1//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the classes used to represent and build scalar expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator_range.h"
22#include "llvm/Analysis/ScalarEvolution.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/Value.h"
25#include "llvm/IR/ValueHandle.h"
26#include "llvm/Support/Casting.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <cassert>
29#include <cstddef>
30
31namespace llvm {
32
33class APInt;
34class Constant;
35class ConstantRange;
36class Loop;
37class Type;
38
39  enum SCEVTypes {
40    // These should be ordered in terms of increasing complexity to make the
41    // folders simpler.
42    scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
43    scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
44    scUnknown, scCouldNotCompute
45  };
46
47  /// This class represents a constant integer value.
48  class SCEVConstant : public SCEV {
49    friend class ScalarEvolution;
50
51    ConstantInt *V;
52
53    SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
54      SCEV(ID, scConstant), V(v) {}
55
56  public:
57    ConstantInt *getValue() const { return V; }
58    const APInt &getAPInt() const { return getValue()->getValue(); }
59
60    Type *getType() const { return V->getType(); }
61
62    /// Methods for support type inquiry through isa, cast, and dyn_cast:
63    static bool classof(const SCEV *S) {
64      return S->getSCEVType() == scConstant;
65    }
66  };
67
68  /// This is the base class for unary cast operator classes.
69  class SCEVCastExpr : public SCEV {
70  protected:
71    const SCEV *Op;
72    Type *Ty;
73
74    SCEVCastExpr(const FoldingSetNodeIDRef ID,
75                 unsigned SCEVTy, const SCEV *op, Type *ty);
76
77  public:
78    const SCEV *getOperand() const { return Op; }
79    Type *getType() const { return Ty; }
80
81    /// Methods for support type inquiry through isa, cast, and dyn_cast:
82    static bool classof(const SCEV *S) {
83      return S->getSCEVType() == scTruncate ||
84             S->getSCEVType() == scZeroExtend ||
85             S->getSCEVType() == scSignExtend;
86    }
87  };
88
89  /// This class represents a truncation of an integer value to a
90  /// smaller integer value.
91  class SCEVTruncateExpr : public SCEVCastExpr {
92    friend class ScalarEvolution;
93
94    SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
95                     const SCEV *op, Type *ty);
96
97  public:
98    /// Methods for support type inquiry through isa, cast, and dyn_cast:
99    static bool classof(const SCEV *S) {
100      return S->getSCEVType() == scTruncate;
101    }
102  };
103
104  /// This class represents a zero extension of a small integer value
105  /// to a larger integer value.
106  class SCEVZeroExtendExpr : public SCEVCastExpr {
107    friend class ScalarEvolution;
108
109    SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
110                       const SCEV *op, Type *ty);
111
112  public:
113    /// Methods for support type inquiry through isa, cast, and dyn_cast:
114    static bool classof(const SCEV *S) {
115      return S->getSCEVType() == scZeroExtend;
116    }
117  };
118
119  /// This class represents a sign extension of a small integer value
120  /// to a larger integer value.
121  class SCEVSignExtendExpr : public SCEVCastExpr {
122    friend class ScalarEvolution;
123
124    SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
125                       const SCEV *op, Type *ty);
126
127  public:
128    /// Methods for support type inquiry through isa, cast, and dyn_cast:
129    static bool classof(const SCEV *S) {
130      return S->getSCEVType() == scSignExtend;
131    }
132  };
133
134  /// This node is a base class providing common functionality for
135  /// n'ary operators.
136  class SCEVNAryExpr : public SCEV {
137  protected:
138    // Since SCEVs are immutable, ScalarEvolution allocates operand
139    // arrays with its SCEVAllocator, so this class just needs a simple
140    // pointer rather than a more elaborate vector-like data structure.
141    // This also avoids the need for a non-trivial destructor.
142    const SCEV *const *Operands;
143    size_t NumOperands;
144
145    SCEVNAryExpr(const FoldingSetNodeIDRef ID,
146                 enum SCEVTypes T, const SCEV *const *O, size_t N)
147      : SCEV(ID, T), Operands(O), NumOperands(N) {}
148
149  public:
150    size_t getNumOperands() const { return NumOperands; }
151
152    const SCEV *getOperand(unsigned i) const {
153      assert(i < NumOperands && "Operand index out of range!");
154      return Operands[i];
155    }
156
157    using op_iterator = const SCEV *const *;
158    using op_range = iterator_range<op_iterator>;
159
160    op_iterator op_begin() const { return Operands; }
161    op_iterator op_end() const { return Operands + NumOperands; }
162    op_range operands() const {
163      return make_range(op_begin(), op_end());
164    }
165
166    Type *getType() const { return getOperand(0)->getType(); }
167
168    NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
169      return (NoWrapFlags)(SubclassData & Mask);
170    }
171
172    bool hasNoUnsignedWrap() const {
173      return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
174    }
175
176    bool hasNoSignedWrap() const {
177      return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
178    }
179
180    bool hasNoSelfWrap() const {
181      return getNoWrapFlags(FlagNW) != FlagAnyWrap;
182    }
183
184    /// Methods for support type inquiry through isa, cast, and dyn_cast:
185    static bool classof(const SCEV *S) {
186      return S->getSCEVType() == scAddExpr ||
187             S->getSCEVType() == scMulExpr ||
188             S->getSCEVType() == scSMaxExpr ||
189             S->getSCEVType() == scUMaxExpr ||
190             S->getSCEVType() == scAddRecExpr;
191    }
192  };
193
194  /// This node is the base class for n'ary commutative operators.
195  class SCEVCommutativeExpr : public SCEVNAryExpr {
196  protected:
197    SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
198                        enum SCEVTypes T, const SCEV *const *O, size_t N)
199      : SCEVNAryExpr(ID, T, O, N) {}
200
201  public:
202    /// Methods for support type inquiry through isa, cast, and dyn_cast:
203    static bool classof(const SCEV *S) {
204      return S->getSCEVType() == scAddExpr ||
205             S->getSCEVType() == scMulExpr ||
206             S->getSCEVType() == scSMaxExpr ||
207             S->getSCEVType() == scUMaxExpr;
208    }
209
210    /// Set flags for a non-recurrence without clearing previously set flags.
211    void setNoWrapFlags(NoWrapFlags Flags) {
212      SubclassData |= Flags;
213    }
214  };
215
216  /// This node represents an addition of some number of SCEVs.
217  class SCEVAddExpr : public SCEVCommutativeExpr {
218    friend class ScalarEvolution;
219
220    SCEVAddExpr(const FoldingSetNodeIDRef ID,
221                const SCEV *const *O, size_t N)
222      : SCEVCommutativeExpr(ID, scAddExpr, O, N) {}
223
224  public:
225    Type *getType() const {
226      // Use the type of the last operand, which is likely to be a pointer
227      // type, if there is one. This doesn't usually matter, but it can help
228      // reduce casts when the expressions are expanded.
229      return getOperand(getNumOperands() - 1)->getType();
230    }
231
232    /// Methods for support type inquiry through isa, cast, and dyn_cast:
233    static bool classof(const SCEV *S) {
234      return S->getSCEVType() == scAddExpr;
235    }
236  };
237
238  /// This node represents multiplication of some number of SCEVs.
239  class SCEVMulExpr : public SCEVCommutativeExpr {
240    friend class ScalarEvolution;
241
242    SCEVMulExpr(const FoldingSetNodeIDRef ID,
243                const SCEV *const *O, size_t N)
244      : SCEVCommutativeExpr(ID, scMulExpr, O, N) {}
245
246  public:
247    /// Methods for support type inquiry through isa, cast, and dyn_cast:
248    static bool classof(const SCEV *S) {
249      return S->getSCEVType() == scMulExpr;
250    }
251  };
252
253  /// This class represents a binary unsigned division operation.
254  class SCEVUDivExpr : public SCEV {
255    friend class ScalarEvolution;
256
257    const SCEV *LHS;
258    const SCEV *RHS;
259
260    SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
261      : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
262
263  public:
264    const SCEV *getLHS() const { return LHS; }
265    const SCEV *getRHS() const { return RHS; }
266
267    Type *getType() const {
268      // In most cases the types of LHS and RHS will be the same, but in some
269      // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
270      // depend on the type for correctness, but handling types carefully can
271      // avoid extra casts in the SCEVExpander. The LHS is more likely to be
272      // a pointer type than the RHS, so use the RHS' type here.
273      return getRHS()->getType();
274    }
275
276    /// Methods for support type inquiry through isa, cast, and dyn_cast:
277    static bool classof(const SCEV *S) {
278      return S->getSCEVType() == scUDivExpr;
279    }
280  };
281
282  /// This node represents a polynomial recurrence on the trip count
283  /// of the specified loop.  This is the primary focus of the
284  /// ScalarEvolution framework; all the other SCEV subclasses are
285  /// mostly just supporting infrastructure to allow SCEVAddRecExpr
286  /// expressions to be created and analyzed.
287  ///
288  /// All operands of an AddRec are required to be loop invariant.
289  ///
290  class SCEVAddRecExpr : public SCEVNAryExpr {
291    friend class ScalarEvolution;
292
293    const Loop *L;
294
295    SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
296                   const SCEV *const *O, size_t N, const Loop *l)
297      : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
298
299  public:
300    const SCEV *getStart() const { return Operands[0]; }
301    const Loop *getLoop() const { return L; }
302
303    /// Constructs and returns the recurrence indicating how much this
304    /// expression steps by.  If this is a polynomial of degree N, it
305    /// returns a chrec of degree N-1.  We cannot determine whether
306    /// the step recurrence has self-wraparound.
307    const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
308      if (isAffine()) return getOperand(1);
309      return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
310                                                           op_end()),
311                              getLoop(), FlagAnyWrap);
312    }
313
314    /// Return true if this represents an expression A + B*x where A
315    /// and B are loop invariant values.
316    bool isAffine() const {
317      // We know that the start value is invariant.  This expression is thus
318      // affine iff the step is also invariant.
319      return getNumOperands() == 2;
320    }
321
322    /// Return true if this represents an expression A + B*x + C*x^2
323    /// where A, B and C are loop invariant values.  This corresponds
324    /// to an addrec of the form {L,+,M,+,N}
325    bool isQuadratic() const {
326      return getNumOperands() == 3;
327    }
328
329    /// Set flags for a recurrence without clearing any previously set flags.
330    /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
331    /// to make it easier to propagate flags.
332    void setNoWrapFlags(NoWrapFlags Flags) {
333      if (Flags & (FlagNUW | FlagNSW))
334        Flags = ScalarEvolution::setFlags(Flags, FlagNW);
335      SubclassData |= Flags;
336    }
337
338    /// Return the value of this chain of recurrences at the specified
339    /// iteration number.
340    const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
341
342    /// Return the number of iterations of this loop that produce
343    /// values in the specified constant range.  Another way of
344    /// looking at this is that it returns the first iteration number
345    /// where the value is not in the condition, thus computing the
346    /// exit count.  If the iteration count can't be computed, an
347    /// instance of SCEVCouldNotCompute is returned.
348    const SCEV *getNumIterationsInRange(const ConstantRange &Range,
349                                        ScalarEvolution &SE) const;
350
351    /// Return an expression representing the value of this expression
352    /// one iteration of the loop ahead.
353    const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
354      return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
355    }
356
357    /// Methods for support type inquiry through isa, cast, and dyn_cast:
358    static bool classof(const SCEV *S) {
359      return S->getSCEVType() == scAddRecExpr;
360    }
361  };
362
363  /// This class represents a signed maximum selection.
364  class SCEVSMaxExpr : public SCEVCommutativeExpr {
365    friend class ScalarEvolution;
366
367    SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
368                 const SCEV *const *O, size_t N)
369      : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
370      // Max never overflows.
371      setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
372    }
373
374  public:
375    /// Methods for support type inquiry through isa, cast, and dyn_cast:
376    static bool classof(const SCEV *S) {
377      return S->getSCEVType() == scSMaxExpr;
378    }
379  };
380
381  /// This class represents an unsigned maximum selection.
382  class SCEVUMaxExpr : public SCEVCommutativeExpr {
383    friend class ScalarEvolution;
384
385    SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
386                 const SCEV *const *O, size_t N)
387      : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
388      // Max never overflows.
389      setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
390    }
391
392  public:
393    /// Methods for support type inquiry through isa, cast, and dyn_cast:
394    static bool classof(const SCEV *S) {
395      return S->getSCEVType() == scUMaxExpr;
396    }
397  };
398
399  /// This means that we are dealing with an entirely unknown SCEV
400  /// value, and only represent it as its LLVM Value.  This is the
401  /// "bottom" value for the analysis.
402  class SCEVUnknown final : public SCEV, private CallbackVH {
403    friend class ScalarEvolution;
404
405    /// The parent ScalarEvolution value. This is used to update the
406    /// parent's maps when the value associated with a SCEVUnknown is
407    /// deleted or RAUW'd.
408    ScalarEvolution *SE;
409
410    /// The next pointer in the linked list of all SCEVUnknown
411    /// instances owned by a ScalarEvolution.
412    SCEVUnknown *Next;
413
414    SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
415                ScalarEvolution *se, SCEVUnknown *next) :
416      SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
417
418    // Implement CallbackVH.
419    void deleted() override;
420    void allUsesReplacedWith(Value *New) override;
421
422  public:
423    Value *getValue() const { return getValPtr(); }
424
425    /// @{
426    /// Test whether this is a special constant representing a type
427    /// size, alignment, or field offset in a target-independent
428    /// manner, and hasn't happened to have been folded with other
429    /// operations into something unrecognizable. This is mainly only
430    /// useful for pretty-printing and other situations where it isn't
431    /// absolutely required for these to succeed.
432    bool isSizeOf(Type *&AllocTy) const;
433    bool isAlignOf(Type *&AllocTy) const;
434    bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
435    /// @}
436
437    Type *getType() const { return getValPtr()->getType(); }
438
439    /// Methods for support type inquiry through isa, cast, and dyn_cast:
440    static bool classof(const SCEV *S) {
441      return S->getSCEVType() == scUnknown;
442    }
443  };
444
445  /// This class defines a simple visitor class that may be used for
446  /// various SCEV analysis purposes.
447  template<typename SC, typename RetVal=void>
448  struct SCEVVisitor {
449    RetVal visit(const SCEV *S) {
450      switch (S->getSCEVType()) {
451      case scConstant:
452        return ((SC*)this)->visitConstant((const SCEVConstant*)S);
453      case scTruncate:
454        return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
455      case scZeroExtend:
456        return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
457      case scSignExtend:
458        return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
459      case scAddExpr:
460        return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
461      case scMulExpr:
462        return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
463      case scUDivExpr:
464        return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
465      case scAddRecExpr:
466        return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
467      case scSMaxExpr:
468        return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
469      case scUMaxExpr:
470        return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
471      case scUnknown:
472        return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
473      case scCouldNotCompute:
474        return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
475      default:
476        llvm_unreachable("Unknown SCEV type!");
477      }
478    }
479
480    RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
481      llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
482    }
483  };
484
485  /// Visit all nodes in the expression tree using worklist traversal.
486  ///
487  /// Visitor implements:
488  ///   // return true to follow this node.
489  ///   bool follow(const SCEV *S);
490  ///   // return true to terminate the search.
491  ///   bool isDone();
492  template<typename SV>
493  class SCEVTraversal {
494    SV &Visitor;
495    SmallVector<const SCEV *, 8> Worklist;
496    SmallPtrSet<const SCEV *, 8> Visited;
497
498    void push(const SCEV *S) {
499      if (Visited.insert(S).second && Visitor.follow(S))
500        Worklist.push_back(S);
501    }
502
503  public:
504    SCEVTraversal(SV& V): Visitor(V) {}
505
506    void visitAll(const SCEV *Root) {
507      push(Root);
508      while (!Worklist.empty() && !Visitor.isDone()) {
509        const SCEV *S = Worklist.pop_back_val();
510
511        switch (S->getSCEVType()) {
512        case scConstant:
513        case scUnknown:
514          break;
515        case scTruncate:
516        case scZeroExtend:
517        case scSignExtend:
518          push(cast<SCEVCastExpr>(S)->getOperand());
519          break;
520        case scAddExpr:
521        case scMulExpr:
522        case scSMaxExpr:
523        case scUMaxExpr:
524        case scAddRecExpr:
525          for (const auto *Op : cast<SCEVNAryExpr>(S)->operands())
526            push(Op);
527          break;
528        case scUDivExpr: {
529          const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
530          push(UDiv->getLHS());
531          push(UDiv->getRHS());
532          break;
533        }
534        case scCouldNotCompute:
535          llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
536        default:
537          llvm_unreachable("Unknown SCEV kind!");
538        }
539      }
540    }
541  };
542
543  /// Use SCEVTraversal to visit all nodes in the given expression tree.
544  template<typename SV>
545  void visitAll(const SCEV *Root, SV& Visitor) {
546    SCEVTraversal<SV> T(Visitor);
547    T.visitAll(Root);
548  }
549
550  /// Return true if any node in \p Root satisfies the predicate \p Pred.
551  template <typename PredTy>
552  bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
553    struct FindClosure {
554      bool Found = false;
555      PredTy Pred;
556
557      FindClosure(PredTy Pred) : Pred(Pred) {}
558
559      bool follow(const SCEV *S) {
560        if (!Pred(S))
561          return true;
562
563        Found = true;
564        return false;
565      }
566
567      bool isDone() const { return Found; }
568    };
569
570    FindClosure FC(Pred);
571    visitAll(Root, FC);
572    return FC.Found;
573  }
574
575  /// This visitor recursively visits a SCEV expression and re-writes it.
576  /// The result from each visit is cached, so it will return the same
577  /// SCEV for the same input.
578  template<typename SC>
579  class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
580  protected:
581    ScalarEvolution &SE;
582    // Memoize the result of each visit so that we only compute once for
583    // the same input SCEV. This is to avoid redundant computations when
584    // a SCEV is referenced by multiple SCEVs. Without memoization, this
585    // visit algorithm would have exponential time complexity in the worst
586    // case, causing the compiler to hang on certain tests.
587    DenseMap<const SCEV *, const SCEV *> RewriteResults;
588
589  public:
590    SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
591
592    const SCEV *visit(const SCEV *S) {
593      auto It = RewriteResults.find(S);
594      if (It != RewriteResults.end())
595        return It->second;
596      auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
597      auto Result = RewriteResults.try_emplace(S, Visited);
598      assert(Result.second && "Should insert a new entry");
599      return Result.first->second;
600    }
601
602    const SCEV *visitConstant(const SCEVConstant *Constant) {
603      return Constant;
604    }
605
606    const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
607      const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
608      return Operand == Expr->getOperand()
609                 ? Expr
610                 : SE.getTruncateExpr(Operand, Expr->getType());
611    }
612
613    const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
614      const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
615      return Operand == Expr->getOperand()
616                 ? Expr
617                 : SE.getZeroExtendExpr(Operand, Expr->getType());
618    }
619
620    const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
621      const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
622      return Operand == Expr->getOperand()
623                 ? Expr
624                 : SE.getSignExtendExpr(Operand, Expr->getType());
625    }
626
627    const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
628      SmallVector<const SCEV *, 2> Operands;
629      bool Changed = false;
630      for (auto *Op : Expr->operands()) {
631        Operands.push_back(((SC*)this)->visit(Op));
632        Changed |= Op != Operands.back();
633      }
634      return !Changed ? Expr : SE.getAddExpr(Operands);
635    }
636
637    const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
638      SmallVector<const SCEV *, 2> Operands;
639      bool Changed = false;
640      for (auto *Op : Expr->operands()) {
641        Operands.push_back(((SC*)this)->visit(Op));
642        Changed |= Op != Operands.back();
643      }
644      return !Changed ? Expr : SE.getMulExpr(Operands);
645    }
646
647    const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
648      auto *LHS = ((SC *)this)->visit(Expr->getLHS());
649      auto *RHS = ((SC *)this)->visit(Expr->getRHS());
650      bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
651      return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
652    }
653
654    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
655      SmallVector<const SCEV *, 2> Operands;
656      bool Changed = false;
657      for (auto *Op : Expr->operands()) {
658        Operands.push_back(((SC*)this)->visit(Op));
659        Changed |= Op != Operands.back();
660      }
661      return !Changed ? Expr
662                      : SE.getAddRecExpr(Operands, Expr->getLoop(),
663                                         Expr->getNoWrapFlags());
664    }
665
666    const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
667      SmallVector<const SCEV *, 2> Operands;
668      bool Changed = false;
669      for (auto *Op : Expr->operands()) {
670        Operands.push_back(((SC *)this)->visit(Op));
671        Changed |= Op != Operands.back();
672      }
673      return !Changed ? Expr : SE.getSMaxExpr(Operands);
674    }
675
676    const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
677      SmallVector<const SCEV *, 2> Operands;
678      bool Changed = false;
679      for (auto *Op : Expr->operands()) {
680        Operands.push_back(((SC*)this)->visit(Op));
681        Changed |= Op != Operands.back();
682      }
683      return !Changed ? Expr : SE.getUMaxExpr(Operands);
684    }
685
686    const SCEV *visitUnknown(const SCEVUnknown *Expr) {
687      return Expr;
688    }
689
690    const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
691      return Expr;
692    }
693  };
694
695  using ValueToValueMap = DenseMap<const Value *, Value *>;
696
697  /// The SCEVParameterRewriter takes a scalar evolution expression and updates
698  /// the SCEVUnknown components following the Map (Value -> Value).
699  class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
700  public:
701    static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
702                               ValueToValueMap &Map,
703                               bool InterpretConsts = false) {
704      SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
705      return Rewriter.visit(Scev);
706    }
707
708    SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
709      : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}
710
711    const SCEV *visitUnknown(const SCEVUnknown *Expr) {
712      Value *V = Expr->getValue();
713      if (Map.count(V)) {
714        Value *NV = Map[V];
715        if (InterpretConsts && isa<ConstantInt>(NV))
716          return SE.getConstant(cast<ConstantInt>(NV));
717        return SE.getUnknown(NV);
718      }
719      return Expr;
720    }
721
722  private:
723    ValueToValueMap &Map;
724    bool InterpretConsts;
725  };
726
727  using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>;
728
729  /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
730  /// the Map (Loop -> SCEV) to all AddRecExprs.
731  class SCEVLoopAddRecRewriter
732      : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
733  public:
734    SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
735        : SCEVRewriteVisitor(SE), Map(M) {}
736
737    static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
738                               ScalarEvolution &SE) {
739      SCEVLoopAddRecRewriter Rewriter(SE, Map);
740      return Rewriter.visit(Scev);
741    }
742
743    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
744      SmallVector<const SCEV *, 2> Operands;
745      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
746        Operands.push_back(visit(Expr->getOperand(i)));
747
748      const Loop *L = Expr->getLoop();
749      const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
750
751      if (0 == Map.count(L))
752        return Res;
753
754      const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
755      return Rec->evaluateAtIteration(Map[L], SE);
756    }
757
758  private:
759    LoopToScevMapT &Map;
760  };
761
762} // end namespace llvm
763
764#endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
765