAccessInfo object.  See this class for the
725/// specifics of what information is provided.
726class LoopAccessAnalysis
727    : public AnalysisInfoMixin<LoopAccessAnalysis> {
728  friend AnalysisInfoMixin<LoopAccessAnalysis>;
729  static AnalysisKey Key;
730
731public:
732  typedef LoopAccessInfo Result;
733
734  Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
735};
736
737inline Instruction *MemoryDepChecker::Dependence::getSource(
738    const LoopAccessInfo &LAI) const {
739  return LAI.getDepChecker().getMemoryInstructions()[Source];
740}
741
742inline Instruction *MemoryDepChecker::Dependence::getDestination(
743    const LoopAccessInfo &LAI) const {
744  return LAI.getDepChecker().getMemoryInstructions()[Destination];
745}
746
747} // End llvm namespace
748
749#endif
750