1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/aio.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/mm_inline.h> /* for page_is_file_cache() */
37#include <linux/cleancache.h>
38#include "internal.h"
39
40/*
41 * FIXME: remove all knowledge of the buffer layer from the core VM
42 */
43#include <linux/buffer_head.h> /* for try_to_free_buffers */
44
45#include <asm/mman.h>
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_mutex		(truncate_pagecache)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_mutex
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  inode_wb_list_lock
85 *    sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_mutex
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    inode_wb_list_lock	(page_remove_rmap->set_page_dirty)
103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104 *    inode_wb_list_lock	(zap_pte_range->set_page_dirty)
105 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
106 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107 *
108 *  (code doesn't rely on that order, so you could switch it around)
109 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110 *    ->i_mmap_mutex
111 */
112
113/*
114 * Delete a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe.  The caller must hold the mapping's tree_lock.
117 */
118void __delete_from_page_cache(struct page *page)
119{
120	struct address_space *mapping = page->mapping;
121
122	/*
123	 * if we're uptodate, flush out into the cleancache, otherwise
124	 * invalidate any existing cleancache entries.  We can't leave
125	 * stale data around in the cleancache once our page is gone
126	 */
127	if (PageUptodate(page) && PageMappedToDisk(page))
128		cleancache_put_page(page);
129	else
130		cleancache_flush_page(mapping, page);
131
132	radix_tree_delete(&mapping->page_tree, page->index);
133	page->mapping = NULL;
134	mapping->nrpages--;
135	__dec_zone_page_state(page, NR_FILE_PAGES);
136	if (PageSwapBacked(page))
137		__dec_zone_page_state(page, NR_SHMEM);
138	BUG_ON(page_mapped(page));
139
140	/*
141	 * Some filesystems seem to re-dirty the page even after
142	 * the VM has canceled the dirty bit (eg ext3 journaling).
143	 *
144	 * Fix it up by doing a final dirty accounting check after
145	 * having removed the page entirely.
146	 */
147	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
148		dec_zone_page_state(page, NR_FILE_DIRTY);
149		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
150	}
151}
152
153/**
154 * delete_from_page_cache - delete page from page cache
155 * @page: the page which the kernel is trying to remove from page cache
156 *
157 * This must be called only on pages that have been verified to be in the page
158 * cache and locked.  It will never put the page into the free list, the caller
159 * has a reference on the page.
160 */
161void delete_from_page_cache(struct page *page)
162{
163	struct address_space *mapping = page->mapping;
164	void (*freepage)(struct page *);
165
166	BUG_ON(!PageLocked(page));
167
168	freepage = mapping->a_ops->freepage;
169	spin_lock_irq(&mapping->tree_lock);
170	__delete_from_page_cache(page);
171	spin_unlock_irq(&mapping->tree_lock);
172	mem_cgroup_uncharge_cache_page(page);
173
174	if (freepage)
175		freepage(page);
176	page_cache_release(page);
177}
178EXPORT_SYMBOL(delete_from_page_cache);
179
180static int sleep_on_page(void *word)
181{
182	io_schedule();
183	return 0;
184}
185
186static int sleep_on_page_killable(void *word)
187{
188	sleep_on_page(word);
189	return fatal_signal_pending(current) ? -EINTR : 0;
190}
191
192/**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping:	address space structure to write
195 * @start:	offset in bytes where the range starts
196 * @end:	offset in bytes where the range ends (inclusive)
197 * @sync_mode:	enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback.  The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208				loff_t end, int sync_mode)
209{
210	int ret;
211	struct writeback_control wbc = {
212		.sync_mode = sync_mode,
213		.nr_to_write = LONG_MAX,
214		.range_start = start,
215		.range_end = end,
216	};
217
218	if (!mapping_cap_writeback_dirty(mapping))
219		return 0;
220
221	ret = do_writepages(mapping, &wbc);
222	return ret;
223}
224
225static inline int __filemap_fdatawrite(struct address_space *mapping,
226	int sync_mode)
227{
228	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229}
230
231int filemap_fdatawrite(struct address_space *mapping)
232{
233	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234}
235EXPORT_SYMBOL(filemap_fdatawrite);
236
237int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238				loff_t end)
239{
240	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241}
242EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping:	target address_space
247 *
248 * This is a mostly non-blocking flush.  Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
257/**
258 * filemap_fdatawait_range - wait for writeback to complete
259 * @mapping:		address space structure to wait for
260 * @start_byte:		offset in bytes where the range starts
261 * @end_byte:		offset in bytes where the range ends (inclusive)
262 *
263 * Walk the list of under-writeback pages of the given address space
264 * in the given range and wait for all of them.
265 */
266int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
267			    loff_t end_byte)
268{
269	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
270	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
271	struct pagevec pvec;
272	int nr_pages;
273	int ret = 0;
274
275	if (end_byte < start_byte)
276		return 0;
277
278	pagevec_init(&pvec, 0);
279	while ((index <= end) &&
280			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281			PAGECACHE_TAG_WRITEBACK,
282			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283		unsigned i;
284
285		for (i = 0; i < nr_pages; i++) {
286			struct page *page = pvec.pages[i];
287
288			/* until radix tree lookup accepts end_index */
289			if (page->index > end)
290				continue;
291
292			wait_on_page_writeback(page);
293			if (TestClearPageError(page))
294				ret = -EIO;
295		}
296		pagevec_release(&pvec);
297		cond_resched();
298	}
299
300	/* Check for outstanding write errors */
301	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302		ret = -ENOSPC;
303	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304		ret = -EIO;
305
306	return ret;
307}
308EXPORT_SYMBOL(filemap_fdatawait_range);
309
310/**
311 * filemap_fdatawait - wait for all under-writeback pages to complete
312 * @mapping: address space structure to wait for
313 *
314 * Walk the list of under-writeback pages of the given address space
315 * and wait for all of them.
316 */
317int filemap_fdatawait(struct address_space *mapping)
318{
319	loff_t i_size = i_size_read(mapping->host);
320
321	if (i_size == 0)
322		return 0;
323
324	return filemap_fdatawait_range(mapping, 0, i_size - 1);
325}
326EXPORT_SYMBOL(filemap_fdatawait);
327
328int filemap_write_and_wait(struct address_space *mapping)
329{
330	int err = 0;
331
332	if (mapping->nrpages) {
333		err = filemap_fdatawrite(mapping);
334		/*
335		 * Even if the above returned error, the pages may be
336		 * written partially (e.g. -ENOSPC), so we wait for it.
337		 * But the -EIO is special case, it may indicate the worst
338		 * thing (e.g. bug) happened, so we avoid waiting for it.
339		 */
340		if (err != -EIO) {
341			int err2 = filemap_fdatawait(mapping);
342			if (!err)
343				err = err2;
344		}
345	}
346	return err;
347}
348EXPORT_SYMBOL(filemap_write_and_wait);
349
350/**
351 * filemap_write_and_wait_range - write out & wait on a file range
352 * @mapping:	the address_space for the pages
353 * @lstart:	offset in bytes where the range starts
354 * @lend:	offset in bytes where the range ends (inclusive)
355 *
356 * Write out and wait upon file offsets lstart->lend, inclusive.
357 *
358 * Note that `lend' is inclusive (describes the last byte to be written) so
359 * that this function can be used to write to the very end-of-file (end = -1).
360 */
361int filemap_write_and_wait_range(struct address_space *mapping,
362				 loff_t lstart, loff_t lend)
363{
364	int err = 0;
365
366	if (mapping->nrpages) {
367		err = __filemap_fdatawrite_range(mapping, lstart, lend,
368						 WB_SYNC_ALL);
369		/* See comment of filemap_write_and_wait() */
370		if (err != -EIO) {
371			int err2 = filemap_fdatawait_range(mapping,
372						lstart, lend);
373			if (!err)
374				err = err2;
375		}
376	}
377	return err;
378}
379EXPORT_SYMBOL(filemap_write_and_wait_range);
380
381/**
382 * replace_page_cache_page - replace a pagecache page with a new one
383 * @old:	page to be replaced
384 * @new:	page to replace with
385 * @gfp_mask:	allocation mode
386 *
387 * This function replaces a page in the pagecache with a new one.  On
388 * success it acquires the pagecache reference for the new page and
389 * drops it for the old page.  Both the old and new pages must be
390 * locked.  This function does not add the new page to the LRU, the
391 * caller must do that.
392 *
393 * The remove + add is atomic.  The only way this function can fail is
394 * memory allocation failure.
395 */
396int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
397{
398	int error;
399
400	VM_BUG_ON(!PageLocked(old));
401	VM_BUG_ON(!PageLocked(new));
402	VM_BUG_ON(new->mapping);
403
404	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
405	if (!error) {
406		struct address_space *mapping = old->mapping;
407		void (*freepage)(struct page *);
408
409		pgoff_t offset = old->index;
410		freepage = mapping->a_ops->freepage;
411
412		page_cache_get(new);
413		new->mapping = mapping;
414		new->index = offset;
415
416		spin_lock_irq(&mapping->tree_lock);
417		__delete_from_page_cache(old);
418		error = radix_tree_insert(&mapping->page_tree, offset, new);
419		BUG_ON(error);
420		mapping->nrpages++;
421		__inc_zone_page_state(new, NR_FILE_PAGES);
422		if (PageSwapBacked(new))
423			__inc_zone_page_state(new, NR_SHMEM);
424		spin_unlock_irq(&mapping->tree_lock);
425		/* mem_cgroup codes must not be called under tree_lock */
426		mem_cgroup_replace_page_cache(old, new);
427		radix_tree_preload_end();
428		if (freepage)
429			freepage(old);
430		page_cache_release(old);
431	}
432
433	return error;
434}
435EXPORT_SYMBOL_GPL(replace_page_cache_page);
436
437/**
438 * add_to_page_cache_locked - add a locked page to the pagecache
439 * @page:	page to add
440 * @mapping:	the page's address_space
441 * @offset:	page index
442 * @gfp_mask:	page allocation mode
443 *
444 * This function is used to add a page to the pagecache. It must be locked.
445 * This function does not add the page to the LRU.  The caller must do that.
446 */
447int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
448		pgoff_t offset, gfp_t gfp_mask)
449{
450	int error;
451
452	VM_BUG_ON(!PageLocked(page));
453
454	error = mem_cgroup_cache_charge(page, current->mm,
455					gfp_mask & GFP_RECLAIM_MASK);
456	if (error)
457		goto out;
458
459	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
460	if (error == 0) {
461		page_cache_get(page);
462		page->mapping = mapping;
463		page->index = offset;
464
465		spin_lock_irq(&mapping->tree_lock);
466		error = radix_tree_insert(&mapping->page_tree, offset, page);
467		if (likely(!error)) {
468			mapping->nrpages++;
469			__inc_zone_page_state(page, NR_FILE_PAGES);
470			if (PageSwapBacked(page))
471				__inc_zone_page_state(page, NR_SHMEM);
472			spin_unlock_irq(&mapping->tree_lock);
473		} else {
474			page->mapping = NULL;
475			spin_unlock_irq(&mapping->tree_lock);
476			mem_cgroup_uncharge_cache_page(page);
477			page_cache_release(page);
478		}
479		radix_tree_preload_end();
480	} else
481		mem_cgroup_uncharge_cache_page(page);
482out:
483	return error;
484}
485EXPORT_SYMBOL(add_to_page_cache_locked);
486
487int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
488				pgoff_t offset, gfp_t gfp_mask)
489{
490	int ret;
491
492	/*
493	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
494	 * before shmem_readpage has a chance to mark them as SwapBacked: they
495	 * need to go on the anon lru below, and mem_cgroup_cache_charge
496	 * (called in add_to_page_cache) needs to know where they're going too.
497	 */
498	if (mapping_cap_swap_backed(mapping))
499		SetPageSwapBacked(page);
500
501	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
502	if (ret == 0) {
503		if (page_is_file_cache(page))
504			lru_cache_add_file(page);
505		else
506			lru_cache_add_anon(page);
507	}
508	return ret;
509}
510EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512#ifdef CONFIG_NUMA
513struct page *__page_cache_alloc(gfp_t gfp)
514{
515	int n;
516	struct page *page;
517
518	if (cpuset_do_page_mem_spread()) {
519		get_mems_allowed();
520		n = cpuset_mem_spread_node();
521		page = alloc_pages_exact_node(n, gfp, 0);
522		put_mems_allowed();
523		return page;
524	}
525	return alloc_pages(gfp, 0);
526}
527EXPORT_SYMBOL(__page_cache_alloc);
528#endif
529
530/*
531 * In order to wait for pages to become available there must be
532 * waitqueues associated with pages. By using a hash table of
533 * waitqueues where the bucket discipline is to maintain all
534 * waiters on the same queue and wake all when any of the pages
535 * become available, and for the woken contexts to check to be
536 * sure the appropriate page became available, this saves space
537 * at a cost of "thundering herd" phenomena during rare hash
538 * collisions.
539 */
540static wait_queue_head_t *page_waitqueue(struct page *page)
541{
542	const struct zone *zone = page_zone(page);
543
544	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
545}
546
547static inline void wake_up_page(struct page *page, int bit)
548{
549	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
550}
551
552void wait_on_page_bit(struct page *page, int bit_nr)
553{
554	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
555
556	if (test_bit(bit_nr, &page->flags))
557		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
558							TASK_UNINTERRUPTIBLE);
559}
560EXPORT_SYMBOL(wait_on_page_bit);
561
562int wait_on_page_bit_killable(struct page *page, int bit_nr)
563{
564	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
565
566	if (!test_bit(bit_nr, &page->flags))
567		return 0;
568
569	return __wait_on_bit(page_waitqueue(page), &wait,
570			     sleep_on_page_killable, TASK_KILLABLE);
571}
572
573/**
574 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
575 * @page: Page defining the wait queue of interest
576 * @waiter: Waiter to add to the queue
577 *
578 * Add an arbitrary @waiter to the wait queue for the nominated @page.
579 */
580void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
581{
582	wait_queue_head_t *q = page_waitqueue(page);
583	unsigned long flags;
584
585	spin_lock_irqsave(&q->lock, flags);
586	__add_wait_queue(q, waiter);
587	spin_unlock_irqrestore(&q->lock, flags);
588}
589EXPORT_SYMBOL_GPL(add_page_wait_queue);
590
591/**
592 * unlock_page - unlock a locked page
593 * @page: the page
594 *
595 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
596 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
597 * mechananism between PageLocked pages and PageWriteback pages is shared.
598 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
599 *
600 * The mb is necessary to enforce ordering between the clear_bit and the read
601 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
602 */
603void unlock_page(struct page *page)
604{
605	VM_BUG_ON(!PageLocked(page));
606	clear_bit_unlock(PG_locked, &page->flags);
607	smp_mb__after_clear_bit();
608	wake_up_page(page, PG_locked);
609}
610EXPORT_SYMBOL(unlock_page);
611
612/**
613 * end_page_writeback - end writeback against a page
614 * @page: the page
615 */
616void end_page_writeback(struct page *page)
617{
618	if (TestClearPageReclaim(page))
619		rotate_reclaimable_page(page);
620
621	if (!test_clear_page_writeback(page))
622		BUG();
623
624	smp_mb__after_clear_bit();
625	wake_up_page(page, PG_writeback);
626}
627EXPORT_SYMBOL(end_page_writeback);
628
629/**
630 * __lock_page - get a lock on the page, assuming we need to sleep to get it
631 * @page: the page to lock
632 */
633void __lock_page(struct page *page)
634{
635	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
636
637	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
638							TASK_UNINTERRUPTIBLE);
639}
640EXPORT_SYMBOL(__lock_page);
641
642int __lock_page_killable(struct page *page)
643{
644	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
645
646	return __wait_on_bit_lock(page_waitqueue(page), &wait,
647					sleep_on_page_killable, TASK_KILLABLE);
648}
649EXPORT_SYMBOL_GPL(__lock_page_killable);
650
651int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
652			 unsigned int flags)
653{
654	if (flags & FAULT_FLAG_ALLOW_RETRY) {
655		/*
656		 * CAUTION! In this case, mmap_sem is not released
657		 * even though return 0.
658		 */
659		if (flags & FAULT_FLAG_RETRY_NOWAIT)
660			return 0;
661
662		up_read(&mm->mmap_sem);
663		if (flags & FAULT_FLAG_KILLABLE)
664			wait_on_page_locked_killable(page);
665		else
666			wait_on_page_locked(page);
667		return 0;
668	} else {
669		if (flags & FAULT_FLAG_KILLABLE) {
670			int ret;
671
672			ret = __lock_page_killable(page);
673			if (ret) {
674				up_read(&mm->mmap_sem);
675				return 0;
676			}
677		} else
678			__lock_page(page);
679		return 1;
680	}
681}
682
683/**
684 * find_get_page - find and get a page reference
685 * @mapping: the address_space to search
686 * @offset: the page index
687 *
688 * Is there a pagecache struct page at the given (mapping, offset) tuple?
689 * If yes, increment its refcount and return it; if no, return NULL.
690 */
691struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
692{
693	void **pagep;
694	struct page *page;
695
696	rcu_read_lock();
697repeat:
698	page = NULL;
699	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
700	if (pagep) {
701		page = radix_tree_deref_slot(pagep);
702		if (unlikely(!page))
703			goto out;
704		if (radix_tree_deref_retry(page))
705			goto repeat;
706
707		if (!page_cache_get_speculative(page))
708			goto repeat;
709
710		/*
711		 * Has the page moved?
712		 * This is part of the lockless pagecache protocol. See
713		 * include/linux/pagemap.h for details.
714		 */
715		if (unlikely(page != *pagep)) {
716			page_cache_release(page);
717			goto repeat;
718		}
719	}
720out:
721	rcu_read_unlock();
722
723	return page;
724}
725EXPORT_SYMBOL(find_get_page);
726
727/**
728 * find_lock_page - locate, pin and lock a pagecache page
729 * @mapping: the address_space to search
730 * @offset: the page index
731 *
732 * Locates the desired pagecache page, locks it, increments its reference
733 * count and returns its address.
734 *
735 * Returns zero if the page was not present. find_lock_page() may sleep.
736 */
737struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
738{
739	struct page *page;
740
741repeat:
742	page = find_get_page(mapping, offset);
743	if (page) {
744		lock_page(page);
745		/* Has the page been truncated? */
746		if (unlikely(page->mapping != mapping)) {
747			unlock_page(page);
748			page_cache_release(page);
749			goto repeat;
750		}
751		VM_BUG_ON(page->index != offset);
752	}
753	return page;
754}
755EXPORT_SYMBOL(find_lock_page);
756
757/**
758 * find_or_create_page - locate or add a pagecache page
759 * @mapping: the page's address_space
760 * @index: the page's index into the mapping
761 * @gfp_mask: page allocation mode
762 *
763 * Locates a page in the pagecache.  If the page is not present, a new page
764 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
765 * LRU list.  The returned page is locked and has its reference count
766 * incremented.
767 *
768 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
769 * allocation!
770 *
771 * find_or_create_page() returns the desired page's address, or zero on
772 * memory exhaustion.
773 */
774struct page *find_or_create_page(struct address_space *mapping,
775		pgoff_t index, gfp_t gfp_mask)
776{
777	struct page *page;
778	int err;
779repeat:
780	page = find_lock_page(mapping, index);
781	if (!page) {
782		page = __page_cache_alloc(gfp_mask);
783		if (!page)
784			return NULL;
785		/*
786		 * We want a regular kernel memory (not highmem or DMA etc)
787		 * allocation for the radix tree nodes, but we need to honour
788		 * the context-specific requirements the caller has asked for.
789		 * GFP_RECLAIM_MASK collects those requirements.
790		 */
791		err = add_to_page_cache_lru(page, mapping, index,
792			(gfp_mask & GFP_RECLAIM_MASK));
793		if (unlikely(err)) {
794			page_cache_release(page);
795			page = NULL;
796			if (err == -EEXIST)
797				goto repeat;
798		}
799	}
800	return page;
801}
802EXPORT_SYMBOL(find_or_create_page);
803
804/**
805 * find_get_pages - gang pagecache lookup
806 * @mapping:	The address_space to search
807 * @start:	The starting page index
808 * @nr_pages:	The maximum number of pages
809 * @pages:	Where the resulting pages are placed
810 *
811 * find_get_pages() will search for and return a group of up to
812 * @nr_pages pages in the mapping.  The pages are placed at @pages.
813 * find_get_pages() takes a reference against the returned pages.
814 *
815 * The search returns a group of mapping-contiguous pages with ascending
816 * indexes.  There may be holes in the indices due to not-present pages.
817 *
818 * find_get_pages() returns the number of pages which were found.
819 */
820unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
821			    unsigned int nr_pages, struct page **pages)
822{
823	unsigned int i;
824	unsigned int ret;
825	unsigned int nr_found;
826
827	rcu_read_lock();
828restart:
829	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
830				(void ***)pages, start, nr_pages);
831	ret = 0;
832	for (i = 0; i < nr_found; i++) {
833		struct page *page;
834repeat:
835		page = radix_tree_deref_slot((void **)pages[i]);
836		if (unlikely(!page))
837			continue;
838
839		/*
840		 * This can only trigger when the entry at index 0 moves out
841		 * of or back to the root: none yet gotten, safe to restart.
842		 */
843		if (radix_tree_deref_retry(page)) {
844			WARN_ON(start | i);
845			goto restart;
846		}
847
848		if (!page_cache_get_speculative(page))
849			goto repeat;
850
851		/* Has the page moved? */
852		if (unlikely(page != *((void **)pages[i]))) {
853			page_cache_release(page);
854			goto repeat;
855		}
856
857		pages[ret] = page;
858		ret++;
859	}
860
861	/*
862	 * If all entries were removed before we could secure them,
863	 * try again, because callers stop trying once 0 is returned.
864	 */
865	if (unlikely(!ret && nr_found))
866		goto restart;
867	rcu_read_unlock();
868	return ret;
869}
870
871/**
872 * find_get_pages_contig - gang contiguous pagecache lookup
873 * @mapping:	The address_space to search
874 * @index:	The starting page index
875 * @nr_pages:	The maximum number of pages
876 * @pages:	Where the resulting pages are placed
877 *
878 * find_get_pages_contig() works exactly like find_get_pages(), except
879 * that the returned number of pages are guaranteed to be contiguous.
880 *
881 * find_get_pages_contig() returns the number of pages which were found.
882 */
883unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
884			       unsigned int nr_pages, struct page **pages)
885{
886	unsigned int i;
887	unsigned int ret;
888	unsigned int nr_found;
889
890	rcu_read_lock();
891restart:
892	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
893				(void ***)pages, index, nr_pages);
894	ret = 0;
895	for (i = 0; i < nr_found; i++) {
896		struct page *page;
897repeat:
898		page = radix_tree_deref_slot((void **)pages[i]);
899		if (unlikely(!page))
900			continue;
901
902		/*
903		 * This can only trigger when the entry at index 0 moves out
904		 * of or back to the root: none yet gotten, safe to restart.
905		 */
906		if (radix_tree_deref_retry(page))
907			goto restart;
908
909		if (!page_cache_get_speculative(page))
910			goto repeat;
911
912		/* Has the page moved? */
913		if (unlikely(page != *((void **)pages[i]))) {
914			page_cache_release(page);
915			goto repeat;
916		}
917
918		/*
919		 * must check mapping and index after taking the ref.
920		 * otherwise we can get both false positives and false
921		 * negatives, which is just confusing to the caller.
922		 */
923		if (page->mapping == NULL || page->index != index) {
924			page_cache_release(page);
925			break;
926		}
927
928		pages[ret] = page;
929		ret++;
930		index++;
931	}
932	rcu_read_unlock();
933	return ret;
934}
935EXPORT_SYMBOL(find_get_pages_contig);
936
937/**
938 * find_get_pages_tag - find and return pages that match @tag
939 * @mapping:	the address_space to search
940 * @index:	the starting page index
941 * @tag:	the tag index
942 * @nr_pages:	the maximum number of pages
943 * @pages:	where the resulting pages are placed
944 *
945 * Like find_get_pages, except we only return pages which are tagged with
946 * @tag.   We update @index to index the next page for the traversal.
947 */
948unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
949			int tag, unsigned int nr_pages, struct page **pages)
950{
951	unsigned int i;
952	unsigned int ret;
953	unsigned int nr_found;
954
955	rcu_read_lock();
956restart:
957	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
958				(void ***)pages, *index, nr_pages, tag);
959	ret = 0;
960	for (i = 0; i < nr_found; i++) {
961		struct page *page;
962repeat:
963		page = radix_tree_deref_slot((void **)pages[i]);
964		if (unlikely(!page))
965			continue;
966
967		/*
968		 * This can only trigger when the entry at index 0 moves out
969		 * of or back to the root: none yet gotten, safe to restart.
970		 */
971		if (radix_tree_deref_retry(page))
972			goto restart;
973
974		if (!page_cache_get_speculative(page))
975			goto repeat;
976
977		/* Has the page moved? */
978		if (unlikely(page != *((void **)pages[i]))) {
979			page_cache_release(page);
980			goto repeat;
981		}
982
983		pages[ret] = page;
984		ret++;
985	}
986
987	/*
988	 * If all entries were removed before we could secure them,
989	 * try again, because callers stop trying once 0 is returned.
990	 */
991	if (unlikely(!ret && nr_found))
992		goto restart;
993	rcu_read_unlock();
994
995	if (ret)
996		*index = pages[ret - 1]->index + 1;
997
998	return ret;
999}
1000EXPORT_SYMBOL(find_get_pages_tag);
1001
1002/**
1003 * grab_cache_page_nowait - returns locked page at given index in given cache
1004 * @mapping: target address_space
1005 * @index: the page index
1006 *
1007 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1008 * This is intended for speculative data generators, where the data can
1009 * be regenerated if the page couldn't be grabbed.  This routine should
1010 * be safe to call while holding the lock for another page.
1011 *
1012 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1013 * and deadlock against the caller's locked page.
1014 */
1015struct page *
1016grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1017{
1018	struct page *page = find_get_page(mapping, index);
1019
1020	if (page) {
1021		if (trylock_page(page))
1022			return page;
1023		page_cache_release(page);
1024		return NULL;
1025	}
1026	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1027	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1028		page_cache_release(page);
1029		page = NULL;
1030	}
1031	return page;
1032}
1033EXPORT_SYMBOL(grab_cache_page_nowait);
1034
1035/*
1036 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1037 * a _large_ part of the i/o request. Imagine the worst scenario:
1038 *
1039 *      ---R__________________________________________B__________
1040 *         ^ reading here                             ^ bad block(assume 4k)
1041 *
1042 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1043 * => failing the whole request => read(R) => read(R+1) =>
1044 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1045 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1046 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1047 *
1048 * It is going insane. Fix it by quickly scaling down the readahead size.
1049 */
1050static void shrink_readahead_size_eio(struct file *filp,
1051					struct file_ra_state *ra)
1052{
1053	ra->ra_pages /= 4;
1054}
1055
1056/**
1057 * do_generic_file_read - generic file read routine
1058 * @filp:	the file to read
1059 * @ppos:	current file position
1060 * @desc:	read_descriptor
1061 * @actor:	read method
1062 *
1063 * This is a generic file read routine, and uses the
1064 * mapping->a_ops->readpage() function for the actual low-level stuff.
1065 *
1066 * This is really ugly. But the goto's actually try to clarify some
1067 * of the logic when it comes to error handling etc.
1068 */
1069static void do_generic_file_read(struct file *filp, loff_t *ppos,
1070		read_descriptor_t *desc, read_actor_t actor)
1071{
1072	struct address_space *mapping = filp->f_mapping;
1073	struct inode *inode = mapping->host;
1074	struct file_ra_state *ra = &filp->f_ra;
1075	pgoff_t index;
1076	pgoff_t last_index;
1077	pgoff_t prev_index;
1078	unsigned long offset;      /* offset into pagecache page */
1079	unsigned int prev_offset;
1080	int error;
1081
1082	index = *ppos >> PAGE_CACHE_SHIFT;
1083	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1084	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1085	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1086	offset = *ppos & ~PAGE_CACHE_MASK;
1087
1088	for (;;) {
1089		struct page *page;
1090		pgoff_t end_index;
1091		loff_t isize;
1092		unsigned long nr, ret;
1093
1094		cond_resched();
1095find_page:
1096		page = find_get_page(mapping, index);
1097		if (!page) {
1098			page_cache_sync_readahead(mapping,
1099					ra, filp,
1100					index, last_index - index);
1101			page = find_get_page(mapping, index);
1102			if (unlikely(page == NULL))
1103				goto no_cached_page;
1104		}
1105		if (PageReadahead(page)) {
1106			page_cache_async_readahead(mapping,
1107					ra, filp, page,
1108					index, last_index - index);
1109		}
1110		if (!PageUptodate(page)) {
1111			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1112					!mapping->a_ops->is_partially_uptodate)
1113				goto page_not_up_to_date;
1114			if (!trylock_page(page))
1115				goto page_not_up_to_date;
1116			/* Did it get truncated before we got the lock? */
1117			if (!page->mapping)
1118				goto page_not_up_to_date_locked;
1119			if (!mapping->a_ops->is_partially_uptodate(page,
1120								desc, offset))
1121				goto page_not_up_to_date_locked;
1122			unlock_page(page);
1123		}
1124page_ok:
1125		/*
1126		 * i_size must be checked after we know the page is Uptodate.
1127		 *
1128		 * Checking i_size after the check allows us to calculate
1129		 * the correct value for "nr", which means the zero-filled
1130		 * part of the page is not copied back to userspace (unless
1131		 * another truncate extends the file - this is desired though).
1132		 */
1133
1134		isize = i_size_read(inode);
1135		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1136		if (unlikely(!isize || index > end_index)) {
1137			page_cache_release(page);
1138			goto out;
1139		}
1140
1141		/* nr is the maximum number of bytes to copy from this page */
1142		nr = PAGE_CACHE_SIZE;
1143		if (index == end_index) {
1144			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1145			if (nr <= offset) {
1146				page_cache_release(page);
1147				goto out;
1148			}
1149		}
1150		nr = nr - offset;
1151
1152		/* If users can be writing to this page using arbitrary
1153		 * virtual addresses, take care about potential aliasing
1154		 * before reading the page on the kernel side.
1155		 */
1156		if (mapping_writably_mapped(mapping))
1157			flush_dcache_page(page);
1158
1159		/*
1160		 * When a sequential read accesses a page several times,
1161		 * only mark it as accessed the first time.
1162		 */
1163		if (prev_index != index || offset != prev_offset)
1164			mark_page_accessed(page);
1165		prev_index = index;
1166
1167		/*
1168		 * Ok, we have the page, and it's up-to-date, so
1169		 * now we can copy it to user space...
1170		 *
1171		 * The actor routine returns how many bytes were actually used..
1172		 * NOTE! This may not be the same as how much of a user buffer
1173		 * we filled up (we may be padding etc), so we can only update
1174		 * "pos" here (the actor routine has to update the user buffer
1175		 * pointers and the remaining count).
1176		 */
1177		ret = actor(desc, page, offset, nr);
1178		offset += ret;
1179		index += offset >> PAGE_CACHE_SHIFT;
1180		offset &= ~PAGE_CACHE_MASK;
1181		prev_offset = offset;
1182
1183		page_cache_release(page);
1184		if (ret == nr && desc->count)
1185			continue;
1186		goto out;
1187
1188page_not_up_to_date:
1189		/* Get exclusive access to the page ... */
1190		error = lock_page_killable(page);
1191		if (unlikely(error))
1192			goto readpage_error;
1193
1194page_not_up_to_date_locked:
1195		/* Did it get truncated before we got the lock? */
1196		if (!page->mapping) {
1197			unlock_page(page);
1198			page_cache_release(page);
1199			continue;
1200		}
1201
1202		/* Did somebody else fill it already? */
1203		if (PageUptodate(page)) {
1204			unlock_page(page);
1205			goto page_ok;
1206		}
1207
1208readpage:
1209		/*
1210		 * A previous I/O error may have been due to temporary
1211		 * failures, eg. multipath errors.
1212		 * PG_error will be set again if readpage fails.
1213		 */
1214		ClearPageError(page);
1215		/* Start the actual read. The read will unlock the page. */
1216		error = mapping->a_ops->readpage(filp, page);
1217
1218		if (unlikely(error)) {
1219			if (error == AOP_TRUNCATED_PAGE) {
1220				page_cache_release(page);
1221				goto find_page;
1222			}
1223			goto readpage_error;
1224		}
1225
1226		if (!PageUptodate(page)) {
1227			error = lock_page_killable(page);
1228			if (unlikely(error))
1229				goto readpage_error;
1230			if (!PageUptodate(page)) {
1231				if (page->mapping == NULL) {
1232					/*
1233					 * invalidate_mapping_pages got it
1234					 */
1235					unlock_page(page);
1236					page_cache_release(page);
1237					goto find_page;
1238				}
1239				unlock_page(page);
1240				shrink_readahead_size_eio(filp, ra);
1241				error = -EIO;
1242				goto readpage_error;
1243			}
1244			unlock_page(page);
1245		}
1246
1247		goto page_ok;
1248
1249readpage_error:
1250		/* UHHUH! A synchronous read error occurred. Report it */
1251		desc->error = error;
1252		page_cache_release(page);
1253		goto out;
1254
1255no_cached_page:
1256		/*
1257		 * Ok, it wasn't cached, so we need to create a new
1258		 * page..
1259		 */
1260		page = page_cache_alloc_cold(mapping);
1261		if (!page) {
1262			desc->error = -ENOMEM;
1263			goto out;
1264		}
1265		error = add_to_page_cache_lru(page, mapping,
1266						index, GFP_KERNEL);
1267		if (error) {
1268			page_cache_release(page);
1269			if (error == -EEXIST)
1270				goto find_page;
1271			desc->error = error;
1272			goto out;
1273		}
1274		goto readpage;
1275	}
1276
1277out:
1278	ra->prev_pos = prev_index;
1279	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1280	ra->prev_pos |= prev_offset;
1281
1282	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1283	file_accessed(filp);
1284}
1285
1286int file_read_actor(read_descriptor_t *desc, struct page *page,
1287			unsigned long offset, unsigned long size)
1288{
1289	char *kaddr;
1290	unsigned long left, count = desc->count;
1291
1292	if (size > count)
1293		size = count;
1294
1295	/*
1296	 * Faults on the destination of a read are common, so do it before
1297	 * taking the kmap.
1298	 */
1299	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1300		kaddr = kmap_atomic(page, KM_USER0);
1301		left = __copy_to_user_inatomic(desc->arg.buf,
1302						kaddr + offset, size);
1303		kunmap_atomic(kaddr, KM_USER0);
1304		if (left == 0)
1305			goto success;
1306	}
1307
1308	/* Do it the slow way */
1309	kaddr = kmap(page);
1310	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1311	kunmap(page);
1312
1313	if (left) {
1314		size -= left;
1315		desc->error = -EFAULT;
1316	}
1317success:
1318	desc->count = count - size;
1319	desc->written += size;
1320	desc->arg.buf += size;
1321	return size;
1322}
1323
1324/*
1325 * Performs necessary checks before doing a write
1326 * @iov:	io vector request
1327 * @nr_segs:	number of segments in the iovec
1328 * @count:	number of bytes to write
1329 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1330 *
1331 * Adjust number of segments and amount of bytes to write (nr_segs should be
1332 * properly initialized first). Returns appropriate error code that caller
1333 * should return or zero in case that write should be allowed.
1334 */
1335int generic_segment_checks(const struct iovec *iov,
1336			unsigned long *nr_segs, size_t *count, int access_flags)
1337{
1338	unsigned long   seg;
1339	size_t cnt = 0;
1340	for (seg = 0; seg < *nr_segs; seg++) {
1341		const struct iovec *iv = &iov[seg];
1342
1343		/*
1344		 * If any segment has a negative length, or the cumulative
1345		 * length ever wraps negative then return -EINVAL.
1346		 */
1347		cnt += iv->iov_len;
1348		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1349			return -EINVAL;
1350		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1351			continue;
1352		if (seg == 0)
1353			return -EFAULT;
1354		*nr_segs = seg;
1355		cnt -= iv->iov_len;	/* This segment is no good */
1356		break;
1357	}
1358	*count = cnt;
1359	return 0;
1360}
1361EXPORT_SYMBOL(generic_segment_checks);
1362
1363/**
1364 * generic_file_aio_read - generic filesystem read routine
1365 * @iocb:	kernel I/O control block
1366 * @iov:	io vector request
1367 * @nr_segs:	number of segments in the iovec
1368 * @pos:	current file position
1369 *
1370 * This is the "read()" routine for all filesystems
1371 * that can use the page cache directly.
1372 */
1373ssize_t
1374generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1375		unsigned long nr_segs, loff_t pos)
1376{
1377	struct file *filp = iocb->ki_filp;
1378	ssize_t retval;
1379	unsigned long seg = 0;
1380	size_t count;
1381	loff_t *ppos = &iocb->ki_pos;
1382
1383	count = 0;
1384	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1385	if (retval)
1386		return retval;
1387
1388	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1389	if (filp->f_flags & O_DIRECT) {
1390		loff_t size;
1391		struct address_space *mapping;
1392		struct inode *inode;
1393
1394		mapping = filp->f_mapping;
1395		inode = mapping->host;
1396		if (!count)
1397			goto out; /* skip atime */
1398		size = i_size_read(inode);
1399		if (pos < size) {
1400			retval = filemap_write_and_wait_range(mapping, pos,
1401					pos + iov_length(iov, nr_segs) - 1);
1402			if (!retval) {
1403				struct blk_plug plug;
1404
1405				blk_start_plug(&plug);
1406				retval = mapping->a_ops->direct_IO(READ, iocb,
1407							iov, pos, nr_segs);
1408				blk_finish_plug(&plug);
1409			}
1410			if (retval > 0) {
1411				*ppos = pos + retval;
1412				count -= retval;
1413			}
1414
1415			/*
1416			 * Btrfs can have a short DIO read if we encounter
1417			 * compressed extents, so if there was an error, or if
1418			 * we've already read everything we wanted to, or if
1419			 * there was a short read because we hit EOF, go ahead
1420			 * and return.  Otherwise fallthrough to buffered io for
1421			 * the rest of the read.
1422			 */
1423			if (retval < 0 || !count || *ppos >= size) {
1424				file_accessed(filp);
1425				goto out;
1426			}
1427		}
1428	}
1429
1430	count = retval;
1431	for (seg = 0; seg < nr_segs; seg++) {
1432		read_descriptor_t desc;
1433		loff_t offset = 0;
1434
1435		/*
1436		 * If we did a short DIO read we need to skip the section of the
1437		 * iov that we've already read data into.
1438		 */
1439		if (count) {
1440			if (count > iov[seg].iov_len) {
1441				count -= iov[seg].iov_len;
1442				continue;
1443			}
1444			offset = count;
1445			count = 0;
1446		}
1447
1448		desc.written = 0;
1449		desc.arg.buf = iov[seg].iov_base + offset;
1450		desc.count = iov[seg].iov_len - offset;
1451		if (desc.count == 0)
1452			continue;
1453		desc.error = 0;
1454		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1455		retval += desc.written;
1456		if (desc.error) {
1457			retval = retval ?: desc.error;
1458			break;
1459		}
1460		if (desc.count > 0)
1461			break;
1462	}
1463out:
1464	return retval;
1465}
1466EXPORT_SYMBOL(generic_file_aio_read);
1467
1468static ssize_t
1469do_readahead(struct address_space *mapping, struct file *filp,
1470	     pgoff_t index, unsigned long nr)
1471{
1472	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1473		return -EINVAL;
1474
1475	force_page_cache_readahead(mapping, filp, index, nr);
1476	return 0;
1477}
1478
1479SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1480{
1481	ssize_t ret;
1482	struct file *file;
1483
1484	ret = -EBADF;
1485	file = fget(fd);
1486	if (file) {
1487		if (file->f_mode & FMODE_READ) {
1488			struct address_space *mapping = file->f_mapping;
1489			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1490			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1491			unsigned long len = end - start + 1;
1492			ret = do_readahead(mapping, file, start, len);
1493		}
1494		fput(file);
1495	}
1496	return ret;
1497}
1498#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1499asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1500{
1501	return SYSC_readahead((int) fd, offset, (size_t) count);
1502}
1503SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1504#endif
1505
1506#ifdef CONFIG_MMU
1507/**
1508 * page_cache_read - adds requested page to the page cache if not already there
1509 * @file:	file to read
1510 * @offset:	page index
1511 *
1512 * This adds the requested page to the page cache if it isn't already there,
1513 * and schedules an I/O to read in its contents from disk.
1514 */
1515static int page_cache_read(struct file *file, pgoff_t offset)
1516{
1517	struct address_space *mapping = file->f_mapping;
1518	struct page *page;
1519	int ret;
1520
1521	do {
1522		page = page_cache_alloc_cold(mapping);
1523		if (!page)
1524			return -ENOMEM;
1525
1526		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1527		if (ret == 0)
1528			ret = mapping->a_ops->readpage(file, page);
1529		else if (ret == -EEXIST)
1530			ret = 0; /* losing race to add is OK */
1531
1532		page_cache_release(page);
1533
1534	} while (ret == AOP_TRUNCATED_PAGE);
1535
1536	return ret;
1537}
1538
1539#define MMAP_LOTSAMISS  (100)
1540
1541/*
1542 * Synchronous readahead happens when we don't even find
1543 * a page in the page cache at all.
1544 */
1545static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1546				   struct file_ra_state *ra,
1547				   struct file *file,
1548				   pgoff_t offset)
1549{
1550	unsigned long ra_pages;
1551	struct address_space *mapping = file->f_mapping;
1552
1553	/* If we don't want any read-ahead, don't bother */
1554	if (VM_RandomReadHint(vma))
1555		return;
1556	if (!ra->ra_pages)
1557		return;
1558
1559	if (VM_SequentialReadHint(vma)) {
1560		page_cache_sync_readahead(mapping, ra, file, offset,
1561					  ra->ra_pages);
1562		return;
1563	}
1564
1565	/* Avoid banging the cache line if not needed */
1566	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1567		ra->mmap_miss++;
1568
1569	/*
1570	 * Do we miss much more than hit in this file? If so,
1571	 * stop bothering with read-ahead. It will only hurt.
1572	 */
1573	if (ra->mmap_miss > MMAP_LOTSAMISS)
1574		return;
1575
1576	/*
1577	 * mmap read-around
1578	 */
1579	ra_pages = max_sane_readahead(ra->ra_pages);
1580	ra->start = max_t(long, 0, offset - ra_pages / 2);
1581	ra->size = ra_pages;
1582	ra->async_size = ra_pages / 4;
1583	ra_submit(ra, mapping, file);
1584}
1585
1586/*
1587 * Asynchronous readahead happens when we find the page and PG_readahead,
1588 * so we want to possibly extend the readahead further..
1589 */
1590static void do_async_mmap_readahead(struct vm_area_struct *vma,
1591				    struct file_ra_state *ra,
1592				    struct file *file,
1593				    struct page *page,
1594				    pgoff_t offset)
1595{
1596	struct address_space *mapping = file->f_mapping;
1597
1598	/* If we don't want any read-ahead, don't bother */
1599	if (VM_RandomReadHint(vma))
1600		return;
1601	if (ra->mmap_miss > 0)
1602		ra->mmap_miss--;
1603	if (PageReadahead(page))
1604		page_cache_async_readahead(mapping, ra, file,
1605					   page, offset, ra->ra_pages);
1606}
1607
1608/**
1609 * filemap_fault - read in file data for page fault handling
1610 * @vma:	vma in which the fault was taken
1611 * @vmf:	struct vm_fault containing details of the fault
1612 *
1613 * filemap_fault() is invoked via the vma operations vector for a
1614 * mapped memory region to read in file data during a page fault.
1615 *
1616 * The goto's are kind of ugly, but this streamlines the normal case of having
1617 * it in the page cache, and handles the special cases reasonably without
1618 * having a lot of duplicated code.
1619 */
1620int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1621{
1622	int error;
1623	struct file *file = vma->vm_file;
1624	struct address_space *mapping = file->f_mapping;
1625	struct file_ra_state *ra = &file->f_ra;
1626	struct inode *inode = mapping->host;
1627	pgoff_t offset = vmf->pgoff;
1628	struct page *page;
1629	pgoff_t size;
1630	int ret = 0;
1631
1632	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1633	if (offset >= size)
1634		return VM_FAULT_SIGBUS;
1635
1636	/*
1637	 * Do we have something in the page cache already?
1638	 */
1639	page = find_get_page(mapping, offset);
1640	if (likely(page)) {
1641		/*
1642		 * We found the page, so try async readahead before
1643		 * waiting for the lock.
1644		 */
1645		do_async_mmap_readahead(vma, ra, file, page, offset);
1646	} else {
1647		/* No page in the page cache at all */
1648		do_sync_mmap_readahead(vma, ra, file, offset);
1649		count_vm_event(PGMAJFAULT);
1650		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1651		ret = VM_FAULT_MAJOR;
1652retry_find:
1653		page = find_get_page(mapping, offset);
1654		if (!page)
1655			goto no_cached_page;
1656	}
1657
1658	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1659		page_cache_release(page);
1660		return ret | VM_FAULT_RETRY;
1661	}
1662
1663	/* Did it get truncated? */
1664	if (unlikely(page->mapping != mapping)) {
1665		unlock_page(page);
1666		put_page(page);
1667		goto retry_find;
1668	}
1669	VM_BUG_ON(page->index != offset);
1670
1671	/*
1672	 * We have a locked page in the page cache, now we need to check
1673	 * that it's up-to-date. If not, it is going to be due to an error.
1674	 */
1675	if (unlikely(!PageUptodate(page)))
1676		goto page_not_uptodate;
1677
1678	/*
1679	 * Found the page and have a reference on it.
1680	 * We must recheck i_size under page lock.
1681	 */
1682	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1683	if (unlikely(offset >= size)) {
1684		unlock_page(page);
1685		page_cache_release(page);
1686		return VM_FAULT_SIGBUS;
1687	}
1688
1689	vmf->page = page;
1690	return ret | VM_FAULT_LOCKED;
1691
1692no_cached_page:
1693	/*
1694	 * We're only likely to ever get here if MADV_RANDOM is in
1695	 * effect.
1696	 */
1697	error = page_cache_read(file, offset);
1698
1699	/*
1700	 * The page we want has now been added to the page cache.
1701	 * In the unlikely event that someone removed it in the
1702	 * meantime, we'll just come back here and read it again.
1703	 */
1704	if (error >= 0)
1705		goto retry_find;
1706
1707	/*
1708	 * An error return from page_cache_read can result if the
1709	 * system is low on memory, or a problem occurs while trying
1710	 * to schedule I/O.
1711	 */
1712	if (error == -ENOMEM)
1713		return VM_FAULT_OOM;
1714	return VM_FAULT_SIGBUS;
1715
1716page_not_uptodate:
1717	/*
1718	 * Umm, take care of errors if the page isn't up-to-date.
1719	 * Try to re-read it _once_. We do this synchronously,
1720	 * because there really aren't any performance issues here
1721	 * and we need to check for errors.
1722	 */
1723	ClearPageError(page);
1724	error = mapping->a_ops->readpage(file, page);
1725	if (!error) {
1726		wait_on_page_locked(page);
1727		if (!PageUptodate(page))
1728			error = -EIO;
1729	}
1730	page_cache_release(page);
1731
1732	if (!error || error == AOP_TRUNCATED_PAGE)
1733		goto retry_find;
1734
1735	/* Things didn't work out. Return zero to tell the mm layer so. */
1736	shrink_readahead_size_eio(file, ra);
1737	return VM_FAULT_SIGBUS;
1738}
1739EXPORT_SYMBOL(filemap_fault);
1740
1741const struct vm_operations_struct generic_file_vm_ops = {
1742	.fault		= filemap_fault,
1743};
1744
1745/* This is used for a general mmap of a disk file */
1746
1747int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1748{
1749	struct address_space *mapping = file->f_mapping;
1750
1751	if (!mapping->a_ops->readpage)
1752		return -ENOEXEC;
1753	file_accessed(file);
1754	vma->vm_ops = &generic_file_vm_ops;
1755	vma->vm_flags |= VM_CAN_NONLINEAR;
1756	return 0;
1757}
1758
1759/*
1760 * This is for filesystems which do not implement ->writepage.
1761 */
1762int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1763{
1764	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1765		return -EINVAL;
1766	return generic_file_mmap(file, vma);
1767}
1768#else
1769int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1770{
1771	return -ENOSYS;
1772}
1773int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1774{
1775	return -ENOSYS;
1776}
1777#endif /* CONFIG_MMU */
1778
1779EXPORT_SYMBOL(generic_file_mmap);
1780EXPORT_SYMBOL(generic_file_readonly_mmap);
1781
1782static struct page *__read_cache_page(struct address_space *mapping,
1783				pgoff_t index,
1784				int (*filler)(void *,struct page*),
1785				void *data,
1786				gfp_t gfp)
1787{
1788	struct page *page;
1789	int err;
1790repeat:
1791	page = find_get_page(mapping, index);
1792	if (!page) {
1793		page = __page_cache_alloc(gfp | __GFP_COLD);
1794		if (!page)
1795			return ERR_PTR(-ENOMEM);
1796		err = add_to_page_cache_lru(page, mapping, index, gfp);
1797		if (unlikely(err)) {
1798			page_cache_release(page);
1799			if (err == -EEXIST)
1800				goto repeat;
1801			/* Presumably ENOMEM for radix tree node */
1802			return ERR_PTR(err);
1803		}
1804		err = filler(data, page);
1805		if (err < 0) {
1806			page_cache_release(page);
1807			page = ERR_PTR(err);
1808		}
1809	}
1810	return page;
1811}
1812
1813static struct page *do_read_cache_page(struct address_space *mapping,
1814				pgoff_t index,
1815				int (*filler)(void *,struct page*),
1816				void *data,
1817				gfp_t gfp)
1818
1819{
1820	struct page *page;
1821	int err;
1822
1823retry:
1824	page = __read_cache_page(mapping, index, filler, data, gfp);
1825	if (IS_ERR(page))
1826		return page;
1827	if (PageUptodate(page))
1828		goto out;
1829
1830	lock_page(page);
1831	if (!page->mapping) {
1832		unlock_page(page);
1833		page_cache_release(page);
1834		goto retry;
1835	}
1836	if (PageUptodate(page)) {
1837		unlock_page(page);
1838		goto out;
1839	}
1840	err = filler(data, page);
1841	if (err < 0) {
1842		page_cache_release(page);
1843		return ERR_PTR(err);
1844	}
1845out:
1846	mark_page_accessed(page);
1847	return page;
1848}
1849
1850/**
1851 * read_cache_page_async - read into page cache, fill it if needed
1852 * @mapping:	the page's address_space
1853 * @index:	the page index
1854 * @filler:	function to perform the read
1855 * @data:	destination for read data
1856 *
1857 * Same as read_cache_page, but don't wait for page to become unlocked
1858 * after submitting it to the filler.
1859 *
1860 * Read into the page cache. If a page already exists, and PageUptodate() is
1861 * not set, try to fill the page but don't wait for it to become unlocked.
1862 *
1863 * If the page does not get brought uptodate, return -EIO.
1864 */
1865struct page *read_cache_page_async(struct address_space *mapping,
1866				pgoff_t index,
1867				int (*filler)(void *,struct page*),
1868				void *data)
1869{
1870	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1871}
1872EXPORT_SYMBOL(read_cache_page_async);
1873
1874static struct page *wait_on_page_read(struct page *page)
1875{
1876	if (!IS_ERR(page)) {
1877		wait_on_page_locked(page);
1878		if (!PageUptodate(page)) {
1879			page_cache_release(page);
1880			page = ERR_PTR(-EIO);
1881		}
1882	}
1883	return page;
1884}
1885
1886/**
1887 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1888 * @mapping:	the page's address_space
1889 * @index:	the page index
1890 * @gfp:	the page allocator flags to use if allocating
1891 *
1892 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1893 * any new page allocations done using the specified allocation flags.
1894 *
1895 * If the page does not get brought uptodate, return -EIO.
1896 */
1897struct page *read_cache_page_gfp(struct address_space *mapping,
1898				pgoff_t index,
1899				gfp_t gfp)
1900{
1901	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1902
1903	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1904}
1905EXPORT_SYMBOL(read_cache_page_gfp);
1906
1907/**
1908 * read_cache_page - read into page cache, fill it if needed
1909 * @mapping:	the page's address_space
1910 * @index:	the page index
1911 * @filler:	function to perform the read
1912 * @data:	destination for read data
1913 *
1914 * Read into the page cache. If a page already exists, and PageUptodate() is
1915 * not set, try to fill the page then wait for it to become unlocked.
1916 *
1917 * If the page does not get brought uptodate, return -EIO.
1918 */
1919struct page *read_cache_page(struct address_space *mapping,
1920				pgoff_t index,
1921				int (*filler)(void *,struct page*),
1922				void *data)
1923{
1924	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1925}
1926EXPORT_SYMBOL(read_cache_page);
1927
1928/*
1929 * The logic we want is
1930 *
1931 *	if suid or (sgid and xgrp)
1932 *		remove privs
1933 */
1934int should_remove_suid(struct dentry *dentry)
1935{
1936	mode_t mode = dentry->d_inode->i_mode;
1937	int kill = 0;
1938
1939	/* suid always must be killed */
1940	if (unlikely(mode & S_ISUID))
1941		kill = ATTR_KILL_SUID;
1942
1943	/*
1944	 * sgid without any exec bits is just a mandatory locking mark; leave
1945	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1946	 */
1947	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1948		kill |= ATTR_KILL_SGID;
1949
1950	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1951		return kill;
1952
1953	return 0;
1954}
1955EXPORT_SYMBOL(should_remove_suid);
1956
1957static int __remove_suid(struct dentry *dentry, int kill)
1958{
1959	struct iattr newattrs;
1960
1961	newattrs.ia_valid = ATTR_FORCE | kill;
1962	return notify_change(dentry, &newattrs);
1963}
1964
1965int file_remove_suid(struct file *file)
1966{
1967	struct dentry *dentry = file->f_path.dentry;
1968	struct inode *inode = dentry->d_inode;
1969	int killsuid;
1970	int killpriv;
1971	int error = 0;
1972
1973	/* Fast path for nothing security related */
1974	if (IS_NOSEC(inode))
1975		return 0;
1976
1977	killsuid = should_remove_suid(dentry);
1978	killpriv = security_inode_need_killpriv(dentry);
1979
1980	if (killpriv < 0)
1981		return killpriv;
1982	if (killpriv)
1983		error = security_inode_killpriv(dentry);
1984	if (!error && killsuid)
1985		error = __remove_suid(dentry, killsuid);
1986	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1987		inode->i_flags |= S_NOSEC;
1988
1989	return error;
1990}
1991EXPORT_SYMBOL(file_remove_suid);
1992
1993static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1994			const struct iovec *iov, size_t base, size_t bytes)
1995{
1996	size_t copied = 0, left = 0;
1997
1998	while (bytes) {
1999		char __user *buf = iov->iov_base + base;
2000		int copy = min(bytes, iov->iov_len - base);
2001
2002		base = 0;
2003		left = __copy_from_user_inatomic(vaddr, buf, copy);
2004		copied += copy;
2005		bytes -= copy;
2006		vaddr += copy;
2007		iov++;
2008
2009		if (unlikely(left))
2010			break;
2011	}
2012	return copied - left;
2013}
2014
2015/*
2016 * Copy as much as we can into the page and return the number of bytes which
2017 * were successfully copied.  If a fault is encountered then return the number of
2018 * bytes which were copied.
2019 */
2020size_t iov_iter_copy_from_user_atomic(struct page *page,
2021		struct iov_iter *i, unsigned long offset, size_t bytes)
2022{
2023	char *kaddr;
2024	size_t copied;
2025
2026	BUG_ON(!in_atomic());
2027	kaddr = kmap_atomic(page, KM_USER0);
2028	if (likely(i->nr_segs == 1)) {
2029		int left;
2030		char __user *buf = i->iov->iov_base + i->iov_offset;
2031		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2032		copied = bytes - left;
2033	} else {
2034		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2035						i->iov, i->iov_offset, bytes);
2036	}
2037	kunmap_atomic(kaddr, KM_USER0);
2038
2039	return copied;
2040}
2041EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2042
2043/*
2044 * This has the same sideeffects and return value as
2045 * iov_iter_copy_from_user_atomic().
2046 * The difference is that it attempts to resolve faults.
2047 * Page must not be locked.
2048 */
2049size_t iov_iter_copy_from_user(struct page *page,
2050		struct iov_iter *i, unsigned long offset, size_t bytes)
2051{
2052	char *kaddr;
2053	size_t copied;
2054
2055	kaddr = kmap(page);
2056	if (likely(i->nr_segs == 1)) {
2057		int left;
2058		char __user *buf = i->iov->iov_base + i->iov_offset;
2059		left = __copy_from_user(kaddr + offset, buf, bytes);
2060		copied = bytes - left;
2061	} else {
2062		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2063						i->iov, i->iov_offset, bytes);
2064	}
2065	kunmap(page);
2066	return copied;
2067}
2068EXPORT_SYMBOL(iov_iter_copy_from_user);
2069
2070void iov_iter_advance(struct iov_iter *i, size_t bytes)
2071{
2072	BUG_ON(i->count < bytes);
2073
2074	if (likely(i->nr_segs == 1)) {
2075		i->iov_offset += bytes;
2076		i->count -= bytes;
2077	} else {
2078		const struct iovec *iov = i->iov;
2079		size_t base = i->iov_offset;
2080
2081		/*
2082		 * The !iov->iov_len check ensures we skip over unlikely
2083		 * zero-length segments (without overruning the iovec).
2084		 */
2085		while (bytes || unlikely(i->count && !iov->iov_len)) {
2086			int copy;
2087
2088			copy = min(bytes, iov->iov_len - base);
2089			BUG_ON(!i->count || i->count < copy);
2090			i->count -= copy;
2091			bytes -= copy;
2092			base += copy;
2093			if (iov->iov_len == base) {
2094				iov++;
2095				base = 0;
2096			}
2097		}
2098		i->iov = iov;
2099		i->iov_offset = base;
2100	}
2101}
2102EXPORT_SYMBOL(iov_iter_advance);
2103
2104/*
2105 * Fault in the first iovec of the given iov_iter, to a maximum length
2106 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2107 * accessed (ie. because it is an invalid address).
2108 *
2109 * writev-intensive code may want this to prefault several iovecs -- that
2110 * would be possible (callers must not rely on the fact that _only_ the
2111 * first iovec will be faulted with the current implementation).
2112 */
2113int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2114{
2115	char __user *buf = i->iov->iov_base + i->iov_offset;
2116	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2117	return fault_in_pages_readable(buf, bytes);
2118}
2119EXPORT_SYMBOL(iov_iter_fault_in_readable);
2120
2121/*
2122 * Return the count of just the current iov_iter segment.
2123 */
2124size_t iov_iter_single_seg_count(struct iov_iter *i)
2125{
2126	const struct iovec *iov = i->iov;
2127	if (i->nr_segs == 1)
2128		return i->count;
2129	else
2130		return min(i->count, iov->iov_len - i->iov_offset);
2131}
2132EXPORT_SYMBOL(iov_iter_single_seg_count);
2133
2134/*
2135 * Performs necessary checks before doing a write
2136 *
2137 * Can adjust writing position or amount of bytes to write.
2138 * Returns appropriate error code that caller should return or
2139 * zero in case that write should be allowed.
2140 */
2141inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2142{
2143	struct inode *inode = file->f_mapping->host;
2144	unsigned long limit = rlimit(RLIMIT_FSIZE);
2145
2146        if (unlikely(*pos < 0))
2147                return -EINVAL;
2148
2149	if (!isblk) {
2150		/* FIXME: this is for backwards compatibility with 2.4 */
2151		if (file->f_flags & O_APPEND)
2152                        *pos = i_size_read(inode);
2153
2154		if (limit != RLIM_INFINITY) {
2155			if (*pos >= limit) {
2156				send_sig(SIGXFSZ, current, 0);
2157				return -EFBIG;
2158			}
2159			if (*count > limit - (typeof(limit))*pos) {
2160				*count = limit - (typeof(limit))*pos;
2161			}
2162		}
2163	}
2164
2165	/*
2166	 * LFS rule
2167	 */
2168	if (unlikely(*pos + *count > MAX_NON_LFS &&
2169				!(file->f_flags & O_LARGEFILE))) {
2170		if (*pos >= MAX_NON_LFS) {
2171			return -EFBIG;
2172		}
2173		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2174			*count = MAX_NON_LFS - (unsigned long)*pos;
2175		}
2176	}
2177
2178	/*
2179	 * Are we about to exceed the fs block limit ?
2180	 *
2181	 * If we have written data it becomes a short write.  If we have
2182	 * exceeded without writing data we send a signal and return EFBIG.
2183	 * Linus frestrict idea will clean these up nicely..
2184	 */
2185	if (likely(!isblk)) {
2186		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2187			if (*count || *pos > inode->i_sb->s_maxbytes) {
2188				return -EFBIG;
2189			}
2190			/* zero-length writes at ->s_maxbytes are OK */
2191		}
2192
2193		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2194			*count = inode->i_sb->s_maxbytes - *pos;
2195	} else {
2196#ifdef CONFIG_BLOCK
2197		loff_t isize;
2198		if (bdev_read_only(I_BDEV(inode)))
2199			return -EPERM;
2200		isize = i_size_read(inode);
2201		if (*pos >= isize) {
2202			if (*count || *pos > isize)
2203				return -ENOSPC;
2204		}
2205
2206		if (*pos + *count > isize)
2207			*count = isize - *pos;
2208#else
2209		return -EPERM;
2210#endif
2211	}
2212	return 0;
2213}
2214EXPORT_SYMBOL(generic_write_checks);
2215
2216int pagecache_write_begin(struct file *file, struct address_space *mapping,
2217				loff_t pos, unsigned len, unsigned flags,
2218				struct page **pagep, void **fsdata)
2219{
2220	const struct address_space_operations *aops = mapping->a_ops;
2221
2222	return aops->write_begin(file, mapping, pos, len, flags,
2223							pagep, fsdata);
2224}
2225EXPORT_SYMBOL(pagecache_write_begin);
2226
2227int pagecache_write_end(struct file *file, struct address_space *mapping,
2228				loff_t pos, unsigned len, unsigned copied,
2229				struct page *page, void *fsdata)
2230{
2231	const struct address_space_operations *aops = mapping->a_ops;
2232
2233	mark_page_accessed(page);
2234	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2235}
2236EXPORT_SYMBOL(pagecache_write_end);
2237
2238ssize_t
2239generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2240		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2241		size_t count, size_t ocount)
2242{
2243	struct file	*file = iocb->ki_filp;
2244	struct address_space *mapping = file->f_mapping;
2245	struct inode	*inode = mapping->host;
2246	ssize_t		written;
2247	size_t		write_len;
2248	pgoff_t		end;
2249
2250	if (count != ocount)
2251		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2252
2253	write_len = iov_length(iov, *nr_segs);
2254	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2255
2256	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2257	if (written)
2258		goto out;
2259
2260	/*
2261	 * After a write we want buffered reads to be sure to go to disk to get
2262	 * the new data.  We invalidate clean cached page from the region we're
2263	 * about to write.  We do this *before* the write so that we can return
2264	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2265	 */
2266	if (mapping->nrpages) {
2267		written = invalidate_inode_pages2_range(mapping,
2268					pos >> PAGE_CACHE_SHIFT, end);
2269		/*
2270		 * If a page can not be invalidated, return 0 to fall back
2271		 * to buffered write.
2272		 */
2273		if (written) {
2274			if (written == -EBUSY)
2275				return 0;
2276			goto out;
2277		}
2278	}
2279
2280	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2281
2282	/*
2283	 * Finally, try again to invalidate clean pages which might have been
2284	 * cached by non-direct readahead, or faulted in by get_user_pages()
2285	 * if the source of the write was an mmap'ed region of the file
2286	 * we're writing.  Either one is a pretty crazy thing to do,
2287	 * so we don't support it 100%.  If this invalidation
2288	 * fails, tough, the write still worked...
2289	 */
2290	if (mapping->nrpages) {
2291		invalidate_inode_pages2_range(mapping,
2292					      pos >> PAGE_CACHE_SHIFT, end);
2293	}
2294
2295	if (written > 0) {
2296		pos += written;
2297		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2298			i_size_write(inode, pos);
2299			mark_inode_dirty(inode);
2300		}
2301		*ppos = pos;
2302	}
2303out:
2304	return written;
2305}
2306EXPORT_SYMBOL(generic_file_direct_write);
2307
2308/*
2309 * Find or create a page at the given pagecache position. Return the locked
2310 * page. This function is specifically for buffered writes.
2311 */
2312struct page *grab_cache_page_write_begin(struct address_space *mapping,
2313					pgoff_t index, unsigned flags)
2314{
2315	int status;
2316	struct page *page;
2317	gfp_t gfp_notmask = 0;
2318	if (flags & AOP_FLAG_NOFS)
2319		gfp_notmask = __GFP_FS;
2320repeat:
2321	page = find_lock_page(mapping, index);
2322	if (page)
2323		goto found;
2324
2325	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2326	if (!page)
2327		return NULL;
2328	status = add_to_page_cache_lru(page, mapping, index,
2329						GFP_KERNEL & ~gfp_notmask);
2330	if (unlikely(status)) {
2331		page_cache_release(page);
2332		if (status == -EEXIST)
2333			goto repeat;
2334		return NULL;
2335	}
2336found:
2337	wait_on_page_writeback(page);
2338	return page;
2339}
2340EXPORT_SYMBOL(grab_cache_page_write_begin);
2341
2342static ssize_t generic_perform_write(struct file *file,
2343				struct iov_iter *i, loff_t pos)
2344{
2345	struct address_space *mapping = file->f_mapping;
2346	const struct address_space_operations *a_ops = mapping->a_ops;
2347	long status = 0;
2348	ssize_t written = 0;
2349	unsigned int flags = 0;
2350
2351	/*
2352	 * Copies from kernel address space cannot fail (NFSD is a big user).
2353	 */
2354	if (segment_eq(get_fs(), KERNEL_DS))
2355		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2356
2357	do {
2358		struct page *page;
2359		unsigned long offset;	/* Offset into pagecache page */
2360		unsigned long bytes;	/* Bytes to write to page */
2361		size_t copied;		/* Bytes copied from user */
2362		void *fsdata;
2363
2364		offset = (pos & (PAGE_CACHE_SIZE - 1));
2365		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2366						iov_iter_count(i));
2367
2368again:
2369
2370		/*
2371		 * Bring in the user page that we will copy from _first_.
2372		 * Otherwise there's a nasty deadlock on copying from the
2373		 * same page as we're writing to, without it being marked
2374		 * up-to-date.
2375		 *
2376		 * Not only is this an optimisation, but it is also required
2377		 * to check that the address is actually valid, when atomic
2378		 * usercopies are used, below.
2379		 */
2380		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2381			status = -EFAULT;
2382			break;
2383		}
2384
2385		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2386						&page, &fsdata);
2387		if (unlikely(status))
2388			break;
2389
2390		if (mapping_writably_mapped(mapping))
2391			flush_dcache_page(page);
2392
2393		pagefault_disable();
2394		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2395		pagefault_enable();
2396		flush_dcache_page(page);
2397
2398		mark_page_accessed(page);
2399		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2400						page, fsdata);
2401		if (unlikely(status < 0))
2402			break;
2403		copied = status;
2404
2405		cond_resched();
2406
2407		iov_iter_advance(i, copied);
2408		if (unlikely(copied == 0)) {
2409			/*
2410			 * If we were unable to copy any data at all, we must
2411			 * fall back to a single segment length write.
2412			 *
2413			 * If we didn't fallback here, we could livelock
2414			 * because not all segments in the iov can be copied at
2415			 * once without a pagefault.
2416			 */
2417			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2418						iov_iter_single_seg_count(i));
2419			goto again;
2420		}
2421		pos += copied;
2422		written += copied;
2423
2424		balance_dirty_pages_ratelimited(mapping);
2425
2426	} while (iov_iter_count(i));
2427
2428	return written ? written : status;
2429}
2430
2431ssize_t
2432generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2433		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2434		size_t count, ssize_t written)
2435{
2436	struct file *file = iocb->ki_filp;
2437	ssize_t status;
2438	struct iov_iter i;
2439
2440	iov_iter_init(&i, iov, nr_segs, count, written);
2441	status = generic_perform_write(file, &i, pos);
2442
2443	if (likely(status >= 0)) {
2444		written += status;
2445		*ppos = pos + status;
2446  	}
2447
2448	return written ? written : status;
2449}
2450EXPORT_SYMBOL(generic_file_buffered_write);
2451
2452/**
2453 * __generic_file_aio_write - write data to a file
2454 * @iocb:	IO state structure (file, offset, etc.)
2455 * @iov:	vector with data to write
2456 * @nr_segs:	number of segments in the vector
2457 * @ppos:	position where to write
2458 *
2459 * This function does all the work needed for actually writing data to a
2460 * file. It does all basic checks, removes SUID from the file, updates
2461 * modification times and calls proper subroutines depending on whether we
2462 * do direct IO or a standard buffered write.
2463 *
2464 * It expects i_mutex to be grabbed unless we work on a block device or similar
2465 * object which does not need locking at all.
2466 *
2467 * This function does *not* take care of syncing data in case of O_SYNC write.
2468 * A caller has to handle it. This is mainly due to the fact that we want to
2469 * avoid syncing under i_mutex.
2470 */
2471ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2472				 unsigned long nr_segs, loff_t *ppos)
2473{
2474	struct file *file = iocb->ki_filp;
2475	struct address_space * mapping = file->f_mapping;
2476	size_t ocount;		/* original count */
2477	size_t count;		/* after file limit checks */
2478	struct inode 	*inode = mapping->host;
2479	loff_t		pos;
2480	ssize_t		written;
2481	ssize_t		err;
2482
2483	ocount = 0;
2484	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2485	if (err)
2486		return err;
2487
2488	count = ocount;
2489	pos = *ppos;
2490
2491	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2492
2493	/* We can write back this queue in page reclaim */
2494	current->backing_dev_info = mapping->backing_dev_info;
2495	written = 0;
2496
2497	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2498	if (err)
2499		goto out;
2500
2501	if (count == 0)
2502		goto out;
2503
2504	err = file_remove_suid(file);
2505	if (err)
2506		goto out;
2507
2508	file_update_time(file);
2509
2510	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2511	if (unlikely(file->f_flags & O_DIRECT)) {
2512		loff_t endbyte;
2513		ssize_t written_buffered;
2514
2515		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2516							ppos, count, ocount);
2517		if (written < 0 || written == count)
2518			goto out;
2519		/*
2520		 * direct-io write to a hole: fall through to buffered I/O
2521		 * for completing the rest of the request.
2522		 */
2523		pos += written;
2524		count -= written;
2525		written_buffered = generic_file_buffered_write(iocb, iov,
2526						nr_segs, pos, ppos, count,
2527						written);
2528		/*
2529		 * If generic_file_buffered_write() retuned a synchronous error
2530		 * then we want to return the number of bytes which were
2531		 * direct-written, or the error code if that was zero.  Note
2532		 * that this differs from normal direct-io semantics, which
2533		 * will return -EFOO even if some bytes were written.
2534		 */
2535		if (written_buffered < 0) {
2536			err = written_buffered;
2537			goto out;
2538		}
2539
2540		/*
2541		 * We need to ensure that the page cache pages are written to
2542		 * disk and invalidated to preserve the expected O_DIRECT
2543		 * semantics.
2544		 */
2545		endbyte = pos + written_buffered - written - 1;
2546		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2547		if (err == 0) {
2548			written = written_buffered;
2549			invalidate_mapping_pages(mapping,
2550						 pos >> PAGE_CACHE_SHIFT,
2551						 endbyte >> PAGE_CACHE_SHIFT);
2552		} else {
2553			/*
2554			 * We don't know how much we wrote, so just return
2555			 * the number of bytes which were direct-written
2556			 */
2557		}
2558	} else {
2559		written = generic_file_buffered_write(iocb, iov, nr_segs,
2560				pos, ppos, count, written);
2561	}
2562out:
2563	current->backing_dev_info = NULL;
2564	return written ? written : err;
2565}
2566EXPORT_SYMBOL(__generic_file_aio_write);
2567
2568/**
2569 * generic_file_aio_write - write data to a file
2570 * @iocb:	IO state structure
2571 * @iov:	vector with data to write
2572 * @nr_segs:	number of segments in the vector
2573 * @pos:	position in file where to write
2574 *
2575 * This is a wrapper around __generic_file_aio_write() to be used by most
2576 * filesystems. It takes care of syncing the file in case of O_SYNC file
2577 * and acquires i_mutex as needed.
2578 */
2579ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2580		unsigned long nr_segs, loff_t pos)
2581{
2582	struct file *file = iocb->ki_filp;
2583	struct inode *inode = file->f_mapping->host;
2584	struct blk_plug plug;
2585	ssize_t ret;
2586
2587	BUG_ON(iocb->ki_pos != pos);
2588
2589	mutex_lock(&inode->i_mutex);
2590	blk_start_plug(&plug);
2591	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2592	mutex_unlock(&inode->i_mutex);
2593
2594	if (ret > 0 || ret == -EIOCBQUEUED) {
2595		ssize_t err;
2596
2597		err = generic_write_sync(file, pos, ret);
2598		if (err < 0 && ret > 0)
2599			ret = err;
2600	}
2601	blk_finish_plug(&plug);
2602	return ret;
2603}
2604EXPORT_SYMBOL(generic_file_aio_write);
2605
2606/**
2607 * try_to_release_page() - release old fs-specific metadata on a page
2608 *
2609 * @page: the page which the kernel is trying to free
2610 * @gfp_mask: memory allocation flags (and I/O mode)
2611 *
2612 * The address_space is to try to release any data against the page
2613 * (presumably at page->private).  If the release was successful, return `1'.
2614 * Otherwise return zero.
2615 *
2616 * This may also be called if PG_fscache is set on a page, indicating that the
2617 * page is known to the local caching routines.
2618 *
2619 * The @gfp_mask argument specifies whether I/O may be performed to release
2620 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2621 *
2622 */
2623int try_to_release_page(struct page *page, gfp_t gfp_mask)
2624{
2625	struct address_space * const mapping = page->mapping;
2626
2627	BUG_ON(!PageLocked(page));
2628	if (PageWriteback(page))
2629		return 0;
2630
2631	if (mapping && mapping->a_ops->releasepage)
2632		return mapping->a_ops->releasepage(page, gfp_mask);
2633	return try_to_free_buffers(page);
2634}
2635
2636EXPORT_SYMBOL(try_to_release_page);
2637