1//===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Generic implementation of equivalence classes through the use Tarjan's
11// efficient union-find algorithm.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_EQUIVALENCECLASSES_H
16#define LLVM_ADT_EQUIVALENCECLASSES_H
17
18#include <cassert>
19#include <cstddef>
20#include <cstdint>
21#include <iterator>
22#include <set>
23
24namespace llvm {
25
26/// EquivalenceClasses - This represents a collection of equivalence classes and
27/// supports three efficient operations: insert an element into a class of its
28/// own, union two classes, and find the class for a given element.  In
29/// addition to these modification methods, it is possible to iterate over all
30/// of the equivalence classes and all of the elements in a class.
31///
32/// This implementation is an efficient implementation that only stores one copy
33/// of the element being indexed per entry in the set, and allows any arbitrary
34/// type to be indexed (as long as it can be ordered with operator<).
35///
36/// Here is a simple example using integers:
37///
38/// \code
39///  EquivalenceClasses<int> EC;
40///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
41///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
42///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
43///
44///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
45///       I != E; ++I) {           // Iterate over all of the equivalence sets.
46///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
47///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
48///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
49///      cerr << *MI << " ";  // Print member.
50///    cerr << "\n";   // Finish set.
51///  }
52/// \endcode
53///
54/// This example prints:
55///   4
56///   5 1 2
57///
58template <class ElemTy>
59class EquivalenceClasses {
60  /// ECValue - The EquivalenceClasses data structure is just a set of these.
61  /// Each of these represents a relation for a value.  First it stores the
62  /// value itself, which provides the ordering that the set queries.  Next, it
63  /// provides a "next pointer", which is used to enumerate all of the elements
64  /// in the unioned set.  Finally, it defines either a "end of list pointer" or
65  /// "leader pointer" depending on whether the value itself is a leader.  A
66  /// "leader pointer" points to the node that is the leader for this element,
67  /// if the node is not a leader.  A "end of list pointer" points to the last
68  /// node in the list of members of this list.  Whether or not a node is a
69  /// leader is determined by a bit stolen from one of the pointers.
70  class ECValue {
71    friend class EquivalenceClasses;
72
73    mutable const ECValue *Leader, *Next;
74    ElemTy Data;
75
76    // ECValue ctor - Start out with EndOfList pointing to this node, Next is
77    // Null, isLeader = true.
78    ECValue(const ElemTy &Elt)
79      : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
80
81    const ECValue *getLeader() const {
82      if (isLeader()) return this;
83      if (Leader->isLeader()) return Leader;
84      // Path compression.
85      return Leader = Leader->getLeader();
86    }
87
88    const ECValue *getEndOfList() const {
89      assert(isLeader() && "Cannot get the end of a list for a non-leader!");
90      return Leader;
91    }
92
93    void setNext(const ECValue *NewNext) const {
94      assert(getNext() == nullptr && "Already has a next pointer!");
95      Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
96    }
97
98  public:
99    ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
100                                  Data(RHS.Data) {
101      // Only support copying of singleton nodes.
102      assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
103    }
104
105    bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
106
107    bool isLeader() const { return (intptr_t)Next & 1; }
108    const ElemTy &getData() const { return Data; }
109
110    const ECValue *getNext() const {
111      return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
112    }
113
114    template<typename T>
115    bool operator<(const T &Val) const { return Data < Val; }
116  };
117
118  /// TheMapping - This implicitly provides a mapping from ElemTy values to the
119  /// ECValues, it just keeps the key as part of the value.
120  std::set<ECValue> TheMapping;
121
122public:
123  EquivalenceClasses() = default;
124  EquivalenceClasses(const EquivalenceClasses &RHS) {
125    operator=(RHS);
126  }
127
128  const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
129    TheMapping.clear();
130    for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
131      if (I->isLeader()) {
132        member_iterator MI = RHS.member_begin(I);
133        member_iterator LeaderIt = member_begin(insert(*MI));
134        for (++MI; MI != member_end(); ++MI)
135          unionSets(LeaderIt, member_begin(insert(*MI)));
136      }
137    return *this;
138  }
139
140  //===--------------------------------------------------------------------===//
141  // Inspection methods
142  //
143
144  /// iterator* - Provides a way to iterate over all values in the set.
145  using iterator = typename std::set<ECValue>::const_iterator;
146
147  iterator begin() const { return TheMapping.begin(); }
148  iterator end() const { return TheMapping.end(); }
149
150  bool empty() const { return TheMapping.empty(); }
151
152  /// member_* Iterate over the members of an equivalence class.
153  class member_iterator;
154  member_iterator member_begin(iterator I) const {
155    // Only leaders provide anything to iterate over.
156    return member_iterator(I->isLeader() ? &*I : nullptr);
157  }
158  member_iterator member_end() const {
159    return member_iterator(nullptr);
160  }
161
162  /// findValue - Return an iterator to the specified value.  If it does not
163  /// exist, end() is returned.
164  iterator findValue(const ElemTy &V) const {
165    return TheMapping.find(V);
166  }
167
168  /// getLeaderValue - Return the leader for the specified value that is in the
169  /// set.  It is an error to call this method for a value that is not yet in
170  /// the set.  For that, call getOrInsertLeaderValue(V).
171  const ElemTy &getLeaderValue(const ElemTy &V) const {
172    member_iterator MI = findLeader(V);
173    assert(MI != member_end() && "Value is not in the set!");
174    return *MI;
175  }
176
177  /// getOrInsertLeaderValue - Return the leader for the specified value that is
178  /// in the set.  If the member is not in the set, it is inserted, then
179  /// returned.
180  const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
181    member_iterator MI = findLeader(insert(V));
182    assert(MI != member_end() && "Value is not in the set!");
183    return *MI;
184  }
185
186  /// getNumClasses - Return the number of equivalence classes in this set.
187  /// Note that this is a linear time operation.
188  unsigned getNumClasses() const {
189    unsigned NC = 0;
190    for (iterator I = begin(), E = end(); I != E; ++I)
191      if (I->isLeader()) ++NC;
192    return NC;
193  }
194
195  //===--------------------------------------------------------------------===//
196  // Mutation methods
197
198  /// insert - Insert a new value into the union/find set, ignoring the request
199  /// if the value already exists.
200  iterator insert(const ElemTy &Data) {
201    return TheMapping.insert(ECValue(Data)).first;
202  }
203
204  /// findLeader - Given a value in the set, return a member iterator for the
205  /// equivalence class it is in.  This does the path-compression part that
206  /// makes union-find "union findy".  This returns an end iterator if the value
207  /// is not in the equivalence class.
208  member_iterator findLeader(iterator I) const {
209    if (I == TheMapping.end()) return member_end();
210    return member_iterator(I->getLeader());
211  }
212  member_iterator findLeader(const ElemTy &V) const {
213    return findLeader(TheMapping.find(V));
214  }
215
216  /// union - Merge the two equivalence sets for the specified values, inserting
217  /// them if they do not already exist in the equivalence set.
218  member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
219    iterator V1I = insert(V1), V2I = insert(V2);
220    return unionSets(findLeader(V1I), findLeader(V2I));
221  }
222  member_iterator unionSets(member_iterator L1, member_iterator L2) {
223    assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
224    if (L1 == L2) return L1;   // Unifying the same two sets, noop.
225
226    // Otherwise, this is a real union operation.  Set the end of the L1 list to
227    // point to the L2 leader node.
228    const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
229    L1LV.getEndOfList()->setNext(&L2LV);
230
231    // Update L1LV's end of list pointer.
232    L1LV.Leader = L2LV.getEndOfList();
233
234    // Clear L2's leader flag:
235    L2LV.Next = L2LV.getNext();
236
237    // L2's leader is now L1.
238    L2LV.Leader = &L1LV;
239    return L1;
240  }
241
242  class member_iterator : public std::iterator<std::forward_iterator_tag,
243                                               const ElemTy, ptrdiff_t> {
244    friend class EquivalenceClasses;
245
246    using super = std::iterator<std::forward_iterator_tag,
247                                const ElemTy, ptrdiff_t>;
248
249    const ECValue *Node;
250
251  public:
252    using size_type = size_t;
253    using pointer = typename super::pointer;
254    using reference = typename super::reference;
255
256    explicit member_iterator() = default;
257    explicit member_iterator(const ECValue *N) : Node(N) {}
258
259    reference operator*() const {
260      assert(Node != nullptr && "Dereferencing end()!");
261      return Node->getData();
262    }
263    pointer operator->() const { return &operator*(); }
264
265    member_iterator &operator++() {
266      assert(Node != nullptr && "++'d off the end of the list!");
267      Node = Node->getNext();
268      return *this;
269    }
270
271    member_iterator operator++(int) {    // postincrement operators.
272      member_iterator tmp = *this;
273      ++*this;
274      return tmp;
275    }
276
277    bool operator==(const member_iterator &RHS) const {
278      return Node == RHS.Node;
279    }
280    bool operator!=(const member_iterator &RHS) const {
281      return Node != RHS.Node;
282    }
283  };
284};
285
286} // end namespace llvm
287
288#endif // LLVM_ADT_EQUIVALENCECLASSES_H
289