1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/* ChangeLog for this library:
30 *
31 * NDK r10e?: Add MIPS MSA feature.
32 *
33 * NDK r10: Support for 64-bit CPUs (Intel, ARM & MIPS).
34 *
35 * NDK r8d: Add android_setCpu().
36 *
37 * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
38 *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
39 *
40 *          Rewrite the code to parse /proc/self/auxv instead of
41 *          the "Features" field in /proc/cpuinfo.
42 *
43 *          Dynamically allocate the buffer that hold the content
44 *          of /proc/cpuinfo to deal with newer hardware.
45 *
46 * NDK r7c: Fix CPU count computation. The old method only reported the
47 *           number of _active_ CPUs when the library was initialized,
48 *           which could be less than the real total.
49 *
50 * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
51 *         for an ARMv6 CPU (see below).
52 *
53 *         Handle kernels that only report 'neon', and not 'vfpv3'
54 *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
55 *
56 *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
57 *
58 *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
59 *         android_getCpuFamily().
60 *
61 * NDK r4: Initial release
62 */
63
64#include "cpu-features.h"
65
66#include <dlfcn.h>
67#include <errno.h>
68#include <fcntl.h>
69#include <pthread.h>
70#include <stdio.h>
71#include <stdlib.h>
72#include <string.h>
73#include <sys/system_properties.h>
74#include <unistd.h>
75
76static  pthread_once_t     g_once;
77static  int                g_inited;
78static  AndroidCpuFamily   g_cpuFamily;
79static  uint64_t           g_cpuFeatures;
80static  int                g_cpuCount;
81
82#ifdef __arm__
83static  uint32_t           g_cpuIdArm;
84#endif
85
86static const int android_cpufeatures_debug = 0;
87
88#define  D(...) \
89    do { \
90        if (android_cpufeatures_debug) { \
91            printf(__VA_ARGS__); fflush(stdout); \
92        } \
93    } while (0)
94
95#ifdef __i386__
96static __inline__ void x86_cpuid(int func, int values[4])
97{
98    int a, b, c, d;
99    /* We need to preserve ebx since we're compiling PIC code */
100    /* this means we can't use "=b" for the second output register */
101    __asm__ __volatile__ ( \
102      "push %%ebx\n"
103      "cpuid\n" \
104      "mov %%ebx, %1\n"
105      "pop %%ebx\n"
106      : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
107      : "a" (func) \
108    );
109    values[0] = a;
110    values[1] = b;
111    values[2] = c;
112    values[3] = d;
113}
114#elif defined(__x86_64__)
115static __inline__ void x86_cpuid(int func, int values[4])
116{
117    int64_t a, b, c, d;
118    /* We need to preserve ebx since we're compiling PIC code */
119    /* this means we can't use "=b" for the second output register */
120    __asm__ __volatile__ ( \
121      "push %%rbx\n"
122      "cpuid\n" \
123      "mov %%rbx, %1\n"
124      "pop %%rbx\n"
125      : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
126      : "a" (func) \
127    );
128    values[0] = a;
129    values[1] = b;
130    values[2] = c;
131    values[3] = d;
132}
133#endif
134
135/* Get the size of a file by reading it until the end. This is needed
136 * because files under /proc do not always return a valid size when
137 * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
138 */
139static int
140get_file_size(const char* pathname)
141{
142
143   int fd, result = 0;
144    char buffer[256];
145
146    fd = open(pathname, O_RDONLY);
147    if (fd < 0) {
148        D("Can't open %s: %s\n", pathname, strerror(errno));
149        return -1;
150    }
151
152    for (;;) {
153        int ret = read(fd, buffer, sizeof buffer);
154        if (ret < 0) {
155            if (errno == EINTR)
156                continue;
157            D("Error while reading %s: %s\n", pathname, strerror(errno));
158            break;
159        }
160        if (ret == 0)
161            break;
162
163        result += ret;
164    }
165    close(fd);
166    return result;
167}
168
169/* Read the content of /proc/cpuinfo into a user-provided buffer.
170 * Return the length of the data, or -1 on error. Does *not*
171 * zero-terminate the content. Will not read more
172 * than 'buffsize' bytes.
173 */
174static int
175read_file(const char*  pathname, char*  buffer, size_t  buffsize)
176{
177    int  fd, count;
178
179    fd = open(pathname, O_RDONLY);
180    if (fd < 0) {
181        D("Could not open %s: %s\n", pathname, strerror(errno));
182        return -1;
183    }
184    count = 0;
185    while (count < (int)buffsize) {
186        int ret = read(fd, buffer + count, buffsize - count);
187        if (ret < 0) {
188            if (errno == EINTR)
189                continue;
190            D("Error while reading from %s: %s\n", pathname, strerror(errno));
191            if (count == 0)
192                count = -1;
193            break;
194        }
195        if (ret == 0)
196            break;
197        count += ret;
198    }
199    close(fd);
200    return count;
201}
202
203#ifdef __arm__
204/* Extract the content of a the first occurence of a given field in
205 * the content of /proc/cpuinfo and return it as a heap-allocated
206 * string that must be freed by the caller.
207 *
208 * Return NULL if not found
209 */
210static char*
211extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
212{
213    int  fieldlen = strlen(field);
214    const char* bufend = buffer + buflen;
215    char* result = NULL;
216    int len;
217    const char *p, *q;
218
219    /* Look for first field occurence, and ensures it starts the line. */
220    p = buffer;
221    for (;;) {
222        p = memmem(p, bufend-p, field, fieldlen);
223        if (p == NULL)
224            goto EXIT;
225
226        if (p == buffer || p[-1] == '\n')
227            break;
228
229        p += fieldlen;
230    }
231
232    /* Skip to the first column followed by a space */
233    p += fieldlen;
234    p  = memchr(p, ':', bufend-p);
235    if (p == NULL || p[1] != ' ')
236        goto EXIT;
237
238    /* Find the end of the line */
239    p += 2;
240    q = memchr(p, '\n', bufend-p);
241    if (q == NULL)
242        q = bufend;
243
244    /* Copy the line into a heap-allocated buffer */
245    len = q-p;
246    result = malloc(len+1);
247    if (result == NULL)
248        goto EXIT;
249
250    memcpy(result, p, len);
251    result[len] = '\0';
252
253EXIT:
254    return result;
255}
256
257/* Checks that a space-separated list of items contains one given 'item'.
258 * Returns 1 if found, 0 otherwise.
259 */
260static int
261has_list_item(const char* list, const char* item)
262{
263    const char*  p = list;
264    int itemlen = strlen(item);
265
266    if (list == NULL)
267        return 0;
268
269    while (*p) {
270        const char*  q;
271
272        /* skip spaces */
273        while (*p == ' ' || *p == '\t')
274            p++;
275
276        /* find end of current list item */
277        q = p;
278        while (*q && *q != ' ' && *q != '\t')
279            q++;
280
281        if (itemlen == q-p && !memcmp(p, item, itemlen))
282            return 1;
283
284        /* skip to next item */
285        p = q;
286    }
287    return 0;
288}
289#endif /* __arm__ */
290
291/* Parse a number starting from 'input', but not going further
292 * than 'limit'. Return the value into '*result'.
293 *
294 * NOTE: Does not skip over leading spaces, or deal with sign characters.
295 * NOTE: Ignores overflows.
296 *
297 * The function returns NULL in case of error (bad format), or the new
298 * position after the decimal number in case of success (which will always
299 * be <= 'limit').
300 */
301static const char*
302parse_number(const char* input, const char* limit, int base, int* result)
303{
304    const char* p = input;
305    int val = 0;
306    while (p < limit) {
307        int d = (*p - '0');
308        if ((unsigned)d >= 10U) {
309            d = (*p - 'a');
310            if ((unsigned)d >= 6U)
311              d = (*p - 'A');
312            if ((unsigned)d >= 6U)
313              break;
314            d += 10;
315        }
316        if (d >= base)
317          break;
318        val = val*base + d;
319        p++;
320    }
321    if (p == input)
322        return NULL;
323
324    *result = val;
325    return p;
326}
327
328static const char*
329parse_decimal(const char* input, const char* limit, int* result)
330{
331    return parse_number(input, limit, 10, result);
332}
333
334#ifdef __arm__
335static const char*
336parse_hexadecimal(const char* input, const char* limit, int* result)
337{
338    return parse_number(input, limit, 16, result);
339}
340#endif /* __arm__ */
341
342/* This small data type is used to represent a CPU list / mask, as read
343 * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
344 *
345 * For now, we don't expect more than 32 cores on mobile devices, so keep
346 * everything simple.
347 */
348typedef struct {
349    uint32_t mask;
350} CpuList;
351
352static __inline__ void
353cpulist_init(CpuList* list) {
354    list->mask = 0;
355}
356
357static __inline__ void
358cpulist_and(CpuList* list1, CpuList* list2) {
359    list1->mask &= list2->mask;
360}
361
362static __inline__ void
363cpulist_set(CpuList* list, int index) {
364    if ((unsigned)index < 32) {
365        list->mask |= (uint32_t)(1U << index);
366    }
367}
368
369static __inline__ int
370cpulist_count(CpuList* list) {
371    return __builtin_popcount(list->mask);
372}
373
374/* Parse a textual list of cpus and store the result inside a CpuList object.
375 * Input format is the following:
376 * - comma-separated list of items (no spaces)
377 * - each item is either a single decimal number (cpu index), or a range made
378 *   of two numbers separated by a single dash (-). Ranges are inclusive.
379 *
380 * Examples:   0
381 *             2,4-127,128-143
382 *             0-1
383 */
384static void
385cpulist_parse(CpuList* list, const char* line, int line_len)
386{
387    const char* p = line;
388    const char* end = p + line_len;
389    const char* q;
390
391    /* NOTE: the input line coming from sysfs typically contains a
392     * trailing newline, so take care of it in the code below
393     */
394    while (p < end && *p != '\n')
395    {
396        int val, start_value, end_value;
397
398        /* Find the end of current item, and put it into 'q' */
399        q = memchr(p, ',', end-p);
400        if (q == NULL) {
401            q = end;
402        }
403
404        /* Get first value */
405        p = parse_decimal(p, q, &start_value);
406        if (p == NULL)
407            goto BAD_FORMAT;
408
409        end_value = start_value;
410
411        /* If we're not at the end of the item, expect a dash and
412         * and integer; extract end value.
413         */
414        if (p < q && *p == '-') {
415            p = parse_decimal(p+1, q, &end_value);
416            if (p == NULL)
417                goto BAD_FORMAT;
418        }
419
420        /* Set bits CPU list bits */
421        for (val = start_value; val <= end_value; val++) {
422            cpulist_set(list, val);
423        }
424
425        /* Jump to next item */
426        p = q;
427        if (p < end)
428            p++;
429    }
430
431BAD_FORMAT:
432    ;
433}
434
435/* Read a CPU list from one sysfs file */
436static void
437cpulist_read_from(CpuList* list, const char* filename)
438{
439    char   file[64];
440    int    filelen;
441
442    cpulist_init(list);
443
444    filelen = read_file(filename, file, sizeof file);
445    if (filelen < 0) {
446        D("Could not read %s: %s\n", filename, strerror(errno));
447        return;
448    }
449
450    cpulist_parse(list, file, filelen);
451}
452#if defined(__aarch64__)
453// see <uapi/asm/hwcap.h> kernel header
454#define HWCAP_FP                (1 << 0)
455#define HWCAP_ASIMD             (1 << 1)
456#define HWCAP_AES               (1 << 3)
457#define HWCAP_PMULL             (1 << 4)
458#define HWCAP_SHA1              (1 << 5)
459#define HWCAP_SHA2              (1 << 6)
460#define HWCAP_CRC32             (1 << 7)
461#endif
462
463#if defined(__arm__)
464
465// See <asm/hwcap.h> kernel header.
466#define HWCAP_VFP       (1 << 6)
467#define HWCAP_IWMMXT    (1 << 9)
468#define HWCAP_NEON      (1 << 12)
469#define HWCAP_VFPv3     (1 << 13)
470#define HWCAP_VFPv3D16  (1 << 14)
471#define HWCAP_VFPv4     (1 << 16)
472#define HWCAP_IDIVA     (1 << 17)
473#define HWCAP_IDIVT     (1 << 18)
474
475// see <uapi/asm/hwcap.h> kernel header
476#define HWCAP2_AES     (1 << 0)
477#define HWCAP2_PMULL   (1 << 1)
478#define HWCAP2_SHA1    (1 << 2)
479#define HWCAP2_SHA2    (1 << 3)
480#define HWCAP2_CRC32   (1 << 4)
481
482// This is the list of 32-bit ARMv7 optional features that are _always_
483// supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
484// Manual.
485#define HWCAP_SET_FOR_ARMV8  \
486  ( HWCAP_VFP | \
487    HWCAP_NEON | \
488    HWCAP_VFPv3 | \
489    HWCAP_VFPv4 | \
490    HWCAP_IDIVA | \
491    HWCAP_IDIVT )
492#endif
493
494#if defined(__mips__)
495// see <uapi/asm/hwcap.h> kernel header
496#define HWCAP_MIPS_R6           (1 << 0)
497#define HWCAP_MIPS_MSA          (1 << 1)
498#endif
499
500#if defined(__arm__) || defined(__aarch64__) || defined(__mips__)
501
502#define AT_HWCAP 16
503#define AT_HWCAP2 26
504
505// Probe the system's C library for a 'getauxval' function and call it if
506// it exits, or return 0 for failure. This function is available since API
507// level 20.
508//
509// This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
510// edge case where some NDK developers use headers for a platform that is
511// newer than the one really targetted by their application.
512// This is typically done to use newer native APIs only when running on more
513// recent Android versions, and requires careful symbol management.
514//
515// Note that getauxval() can't really be re-implemented here, because
516// its implementation does not parse /proc/self/auxv. Instead it depends
517// on values  that are passed by the kernel at process-init time to the
518// C runtime initialization layer.
519static uint32_t
520get_elf_hwcap_from_getauxval(int hwcap_type) {
521    typedef unsigned long getauxval_func_t(unsigned long);
522
523    dlerror();
524    void* libc_handle = dlopen("libc.so", RTLD_NOW);
525    if (!libc_handle) {
526        D("Could not dlopen() C library: %s\n", dlerror());
527        return 0;
528    }
529
530    uint32_t ret = 0;
531    getauxval_func_t* func = (getauxval_func_t*)
532            dlsym(libc_handle, "getauxval");
533    if (!func) {
534        D("Could not find getauxval() in C library\n");
535    } else {
536        // Note: getauxval() returns 0 on failure. Doesn't touch errno.
537        ret = (uint32_t)(*func)(hwcap_type);
538    }
539    dlclose(libc_handle);
540    return ret;
541}
542#endif
543
544#if defined(__arm__)
545// Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
546// current CPU. Note that this file is not accessible from regular
547// application processes on some Android platform releases.
548// On success, return new ELF hwcaps, or 0 on failure.
549static uint32_t
550get_elf_hwcap_from_proc_self_auxv(void) {
551    const char filepath[] = "/proc/self/auxv";
552    int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
553    if (fd < 0) {
554        D("Could not open %s: %s\n", filepath, strerror(errno));
555        return 0;
556    }
557
558    struct { uint32_t tag; uint32_t value; } entry;
559
560    uint32_t result = 0;
561    for (;;) {
562        int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
563        if (ret < 0) {
564            D("Error while reading %s: %s\n", filepath, strerror(errno));
565            break;
566        }
567        // Detect end of list.
568        if (ret == 0 || (entry.tag == 0 && entry.value == 0))
569          break;
570        if (entry.tag == AT_HWCAP) {
571          result = entry.value;
572          break;
573        }
574    }
575    close(fd);
576    return result;
577}
578
579/* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
580 * This works by parsing the 'Features' line, which lists which optional
581 * features the device's CPU supports, on top of its reference
582 * architecture.
583 */
584static uint32_t
585get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
586    uint32_t hwcaps = 0;
587    long architecture = 0;
588    char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
589    if (cpuArch) {
590        architecture = strtol(cpuArch, NULL, 10);
591        free(cpuArch);
592
593        if (architecture >= 8L) {
594            // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
595            // The 'Features' line only lists the optional features that the
596            // device's CPU supports, compared to its reference architecture
597            // which are of no use for this process.
598            D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
599            return HWCAP_SET_FOR_ARMV8;
600        }
601    }
602
603    char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
604    if (cpuFeatures != NULL) {
605        D("Found cpuFeatures = '%s'\n", cpuFeatures);
606
607        if (has_list_item(cpuFeatures, "vfp"))
608            hwcaps |= HWCAP_VFP;
609        if (has_list_item(cpuFeatures, "vfpv3"))
610            hwcaps |= HWCAP_VFPv3;
611        if (has_list_item(cpuFeatures, "vfpv3d16"))
612            hwcaps |= HWCAP_VFPv3D16;
613        if (has_list_item(cpuFeatures, "vfpv4"))
614            hwcaps |= HWCAP_VFPv4;
615        if (has_list_item(cpuFeatures, "neon"))
616            hwcaps |= HWCAP_NEON;
617        if (has_list_item(cpuFeatures, "idiva"))
618            hwcaps |= HWCAP_IDIVA;
619        if (has_list_item(cpuFeatures, "idivt"))
620            hwcaps |= HWCAP_IDIVT;
621        if (has_list_item(cpuFeatures, "idiv"))
622            hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
623        if (has_list_item(cpuFeatures, "iwmmxt"))
624            hwcaps |= HWCAP_IWMMXT;
625
626        free(cpuFeatures);
627    }
628    return hwcaps;
629}
630#endif  /* __arm__ */
631
632/* Return the number of cpus present on a given device.
633 *
634 * To handle all weird kernel configurations, we need to compute the
635 * intersection of the 'present' and 'possible' CPU lists and count
636 * the result.
637 */
638static int
639get_cpu_count(void)
640{
641    CpuList cpus_present[1];
642    CpuList cpus_possible[1];
643
644    cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
645    cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
646
647    /* Compute the intersection of both sets to get the actual number of
648     * CPU cores that can be used on this device by the kernel.
649     */
650    cpulist_and(cpus_present, cpus_possible);
651
652    return cpulist_count(cpus_present);
653}
654
655static void
656android_cpuInitFamily(void)
657{
658#if defined(__arm__)
659    g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
660#elif defined(__i386__)
661    g_cpuFamily = ANDROID_CPU_FAMILY_X86;
662#elif defined(__mips64)
663/* Needs to be before __mips__ since the compiler defines both */
664    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
665#elif defined(__mips__)
666    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
667#elif defined(__aarch64__)
668    g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
669#elif defined(__x86_64__)
670    g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
671#else
672    g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
673#endif
674}
675
676static void
677android_cpuInit(void)
678{
679    char* cpuinfo = NULL;
680    int   cpuinfo_len;
681
682    android_cpuInitFamily();
683
684    g_cpuFeatures = 0;
685    g_cpuCount    = 1;
686    g_inited      = 1;
687
688    cpuinfo_len = get_file_size("/proc/cpuinfo");
689    if (cpuinfo_len < 0) {
690      D("cpuinfo_len cannot be computed!");
691      return;
692    }
693    cpuinfo = malloc(cpuinfo_len);
694    if (cpuinfo == NULL) {
695      D("cpuinfo buffer could not be allocated");
696      return;
697    }
698    cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
699    D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
700      cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
701
702    if (cpuinfo_len < 0)  /* should not happen */ {
703        free(cpuinfo);
704        return;
705    }
706
707    /* Count the CPU cores, the value may be 0 for single-core CPUs */
708    g_cpuCount = get_cpu_count();
709    if (g_cpuCount == 0) {
710        g_cpuCount = 1;
711    }
712
713    D("found cpuCount = %d\n", g_cpuCount);
714
715#ifdef __arm__
716    {
717        /* Extract architecture from the "CPU Architecture" field.
718         * The list is well-known, unlike the the output of
719         * the 'Processor' field which can vary greatly.
720         *
721         * See the definition of the 'proc_arch' array in
722         * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
723         * same file.
724         */
725        char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
726
727        if (cpuArch != NULL) {
728            char*  end;
729            long   archNumber;
730            int    hasARMv7 = 0;
731
732            D("found cpuArch = '%s'\n", cpuArch);
733
734            /* read the initial decimal number, ignore the rest */
735            archNumber = strtol(cpuArch, &end, 10);
736
737            /* Note that ARMv8 is upwards compatible with ARMv7. */
738            if (end > cpuArch && archNumber >= 7) {
739                hasARMv7 = 1;
740            }
741
742            /* Unfortunately, it seems that certain ARMv6-based CPUs
743             * report an incorrect architecture number of 7!
744             *
745             * See http://code.google.com/p/android/issues/detail?id=10812
746             *
747             * We try to correct this by looking at the 'elf_format'
748             * field reported by the 'Processor' field, which is of the
749             * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
750             * an ARMv6-one.
751             */
752            if (hasARMv7) {
753                char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
754                                                      "Processor");
755                if (cpuProc != NULL) {
756                    D("found cpuProc = '%s'\n", cpuProc);
757                    if (has_list_item(cpuProc, "(v6l)")) {
758                        D("CPU processor and architecture mismatch!!\n");
759                        hasARMv7 = 0;
760                    }
761                    free(cpuProc);
762                }
763            }
764
765            if (hasARMv7) {
766                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
767            }
768
769            /* The LDREX / STREX instructions are available from ARMv6 */
770            if (archNumber >= 6) {
771                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
772            }
773
774            free(cpuArch);
775        }
776
777        /* Extract the list of CPU features from ELF hwcaps */
778        uint32_t hwcaps = 0;
779        hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
780        if (!hwcaps) {
781            D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
782            hwcaps = get_elf_hwcap_from_proc_self_auxv();
783        }
784        if (!hwcaps) {
785            // Parsing /proc/self/auxv will fail from regular application
786            // processes on some Android platform versions, when this happens
787            // parse proc/cpuinfo instead.
788            D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
789            hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
790        }
791
792        if (hwcaps != 0) {
793            int has_vfp = (hwcaps & HWCAP_VFP);
794            int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
795            int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
796            int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
797            int has_neon = (hwcaps & HWCAP_NEON);
798            int has_idiva = (hwcaps & HWCAP_IDIVA);
799            int has_idivt = (hwcaps & HWCAP_IDIVT);
800            int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
801
802            // The kernel does a poor job at ensuring consistency when
803            // describing CPU features. So lots of guessing is needed.
804
805            // 'vfpv4' implies VFPv3|VFP_FMA|FP16
806            if (has_vfpv4)
807                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
808                                 ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
809                                 ANDROID_CPU_ARM_FEATURE_VFP_FMA;
810
811            // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
812            // a value of 'vfpv3' doesn't necessarily mean that the D32
813            // feature is present, so be conservative. All CPUs in the
814            // field that support D32 also support NEON, so this should
815            // not be a problem in practice.
816            if (has_vfpv3 || has_vfpv3d16)
817                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
818
819            // 'vfp' is super ambiguous. Depending on the kernel, it can
820            // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
821            if (has_vfp) {
822              if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
823                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
824              else
825                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
826            }
827
828            // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
829            if (has_neon) {
830                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
831                                 ANDROID_CPU_ARM_FEATURE_NEON |
832                                 ANDROID_CPU_ARM_FEATURE_VFP_D32;
833              if (has_vfpv4)
834                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
835            }
836
837            // VFPv3 implies VFPv2 and ARMv7
838            if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
839                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
840                                 ANDROID_CPU_ARM_FEATURE_ARMv7;
841
842            if (has_idiva)
843                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
844            if (has_idivt)
845                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
846
847            if (has_iwmmxt)
848                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
849        }
850
851        /* Extract the list of CPU features from ELF hwcaps2 */
852        uint32_t hwcaps2 = 0;
853        hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2);
854        if (hwcaps2 != 0) {
855            int has_aes     = (hwcaps2 & HWCAP2_AES);
856            int has_pmull   = (hwcaps2 & HWCAP2_PMULL);
857            int has_sha1    = (hwcaps2 & HWCAP2_SHA1);
858            int has_sha2    = (hwcaps2 & HWCAP2_SHA2);
859            int has_crc32   = (hwcaps2 & HWCAP2_CRC32);
860
861            if (has_aes)
862                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES;
863            if (has_pmull)
864                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL;
865            if (has_sha1)
866                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1;
867            if (has_sha2)
868                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2;
869            if (has_crc32)
870                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32;
871        }
872        /* Extract the cpuid value from various fields */
873        // The CPUID value is broken up in several entries in /proc/cpuinfo.
874        // This table is used to rebuild it from the entries.
875        static const struct CpuIdEntry {
876            const char* field;
877            char        format;
878            char        bit_lshift;
879            char        bit_length;
880        } cpu_id_entries[] = {
881            { "CPU implementer", 'x', 24, 8 },
882            { "CPU variant", 'x', 20, 4 },
883            { "CPU part", 'x', 4, 12 },
884            { "CPU revision", 'd', 0, 4 },
885        };
886        size_t i;
887        D("Parsing /proc/cpuinfo to recover CPUID\n");
888        for (i = 0;
889             i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
890             ++i) {
891            const struct CpuIdEntry* entry = &cpu_id_entries[i];
892            char* value = extract_cpuinfo_field(cpuinfo,
893                                                cpuinfo_len,
894                                                entry->field);
895            if (value == NULL)
896                continue;
897
898            D("field=%s value='%s'\n", entry->field, value);
899            char* value_end = value + strlen(value);
900            int val = 0;
901            const char* start = value;
902            const char* p;
903            if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
904              start += 2;
905              p = parse_hexadecimal(start, value_end, &val);
906            } else if (entry->format == 'x')
907              p = parse_hexadecimal(value, value_end, &val);
908            else
909              p = parse_decimal(value, value_end, &val);
910
911            if (p > (const char*)start) {
912              val &= ((1 << entry->bit_length)-1);
913              val <<= entry->bit_lshift;
914              g_cpuIdArm |= (uint32_t) val;
915            }
916
917            free(value);
918        }
919
920        // Handle kernel configuration bugs that prevent the correct
921        // reporting of CPU features.
922        static const struct CpuFix {
923            uint32_t  cpuid;
924            uint64_t  or_flags;
925        } cpu_fixes[] = {
926            /* The Nexus 4 (Qualcomm Krait) kernel configuration
927             * forgets to report IDIV support. */
928            { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
929                          ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
930            { 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
931                          ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
932        };
933        size_t n;
934        for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
935            const struct CpuFix* entry = &cpu_fixes[n];
936
937            if (g_cpuIdArm == entry->cpuid)
938                g_cpuFeatures |= entry->or_flags;
939        }
940
941        // Special case: The emulator-specific Android 4.2 kernel fails
942        // to report support for the 32-bit ARM IDIV instruction.
943        // Technically, this is a feature of the virtual CPU implemented
944        // by the emulator. Note that it could also support Thumb IDIV
945        // in the future, and this will have to be slightly updated.
946        char* hardware = extract_cpuinfo_field(cpuinfo,
947                                               cpuinfo_len,
948                                               "Hardware");
949        if (hardware) {
950            if (!strcmp(hardware, "Goldfish") &&
951                g_cpuIdArm == 0x4100c080 &&
952                (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
953                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
954            }
955            free(hardware);
956        }
957    }
958#endif /* __arm__ */
959#ifdef __aarch64__
960    {
961        /* Extract the list of CPU features from ELF hwcaps */
962        uint32_t hwcaps = 0;
963        hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
964        if (hwcaps != 0) {
965            int has_fp      = (hwcaps & HWCAP_FP);
966            int has_asimd   = (hwcaps & HWCAP_ASIMD);
967            int has_aes     = (hwcaps & HWCAP_AES);
968            int has_pmull   = (hwcaps & HWCAP_PMULL);
969            int has_sha1    = (hwcaps & HWCAP_SHA1);
970            int has_sha2    = (hwcaps & HWCAP_SHA2);
971            int has_crc32   = (hwcaps & HWCAP_CRC32);
972
973            if(has_fp == 0) {
974                D("ERROR: Floating-point unit missing, but is required by Android on AArch64 CPUs\n");
975            }
976            if(has_asimd == 0) {
977                D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n");
978            }
979
980            if (has_fp)
981                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP;
982            if (has_asimd)
983                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD;
984            if (has_aes)
985                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES;
986            if (has_pmull)
987                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL;
988            if (has_sha1)
989                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1;
990            if (has_sha2)
991                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2;
992            if (has_crc32)
993                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32;
994        }
995    }
996#endif /* __aarch64__ */
997
998#if defined(__i386__) || defined(__x86_64__)
999    int regs[4];
1000
1001/* According to http://en.wikipedia.org/wiki/CPUID */
1002#define VENDOR_INTEL_b  0x756e6547
1003#define VENDOR_INTEL_c  0x6c65746e
1004#define VENDOR_INTEL_d  0x49656e69
1005
1006    x86_cpuid(0, regs);
1007    int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
1008                         regs[2] == VENDOR_INTEL_c &&
1009                         regs[3] == VENDOR_INTEL_d);
1010
1011    x86_cpuid(1, regs);
1012    if ((regs[2] & (1 << 9)) != 0) {
1013        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
1014    }
1015    if ((regs[2] & (1 << 23)) != 0) {
1016        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
1017    }
1018    if ((regs[2] & (1 << 19)) != 0) {
1019        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_1;
1020    }
1021    if ((regs[2] & (1 << 20)) != 0) {
1022        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_2;
1023    }
1024    if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
1025        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
1026    }
1027    if ((regs[2] & (1 << 25)) != 0) {
1028        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AES_NI;
1029    }
1030    if ((regs[2] & (1 << 28)) != 0) {
1031        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX;
1032    }
1033    if ((regs[2] & (1 << 30)) != 0) {
1034        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_RDRAND;
1035    }
1036
1037    x86_cpuid(7, regs);
1038    if ((regs[1] & (1 << 5)) != 0) {
1039        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX2;
1040    }
1041    if ((regs[1] & (1 << 29)) != 0) {
1042        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SHA_NI;
1043    }
1044
1045
1046#endif
1047#if defined( __mips__)
1048    {   /* MIPS and MIPS64 */
1049        /* Extract the list of CPU features from ELF hwcaps */
1050        uint32_t hwcaps = 0;
1051        hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
1052        if (hwcaps != 0) {
1053            int has_r6      = (hwcaps & HWCAP_MIPS_R6);
1054            int has_msa     = (hwcaps & HWCAP_MIPS_MSA);
1055            if (has_r6)
1056                g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_R6;
1057            if (has_msa)
1058                g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_MSA;
1059        }
1060    }
1061#endif /* __mips__ */
1062
1063    free(cpuinfo);
1064}
1065
1066
1067AndroidCpuFamily
1068android_getCpuFamily(void)
1069{
1070    pthread_once(&g_once, android_cpuInit);
1071    return g_cpuFamily;
1072}
1073
1074
1075uint64_t
1076android_getCpuFeatures(void)
1077{
1078    pthread_once(&g_once, android_cpuInit);
1079    return g_cpuFeatures;
1080}
1081
1082
1083int
1084android_getCpuCount(void)
1085{
1086    pthread_once(&g_once, android_cpuInit);
1087    return g_cpuCount;
1088}
1089
1090static void
1091android_cpuInitDummy(void)
1092{
1093    g_inited = 1;
1094}
1095
1096int
1097android_setCpu(int cpu_count, uint64_t cpu_features)
1098{
1099    /* Fail if the library was already initialized. */
1100    if (g_inited)
1101        return 0;
1102
1103    android_cpuInitFamily();
1104    g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
1105    g_cpuFeatures = cpu_features;
1106    pthread_once(&g_once, android_cpuInitDummy);
1107
1108    return 1;
1109}
1110
1111#ifdef __arm__
1112uint32_t
1113android_getCpuIdArm(void)
1114{
1115    pthread_once(&g_once, android_cpuInit);
1116    return g_cpuIdArm;
1117}
1118
1119int
1120android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
1121{
1122    if (!android_setCpu(cpu_count, cpu_features))
1123        return 0;
1124
1125    g_cpuIdArm = cpu_id;
1126    return 1;
1127}
1128#endif  /* __arm__ */
1129
1130/*
1131 * Technical note: Making sense of ARM's FPU architecture versions.
1132 *
1133 * FPA was ARM's first attempt at an FPU architecture. There is no Android
1134 * device that actually uses it since this technology was already obsolete
1135 * when the project started. If you see references to FPA instructions
1136 * somewhere, you can be sure that this doesn't apply to Android at all.
1137 *
1138 * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
1139 * new versions / additions to it. ARM considers this obsolete right now,
1140 * and no known Android device implements it either.
1141 *
1142 * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
1143 * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
1144 * supporting the 'armeabi' ABI doesn't necessarily support these.
1145 *
1146 * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
1147 * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
1148 * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
1149 * that it provides 16 double-precision FPU registers (d0-d15) and 32
1150 * single-precision ones (s0-s31) which happen to be mapped to the same
1151 * register banks.
1152 *
1153 * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1154 * additional double precision registers (d16-d31). Note that there are
1155 * still only 32 single precision registers.
1156 *
1157 * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1158 * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1159 * are not supported by Android. Note that it is not compatible with VFPv2.
1160 *
1161 * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1162 *       depending on context. For example GCC uses it for VFPv3-D32, but
1163 *       the Linux kernel code uses it for VFPv3-D16 (especially in
1164 *       /proc/cpuinfo). Always try to use the full designation when
1165 *       possible.
1166 *
1167 * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1168 * instructions to perform parallel computations on vectors of 8, 16,
1169 * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1170 * NEON registers are also mapped to the same register banks.
1171 *
1172 * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1173 * perform fused multiply-accumulate on VFP registers, as well as
1174 * half-precision (16-bit) conversion operations.
1175 *
1176 * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1177 * registers.
1178 *
1179 * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1180 * multiply-accumulate instructions that work on the NEON registers.
1181 *
1182 * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1183 *       depending on context.
1184 *
1185 * The following information was determined by scanning the binutils-2.22
1186 * sources:
1187 *
1188 * Basic VFP instruction subsets:
1189 *
1190 * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
1191 * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
1192 * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
1193 * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
1194 * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
1195 * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
1196 * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
1197 * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
1198 * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
1199 * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
1200 *
1201 * FPU types (excluding NEON)
1202 *
1203 * FPU_VFP_V1xD (EXT_V1xD)
1204 *    |
1205 *    +--------------------------+
1206 *    |                          |
1207 * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1208 *    |                          |
1209 *    |                          |
1210 * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1211 *    |
1212 * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1213 *    |
1214 *    +--------------------------+
1215 *    |                          |
1216 * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1217 *    |                          |
1218 *    |                      FPU_VFP_V4 (+EXT_D32)
1219 *    |
1220 * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1221 *
1222 * VFP architectures:
1223 *
1224 * ARCH_VFP_V1xD  (EXT_V1xD)
1225 *   |
1226 *   +------------------+
1227 *   |                  |
1228 *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1229 *   |                  |
1230 *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1231 *   |                  |
1232 *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1233 *   |
1234 * ARCH_VFP_V1 (+EXT_V1)
1235 *   |
1236 * ARCH_VFP_V2 (+EXT_V2)
1237 *   |
1238 * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1239 *   |
1240 *   +-------------------+
1241 *   |                   |
1242 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1243 *   |
1244 *   +-------------------+
1245 *   |                   |
1246 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1247 *   |                   |
1248 *   |         ARCH_VFP_V4 (+EXT_D32)
1249 *   |                   |
1250 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1251 *   |
1252 * ARCH_VFP_V3 (+EXT_D32)
1253 *   |
1254 *   +-------------------+
1255 *   |                   |
1256 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1257 *   |
1258 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1259 *   |
1260 * ARCH_NEON_FP16 (+EXT_FP16)
1261 *
1262 * -fpu=<name> values and their correspondance with FPU architectures above:
1263 *
1264 *   {"vfp",               FPU_ARCH_VFP_V2},
1265 *   {"vfp9",              FPU_ARCH_VFP_V2},
1266 *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1267 *   {"vfp10",             FPU_ARCH_VFP_V2},
1268 *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1269 *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1270 *   {"vfpv2",             FPU_ARCH_VFP_V2},
1271 *   {"vfpv3",             FPU_ARCH_VFP_V3},
1272 *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1273 *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1274 *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1275 *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1276 *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1277 *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1278 *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1279 *   {"vfpv4",             FPU_ARCH_VFP_V4},
1280 *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1281 *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1282 *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1283 *
1284 *
1285 * Simplified diagram that only includes FPUs supported by Android:
1286 * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1287 * all others are optional and must be probed at runtime.
1288 *
1289 * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1290 *   |
1291 *   +-------------------+
1292 *   |                   |
1293 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1294 *   |
1295 *   +-------------------+
1296 *   |                   |
1297 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1298 *   |                   |
1299 *   |         ARCH_VFP_V4 (+EXT_D32)
1300 *   |                   |
1301 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1302 *   |
1303 * ARCH_VFP_V3 (+EXT_D32)
1304 *   |
1305 *   +-------------------+
1306 *   |                   |
1307 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1308 *   |
1309 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1310 *   |
1311 * ARCH_NEON_FP16 (+EXT_FP16)
1312 *
1313 */
1314