1/*
2 *  Digital Audio (PCM) abstract layer
3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 *                   Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 *   This program is free software; you can redistribute it and/or modify
8 *   it under the terms of the GNU General Public License as published by
9 *   the Free Software Foundation; either version 2 of the License, or
10 *   (at your option) any later version.
11 *
12 *   This program is distributed in the hope that it will be useful,
13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 *   GNU General Public License for more details.
16 *
17 *   You should have received a copy of the GNU General Public License
18 *   along with this program; if not, write to the Free Software
19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <sound/core.h>
27#include <sound/control.h>
28#include <sound/info.h>
29#include <sound/pcm.h>
30#include <sound/pcm_params.h>
31#include <sound/timer.h>
32
33/*
34 * fill ring buffer with silence
35 * runtime->silence_start: starting pointer to silence area
36 * runtime->silence_filled: size filled with silence
37 * runtime->silence_threshold: threshold from application
38 * runtime->silence_size: maximal size from application
39 *
40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41 */
42void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43{
44	struct snd_pcm_runtime *runtime = substream->runtime;
45	snd_pcm_uframes_t frames, ofs, transfer;
46
47	if (runtime->silence_size < runtime->boundary) {
48		snd_pcm_sframes_t noise_dist, n;
49		if (runtime->silence_start != runtime->control->appl_ptr) {
50			n = runtime->control->appl_ptr - runtime->silence_start;
51			if (n < 0)
52				n += runtime->boundary;
53			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54				runtime->silence_filled -= n;
55			else
56				runtime->silence_filled = 0;
57			runtime->silence_start = runtime->control->appl_ptr;
58		}
59		if (runtime->silence_filled >= runtime->buffer_size)
60			return;
61		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63			return;
64		frames = runtime->silence_threshold - noise_dist;
65		if (frames > runtime->silence_size)
66			frames = runtime->silence_size;
67	} else {
68		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
69			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70			if (avail > runtime->buffer_size)
71				avail = runtime->buffer_size;
72			runtime->silence_filled = avail > 0 ? avail : 0;
73			runtime->silence_start = (runtime->status->hw_ptr +
74						  runtime->silence_filled) %
75						 runtime->boundary;
76		} else {
77			ofs = runtime->status->hw_ptr;
78			frames = new_hw_ptr - ofs;
79			if ((snd_pcm_sframes_t)frames < 0)
80				frames += runtime->boundary;
81			runtime->silence_filled -= frames;
82			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83				runtime->silence_filled = 0;
84				runtime->silence_start = new_hw_ptr;
85			} else {
86				runtime->silence_start = ofs;
87			}
88		}
89		frames = runtime->buffer_size - runtime->silence_filled;
90	}
91	if (snd_BUG_ON(frames > runtime->buffer_size))
92		return;
93	if (frames == 0)
94		return;
95	ofs = runtime->silence_start % runtime->buffer_size;
96	while (frames > 0) {
97		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100			if (substream->ops->silence) {
101				int err;
102				err = substream->ops->silence(substream, -1, ofs, transfer);
103				snd_BUG_ON(err < 0);
104			} else {
105				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107			}
108		} else {
109			unsigned int c;
110			unsigned int channels = runtime->channels;
111			if (substream->ops->silence) {
112				for (c = 0; c < channels; ++c) {
113					int err;
114					err = substream->ops->silence(substream, c, ofs, transfer);
115					snd_BUG_ON(err < 0);
116				}
117			} else {
118				size_t dma_csize = runtime->dma_bytes / channels;
119				for (c = 0; c < channels; ++c) {
120					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122				}
123			}
124		}
125		runtime->silence_filled += transfer;
126		frames -= transfer;
127		ofs = 0;
128	}
129}
130
131static void pcm_debug_name(struct snd_pcm_substream *substream,
132			   char *name, size_t len)
133{
134	snprintf(name, len, "pcmC%dD%d%c:%d",
135		 substream->pcm->card->number,
136		 substream->pcm->device,
137		 substream->stream ? 'c' : 'p',
138		 substream->number);
139}
140
141#define XRUN_DEBUG_BASIC	(1<<0)
142#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
143#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
144#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
145#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
146#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
147#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
148
149#ifdef CONFIG_SND_PCM_XRUN_DEBUG
150
151#define xrun_debug(substream, mask) \
152			((substream)->pstr->xrun_debug & (mask))
153#else
154#define xrun_debug(substream, mask)	0
155#endif
156
157#define dump_stack_on_xrun(substream) do {			\
158		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
159			dump_stack();				\
160	} while (0)
161
162static void xrun(struct snd_pcm_substream *substream)
163{
164	struct snd_pcm_runtime *runtime = substream->runtime;
165
166	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
167		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
168	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
169	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
170		char name[16];
171		pcm_debug_name(substream, name, sizeof(name));
172		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
173		dump_stack_on_xrun(substream);
174	}
175}
176
177#ifdef CONFIG_SND_PCM_XRUN_DEBUG
178#define hw_ptr_error(substream, fmt, args...)				\
179	do {								\
180		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
181			xrun_log_show(substream);			\
182			if (printk_ratelimit()) {			\
183				snd_printd("PCM: " fmt, ##args);	\
184			}						\
185			dump_stack_on_xrun(substream);			\
186		}							\
187	} while (0)
188
189#define XRUN_LOG_CNT	10
190
191struct hwptr_log_entry {
192	unsigned int in_interrupt;
193	unsigned long jiffies;
194	snd_pcm_uframes_t pos;
195	snd_pcm_uframes_t period_size;
196	snd_pcm_uframes_t buffer_size;
197	snd_pcm_uframes_t old_hw_ptr;
198	snd_pcm_uframes_t hw_ptr_base;
199};
200
201struct snd_pcm_hwptr_log {
202	unsigned int idx;
203	unsigned int hit: 1;
204	struct hwptr_log_entry entries[XRUN_LOG_CNT];
205};
206
207static void xrun_log(struct snd_pcm_substream *substream,
208		     snd_pcm_uframes_t pos, int in_interrupt)
209{
210	struct snd_pcm_runtime *runtime = substream->runtime;
211	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
212	struct hwptr_log_entry *entry;
213
214	if (log == NULL) {
215		log = kzalloc(sizeof(*log), GFP_ATOMIC);
216		if (log == NULL)
217			return;
218		runtime->hwptr_log = log;
219	} else {
220		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
221			return;
222	}
223	entry = &log->entries[log->idx];
224	entry->in_interrupt = in_interrupt;
225	entry->jiffies = jiffies;
226	entry->pos = pos;
227	entry->period_size = runtime->period_size;
228	entry->buffer_size = runtime->buffer_size;
229	entry->old_hw_ptr = runtime->status->hw_ptr;
230	entry->hw_ptr_base = runtime->hw_ptr_base;
231	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
232}
233
234static void xrun_log_show(struct snd_pcm_substream *substream)
235{
236	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
237	struct hwptr_log_entry *entry;
238	char name[16];
239	unsigned int idx;
240	int cnt;
241
242	if (log == NULL)
243		return;
244	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
245		return;
246	pcm_debug_name(substream, name, sizeof(name));
247	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
248		entry = &log->entries[idx];
249		if (entry->period_size == 0)
250			break;
251		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
252			   "hwptr=%ld/%ld\n",
253			   name, entry->in_interrupt ? "[Q] " : "",
254			   entry->jiffies,
255			   (unsigned long)entry->pos,
256			   (unsigned long)entry->period_size,
257			   (unsigned long)entry->buffer_size,
258			   (unsigned long)entry->old_hw_ptr,
259			   (unsigned long)entry->hw_ptr_base);
260		idx++;
261		idx %= XRUN_LOG_CNT;
262	}
263	log->hit = 1;
264}
265
266#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
267
268#define hw_ptr_error(substream, fmt, args...) do { } while (0)
269#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
270#define xrun_log_show(substream)	do { } while (0)
271
272#endif
273
274int snd_pcm_update_state(struct snd_pcm_substream *substream,
275			 struct snd_pcm_runtime *runtime)
276{
277	snd_pcm_uframes_t avail;
278
279	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
280		avail = snd_pcm_playback_avail(runtime);
281	else
282		avail = snd_pcm_capture_avail(runtime);
283	if (avail > runtime->avail_max)
284		runtime->avail_max = avail;
285	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
286		if (avail >= runtime->buffer_size) {
287			snd_pcm_drain_done(substream);
288			return -EPIPE;
289		}
290	} else {
291		if (avail >= runtime->stop_threshold) {
292			xrun(substream);
293			return -EPIPE;
294		}
295	}
296	if (runtime->twake) {
297		if (avail >= runtime->twake)
298			wake_up(&runtime->tsleep);
299	} else if (avail >= runtime->control->avail_min)
300		wake_up(&runtime->sleep);
301	return 0;
302}
303
304static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
305				  unsigned int in_interrupt)
306{
307	struct snd_pcm_runtime *runtime = substream->runtime;
308	snd_pcm_uframes_t pos;
309	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
310	snd_pcm_sframes_t hdelta, delta;
311	unsigned long jdelta;
312
313	old_hw_ptr = runtime->status->hw_ptr;
314	pos = substream->ops->pointer(substream);
315	if (pos == SNDRV_PCM_POS_XRUN) {
316		xrun(substream);
317		return -EPIPE;
318	}
319	if (pos >= runtime->buffer_size) {
320		if (printk_ratelimit()) {
321			char name[16];
322			pcm_debug_name(substream, name, sizeof(name));
323			xrun_log_show(substream);
324			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
325				   "buffer size = %ld, period size = %ld\n",
326				   name, pos, runtime->buffer_size,
327				   runtime->period_size);
328		}
329		pos = 0;
330	}
331	pos -= pos % runtime->min_align;
332	if (xrun_debug(substream, XRUN_DEBUG_LOG))
333		xrun_log(substream, pos, in_interrupt);
334	hw_base = runtime->hw_ptr_base;
335	new_hw_ptr = hw_base + pos;
336	if (in_interrupt) {
337		/* we know that one period was processed */
338		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
339		delta = runtime->hw_ptr_interrupt + runtime->period_size;
340		if (delta > new_hw_ptr) {
341			/* check for double acknowledged interrupts */
342			hdelta = jiffies - runtime->hw_ptr_jiffies;
343			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
344				hw_base += runtime->buffer_size;
345				if (hw_base >= runtime->boundary)
346					hw_base = 0;
347				new_hw_ptr = hw_base + pos;
348				goto __delta;
349			}
350		}
351	}
352	/* new_hw_ptr might be lower than old_hw_ptr in case when */
353	/* pointer crosses the end of the ring buffer */
354	if (new_hw_ptr < old_hw_ptr) {
355		hw_base += runtime->buffer_size;
356		if (hw_base >= runtime->boundary)
357			hw_base = 0;
358		new_hw_ptr = hw_base + pos;
359	}
360      __delta:
361	delta = new_hw_ptr - old_hw_ptr;
362	if (delta < 0)
363		delta += runtime->boundary;
364	if (xrun_debug(substream, in_interrupt ?
365			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
366		char name[16];
367		pcm_debug_name(substream, name, sizeof(name));
368		snd_printd("%s_update: %s: pos=%u/%u/%u, "
369			   "hwptr=%ld/%ld/%ld/%ld\n",
370			   in_interrupt ? "period" : "hwptr",
371			   name,
372			   (unsigned int)pos,
373			   (unsigned int)runtime->period_size,
374			   (unsigned int)runtime->buffer_size,
375			   (unsigned long)delta,
376			   (unsigned long)old_hw_ptr,
377			   (unsigned long)new_hw_ptr,
378			   (unsigned long)runtime->hw_ptr_base);
379	}
380
381	if (runtime->no_period_wakeup) {
382		snd_pcm_sframes_t xrun_threshold;
383		/*
384		 * Without regular period interrupts, we have to check
385		 * the elapsed time to detect xruns.
386		 */
387		jdelta = jiffies - runtime->hw_ptr_jiffies;
388		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
389			goto no_delta_check;
390		hdelta = jdelta - delta * HZ / runtime->rate;
391		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
392		while (hdelta > xrun_threshold) {
393			delta += runtime->buffer_size;
394			hw_base += runtime->buffer_size;
395			if (hw_base >= runtime->boundary)
396				hw_base = 0;
397			new_hw_ptr = hw_base + pos;
398			hdelta -= runtime->hw_ptr_buffer_jiffies;
399		}
400		goto no_delta_check;
401	}
402
403	/* something must be really wrong */
404	if (delta >= runtime->buffer_size + runtime->period_size) {
405		hw_ptr_error(substream,
406			       "Unexpected hw_pointer value %s"
407			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
408			       "old_hw_ptr=%ld)\n",
409				     in_interrupt ? "[Q] " : "[P]",
410				     substream->stream, (long)pos,
411				     (long)new_hw_ptr, (long)old_hw_ptr);
412		return 0;
413	}
414
415	/* Do jiffies check only in xrun_debug mode */
416	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
417		goto no_jiffies_check;
418
419	/* Skip the jiffies check for hardwares with BATCH flag.
420	 * Such hardware usually just increases the position at each IRQ,
421	 * thus it can't give any strange position.
422	 */
423	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
424		goto no_jiffies_check;
425	hdelta = delta;
426	if (hdelta < runtime->delay)
427		goto no_jiffies_check;
428	hdelta -= runtime->delay;
429	jdelta = jiffies - runtime->hw_ptr_jiffies;
430	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
431		delta = jdelta /
432			(((runtime->period_size * HZ) / runtime->rate)
433								+ HZ/100);
434		/* move new_hw_ptr according jiffies not pos variable */
435		new_hw_ptr = old_hw_ptr;
436		hw_base = delta;
437		/* use loop to avoid checks for delta overflows */
438		/* the delta value is small or zero in most cases */
439		while (delta > 0) {
440			new_hw_ptr += runtime->period_size;
441			if (new_hw_ptr >= runtime->boundary)
442				new_hw_ptr -= runtime->boundary;
443			delta--;
444		}
445		/* align hw_base to buffer_size */
446		hw_ptr_error(substream,
447			     "hw_ptr skipping! %s"
448			     "(pos=%ld, delta=%ld, period=%ld, "
449			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
450			     in_interrupt ? "[Q] " : "",
451			     (long)pos, (long)hdelta,
452			     (long)runtime->period_size, jdelta,
453			     ((hdelta * HZ) / runtime->rate), hw_base,
454			     (unsigned long)old_hw_ptr,
455			     (unsigned long)new_hw_ptr);
456		/* reset values to proper state */
457		delta = 0;
458		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
459	}
460 no_jiffies_check:
461	if (delta > runtime->period_size + runtime->period_size / 2) {
462		hw_ptr_error(substream,
463			     "Lost interrupts? %s"
464			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
465			     "old_hw_ptr=%ld)\n",
466			     in_interrupt ? "[Q] " : "",
467			     substream->stream, (long)delta,
468			     (long)new_hw_ptr,
469			     (long)old_hw_ptr);
470	}
471
472 no_delta_check:
473	if (runtime->status->hw_ptr == new_hw_ptr)
474		return 0;
475
476	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
477	    runtime->silence_size > 0)
478		snd_pcm_playback_silence(substream, new_hw_ptr);
479
480	if (in_interrupt) {
481		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
482		if (delta < 0)
483			delta += runtime->boundary;
484		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
485		runtime->hw_ptr_interrupt += delta;
486		if (runtime->hw_ptr_interrupt >= runtime->boundary)
487			runtime->hw_ptr_interrupt -= runtime->boundary;
488	}
489	runtime->hw_ptr_base = hw_base;
490	runtime->status->hw_ptr = new_hw_ptr;
491	runtime->hw_ptr_jiffies = jiffies;
492	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
493		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
494
495	return snd_pcm_update_state(substream, runtime);
496}
497
498/* CAUTION: call it with irq disabled */
499int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
500{
501	return snd_pcm_update_hw_ptr0(substream, 0);
502}
503
504/**
505 * snd_pcm_set_ops - set the PCM operators
506 * @pcm: the pcm instance
507 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
508 * @ops: the operator table
509 *
510 * Sets the given PCM operators to the pcm instance.
511 */
512void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
513{
514	struct snd_pcm_str *stream = &pcm->streams[direction];
515	struct snd_pcm_substream *substream;
516
517	for (substream = stream->substream; substream != NULL; substream = substream->next)
518		substream->ops = ops;
519}
520
521EXPORT_SYMBOL(snd_pcm_set_ops);
522
523/**
524 * snd_pcm_sync - set the PCM sync id
525 * @substream: the pcm substream
526 *
527 * Sets the PCM sync identifier for the card.
528 */
529void snd_pcm_set_sync(struct snd_pcm_substream *substream)
530{
531	struct snd_pcm_runtime *runtime = substream->runtime;
532
533	runtime->sync.id32[0] = substream->pcm->card->number;
534	runtime->sync.id32[1] = -1;
535	runtime->sync.id32[2] = -1;
536	runtime->sync.id32[3] = -1;
537}
538
539EXPORT_SYMBOL(snd_pcm_set_sync);
540
541/*
542 *  Standard ioctl routine
543 */
544
545static inline unsigned int div32(unsigned int a, unsigned int b,
546				 unsigned int *r)
547{
548	if (b == 0) {
549		*r = 0;
550		return UINT_MAX;
551	}
552	*r = a % b;
553	return a / b;
554}
555
556static inline unsigned int div_down(unsigned int a, unsigned int b)
557{
558	if (b == 0)
559		return UINT_MAX;
560	return a / b;
561}
562
563static inline unsigned int div_up(unsigned int a, unsigned int b)
564{
565	unsigned int r;
566	unsigned int q;
567	if (b == 0)
568		return UINT_MAX;
569	q = div32(a, b, &r);
570	if (r)
571		++q;
572	return q;
573}
574
575static inline unsigned int mul(unsigned int a, unsigned int b)
576{
577	if (a == 0)
578		return 0;
579	if (div_down(UINT_MAX, a) < b)
580		return UINT_MAX;
581	return a * b;
582}
583
584static inline unsigned int muldiv32(unsigned int a, unsigned int b,
585				    unsigned int c, unsigned int *r)
586{
587	u_int64_t n = (u_int64_t) a * b;
588	if (c == 0) {
589		snd_BUG_ON(!n);
590		*r = 0;
591		return UINT_MAX;
592	}
593	n = div_u64_rem(n, c, r);
594	if (n >= UINT_MAX) {
595		*r = 0;
596		return UINT_MAX;
597	}
598	return n;
599}
600
601/**
602 * snd_interval_refine - refine the interval value of configurator
603 * @i: the interval value to refine
604 * @v: the interval value to refer to
605 *
606 * Refines the interval value with the reference value.
607 * The interval is changed to the range satisfying both intervals.
608 * The interval status (min, max, integer, etc.) are evaluated.
609 *
610 * Returns non-zero if the value is changed, zero if not changed.
611 */
612int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
613{
614	int changed = 0;
615	if (snd_BUG_ON(snd_interval_empty(i)))
616		return -EINVAL;
617	if (i->min < v->min) {
618		i->min = v->min;
619		i->openmin = v->openmin;
620		changed = 1;
621	} else if (i->min == v->min && !i->openmin && v->openmin) {
622		i->openmin = 1;
623		changed = 1;
624	}
625	if (i->max > v->max) {
626		i->max = v->max;
627		i->openmax = v->openmax;
628		changed = 1;
629	} else if (i->max == v->max && !i->openmax && v->openmax) {
630		i->openmax = 1;
631		changed = 1;
632	}
633	if (!i->integer && v->integer) {
634		i->integer = 1;
635		changed = 1;
636	}
637	if (i->integer) {
638		if (i->openmin) {
639			i->min++;
640			i->openmin = 0;
641		}
642		if (i->openmax) {
643			i->max--;
644			i->openmax = 0;
645		}
646	} else if (!i->openmin && !i->openmax && i->min == i->max)
647		i->integer = 1;
648	if (snd_interval_checkempty(i)) {
649		snd_interval_none(i);
650		return -EINVAL;
651	}
652	return changed;
653}
654
655EXPORT_SYMBOL(snd_interval_refine);
656
657static int snd_interval_refine_first(struct snd_interval *i)
658{
659	if (snd_BUG_ON(snd_interval_empty(i)))
660		return -EINVAL;
661	if (snd_interval_single(i))
662		return 0;
663	i->max = i->min;
664	i->openmax = i->openmin;
665	if (i->openmax)
666		i->max++;
667	return 1;
668}
669
670static int snd_interval_refine_last(struct snd_interval *i)
671{
672	if (snd_BUG_ON(snd_interval_empty(i)))
673		return -EINVAL;
674	if (snd_interval_single(i))
675		return 0;
676	i->min = i->max;
677	i->openmin = i->openmax;
678	if (i->openmin)
679		i->min--;
680	return 1;
681}
682
683void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
684{
685	if (a->empty || b->empty) {
686		snd_interval_none(c);
687		return;
688	}
689	c->empty = 0;
690	c->min = mul(a->min, b->min);
691	c->openmin = (a->openmin || b->openmin);
692	c->max = mul(a->max,  b->max);
693	c->openmax = (a->openmax || b->openmax);
694	c->integer = (a->integer && b->integer);
695}
696
697/**
698 * snd_interval_div - refine the interval value with division
699 * @a: dividend
700 * @b: divisor
701 * @c: quotient
702 *
703 * c = a / b
704 *
705 * Returns non-zero if the value is changed, zero if not changed.
706 */
707void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
708{
709	unsigned int r;
710	if (a->empty || b->empty) {
711		snd_interval_none(c);
712		return;
713	}
714	c->empty = 0;
715	c->min = div32(a->min, b->max, &r);
716	c->openmin = (r || a->openmin || b->openmax);
717	if (b->min > 0) {
718		c->max = div32(a->max, b->min, &r);
719		if (r) {
720			c->max++;
721			c->openmax = 1;
722		} else
723			c->openmax = (a->openmax || b->openmin);
724	} else {
725		c->max = UINT_MAX;
726		c->openmax = 0;
727	}
728	c->integer = 0;
729}
730
731/**
732 * snd_interval_muldivk - refine the interval value
733 * @a: dividend 1
734 * @b: dividend 2
735 * @k: divisor (as integer)
736 * @c: result
737  *
738 * c = a * b / k
739 *
740 * Returns non-zero if the value is changed, zero if not changed.
741 */
742void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
743		      unsigned int k, struct snd_interval *c)
744{
745	unsigned int r;
746	if (a->empty || b->empty) {
747		snd_interval_none(c);
748		return;
749	}
750	c->empty = 0;
751	c->min = muldiv32(a->min, b->min, k, &r);
752	c->openmin = (r || a->openmin || b->openmin);
753	c->max = muldiv32(a->max, b->max, k, &r);
754	if (r) {
755		c->max++;
756		c->openmax = 1;
757	} else
758		c->openmax = (a->openmax || b->openmax);
759	c->integer = 0;
760}
761
762/**
763 * snd_interval_mulkdiv - refine the interval value
764 * @a: dividend 1
765 * @k: dividend 2 (as integer)
766 * @b: divisor
767 * @c: result
768 *
769 * c = a * k / b
770 *
771 * Returns non-zero if the value is changed, zero if not changed.
772 */
773void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
774		      const struct snd_interval *b, struct snd_interval *c)
775{
776	unsigned int r;
777	if (a->empty || b->empty) {
778		snd_interval_none(c);
779		return;
780	}
781	c->empty = 0;
782	c->min = muldiv32(a->min, k, b->max, &r);
783	c->openmin = (r || a->openmin || b->openmax);
784	if (b->min > 0) {
785		c->max = muldiv32(a->max, k, b->min, &r);
786		if (r) {
787			c->max++;
788			c->openmax = 1;
789		} else
790			c->openmax = (a->openmax || b->openmin);
791	} else {
792		c->max = UINT_MAX;
793		c->openmax = 0;
794	}
795	c->integer = 0;
796}
797
798/* ---- */
799
800
801/**
802 * snd_interval_ratnum - refine the interval value
803 * @i: interval to refine
804 * @rats_count: number of ratnum_t
805 * @rats: ratnum_t array
806 * @nump: pointer to store the resultant numerator
807 * @denp: pointer to store the resultant denominator
808 *
809 * Returns non-zero if the value is changed, zero if not changed.
810 */
811int snd_interval_ratnum(struct snd_interval *i,
812			unsigned int rats_count, struct snd_ratnum *rats,
813			unsigned int *nump, unsigned int *denp)
814{
815	unsigned int best_num, best_den;
816	int best_diff;
817	unsigned int k;
818	struct snd_interval t;
819	int err;
820	unsigned int result_num, result_den;
821	int result_diff;
822
823	best_num = best_den = best_diff = 0;
824	for (k = 0; k < rats_count; ++k) {
825		unsigned int num = rats[k].num;
826		unsigned int den;
827		unsigned int q = i->min;
828		int diff;
829		if (q == 0)
830			q = 1;
831		den = div_up(num, q);
832		if (den < rats[k].den_min)
833			continue;
834		if (den > rats[k].den_max)
835			den = rats[k].den_max;
836		else {
837			unsigned int r;
838			r = (den - rats[k].den_min) % rats[k].den_step;
839			if (r != 0)
840				den -= r;
841		}
842		diff = num - q * den;
843		if (diff < 0)
844			diff = -diff;
845		if (best_num == 0 ||
846		    diff * best_den < best_diff * den) {
847			best_diff = diff;
848			best_den = den;
849			best_num = num;
850		}
851	}
852	if (best_den == 0) {
853		i->empty = 1;
854		return -EINVAL;
855	}
856	t.min = div_down(best_num, best_den);
857	t.openmin = !!(best_num % best_den);
858
859	result_num = best_num;
860	result_diff = best_diff;
861	result_den = best_den;
862	best_num = best_den = best_diff = 0;
863	for (k = 0; k < rats_count; ++k) {
864		unsigned int num = rats[k].num;
865		unsigned int den;
866		unsigned int q = i->max;
867		int diff;
868		if (q == 0) {
869			i->empty = 1;
870			return -EINVAL;
871		}
872		den = div_down(num, q);
873		if (den > rats[k].den_max)
874			continue;
875		if (den < rats[k].den_min)
876			den = rats[k].den_min;
877		else {
878			unsigned int r;
879			r = (den - rats[k].den_min) % rats[k].den_step;
880			if (r != 0)
881				den += rats[k].den_step - r;
882		}
883		diff = q * den - num;
884		if (diff < 0)
885			diff = -diff;
886		if (best_num == 0 ||
887		    diff * best_den < best_diff * den) {
888			best_diff = diff;
889			best_den = den;
890			best_num = num;
891		}
892	}
893	if (best_den == 0) {
894		i->empty = 1;
895		return -EINVAL;
896	}
897	t.max = div_up(best_num, best_den);
898	t.openmax = !!(best_num % best_den);
899	t.integer = 0;
900	err = snd_interval_refine(i, &t);
901	if (err < 0)
902		return err;
903
904	if (snd_interval_single(i)) {
905		if (best_diff * result_den < result_diff * best_den) {
906			result_num = best_num;
907			result_den = best_den;
908		}
909		if (nump)
910			*nump = result_num;
911		if (denp)
912			*denp = result_den;
913	}
914	return err;
915}
916
917EXPORT_SYMBOL(snd_interval_ratnum);
918
919/**
920 * snd_interval_ratden - refine the interval value
921 * @i: interval to refine
922 * @rats_count: number of struct ratden
923 * @rats: struct ratden array
924 * @nump: pointer to store the resultant numerator
925 * @denp: pointer to store the resultant denominator
926 *
927 * Returns non-zero if the value is changed, zero if not changed.
928 */
929static int snd_interval_ratden(struct snd_interval *i,
930			       unsigned int rats_count, struct snd_ratden *rats,
931			       unsigned int *nump, unsigned int *denp)
932{
933	unsigned int best_num, best_diff, best_den;
934	unsigned int k;
935	struct snd_interval t;
936	int err;
937
938	best_num = best_den = best_diff = 0;
939	for (k = 0; k < rats_count; ++k) {
940		unsigned int num;
941		unsigned int den = rats[k].den;
942		unsigned int q = i->min;
943		int diff;
944		num = mul(q, den);
945		if (num > rats[k].num_max)
946			continue;
947		if (num < rats[k].num_min)
948			num = rats[k].num_max;
949		else {
950			unsigned int r;
951			r = (num - rats[k].num_min) % rats[k].num_step;
952			if (r != 0)
953				num += rats[k].num_step - r;
954		}
955		diff = num - q * den;
956		if (best_num == 0 ||
957		    diff * best_den < best_diff * den) {
958			best_diff = diff;
959			best_den = den;
960			best_num = num;
961		}
962	}
963	if (best_den == 0) {
964		i->empty = 1;
965		return -EINVAL;
966	}
967	t.min = div_down(best_num, best_den);
968	t.openmin = !!(best_num % best_den);
969
970	best_num = best_den = best_diff = 0;
971	for (k = 0; k < rats_count; ++k) {
972		unsigned int num;
973		unsigned int den = rats[k].den;
974		unsigned int q = i->max;
975		int diff;
976		num = mul(q, den);
977		if (num < rats[k].num_min)
978			continue;
979		if (num > rats[k].num_max)
980			num = rats[k].num_max;
981		else {
982			unsigned int r;
983			r = (num - rats[k].num_min) % rats[k].num_step;
984			if (r != 0)
985				num -= r;
986		}
987		diff = q * den - num;
988		if (best_num == 0 ||
989		    diff * best_den < best_diff * den) {
990			best_diff = diff;
991			best_den = den;
992			best_num = num;
993		}
994	}
995	if (best_den == 0) {
996		i->empty = 1;
997		return -EINVAL;
998	}
999	t.max = div_up(best_num, best_den);
1000	t.openmax = !!(best_num % best_den);
1001	t.integer = 0;
1002	err = snd_interval_refine(i, &t);
1003	if (err < 0)
1004		return err;
1005
1006	if (snd_interval_single(i)) {
1007		if (nump)
1008			*nump = best_num;
1009		if (denp)
1010			*denp = best_den;
1011	}
1012	return err;
1013}
1014
1015/**
1016 * snd_interval_list - refine the interval value from the list
1017 * @i: the interval value to refine
1018 * @count: the number of elements in the list
1019 * @list: the value list
1020 * @mask: the bit-mask to evaluate
1021 *
1022 * Refines the interval value from the list.
1023 * When mask is non-zero, only the elements corresponding to bit 1 are
1024 * evaluated.
1025 *
1026 * Returns non-zero if the value is changed, zero if not changed.
1027 */
1028int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1029{
1030        unsigned int k;
1031	struct snd_interval list_range;
1032
1033	if (!count) {
1034		i->empty = 1;
1035		return -EINVAL;
1036	}
1037	snd_interval_any(&list_range);
1038	list_range.min = UINT_MAX;
1039	list_range.max = 0;
1040        for (k = 0; k < count; k++) {
1041		if (mask && !(mask & (1 << k)))
1042			continue;
1043		if (!snd_interval_test(i, list[k]))
1044			continue;
1045		list_range.min = min(list_range.min, list[k]);
1046		list_range.max = max(list_range.max, list[k]);
1047        }
1048	return snd_interval_refine(i, &list_range);
1049}
1050
1051EXPORT_SYMBOL(snd_interval_list);
1052
1053static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1054{
1055	unsigned int n;
1056	int changed = 0;
1057	n = (i->min - min) % step;
1058	if (n != 0 || i->openmin) {
1059		i->min += step - n;
1060		changed = 1;
1061	}
1062	n = (i->max - min) % step;
1063	if (n != 0 || i->openmax) {
1064		i->max -= n;
1065		changed = 1;
1066	}
1067	if (snd_interval_checkempty(i)) {
1068		i->empty = 1;
1069		return -EINVAL;
1070	}
1071	return changed;
1072}
1073
1074/* Info constraints helpers */
1075
1076/**
1077 * snd_pcm_hw_rule_add - add the hw-constraint rule
1078 * @runtime: the pcm runtime instance
1079 * @cond: condition bits
1080 * @var: the variable to evaluate
1081 * @func: the evaluation function
1082 * @private: the private data pointer passed to function
1083 * @dep: the dependent variables
1084 *
1085 * Returns zero if successful, or a negative error code on failure.
1086 */
1087int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1088			int var,
1089			snd_pcm_hw_rule_func_t func, void *private,
1090			int dep, ...)
1091{
1092	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1093	struct snd_pcm_hw_rule *c;
1094	unsigned int k;
1095	va_list args;
1096	va_start(args, dep);
1097	if (constrs->rules_num >= constrs->rules_all) {
1098		struct snd_pcm_hw_rule *new;
1099		unsigned int new_rules = constrs->rules_all + 16;
1100		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1101		if (!new) {
1102			va_end(args);
1103			return -ENOMEM;
1104		}
1105		if (constrs->rules) {
1106			memcpy(new, constrs->rules,
1107			       constrs->rules_num * sizeof(*c));
1108			kfree(constrs->rules);
1109		}
1110		constrs->rules = new;
1111		constrs->rules_all = new_rules;
1112	}
1113	c = &constrs->rules[constrs->rules_num];
1114	c->cond = cond;
1115	c->func = func;
1116	c->var = var;
1117	c->private = private;
1118	k = 0;
1119	while (1) {
1120		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1121			va_end(args);
1122			return -EINVAL;
1123		}
1124		c->deps[k++] = dep;
1125		if (dep < 0)
1126			break;
1127		dep = va_arg(args, int);
1128	}
1129	constrs->rules_num++;
1130	va_end(args);
1131	return 0;
1132}
1133
1134EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1135
1136/**
1137 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1138 * @runtime: PCM runtime instance
1139 * @var: hw_params variable to apply the mask
1140 * @mask: the bitmap mask
1141 *
1142 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1143 */
1144int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1145			       u_int32_t mask)
1146{
1147	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1148	struct snd_mask *maskp = constrs_mask(constrs, var);
1149	*maskp->bits &= mask;
1150	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1151	if (*maskp->bits == 0)
1152		return -EINVAL;
1153	return 0;
1154}
1155
1156/**
1157 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1158 * @runtime: PCM runtime instance
1159 * @var: hw_params variable to apply the mask
1160 * @mask: the 64bit bitmap mask
1161 *
1162 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1163 */
1164int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1165				 u_int64_t mask)
1166{
1167	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1168	struct snd_mask *maskp = constrs_mask(constrs, var);
1169	maskp->bits[0] &= (u_int32_t)mask;
1170	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1171	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1172	if (! maskp->bits[0] && ! maskp->bits[1])
1173		return -EINVAL;
1174	return 0;
1175}
1176
1177/**
1178 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1179 * @runtime: PCM runtime instance
1180 * @var: hw_params variable to apply the integer constraint
1181 *
1182 * Apply the constraint of integer to an interval parameter.
1183 */
1184int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1185{
1186	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1187	return snd_interval_setinteger(constrs_interval(constrs, var));
1188}
1189
1190EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1191
1192/**
1193 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1194 * @runtime: PCM runtime instance
1195 * @var: hw_params variable to apply the range
1196 * @min: the minimal value
1197 * @max: the maximal value
1198 *
1199 * Apply the min/max range constraint to an interval parameter.
1200 */
1201int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1202				 unsigned int min, unsigned int max)
1203{
1204	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205	struct snd_interval t;
1206	t.min = min;
1207	t.max = max;
1208	t.openmin = t.openmax = 0;
1209	t.integer = 0;
1210	return snd_interval_refine(constrs_interval(constrs, var), &t);
1211}
1212
1213EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1214
1215static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1216				struct snd_pcm_hw_rule *rule)
1217{
1218	struct snd_pcm_hw_constraint_list *list = rule->private;
1219	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1220}
1221
1222
1223/**
1224 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1225 * @runtime: PCM runtime instance
1226 * @cond: condition bits
1227 * @var: hw_params variable to apply the list constraint
1228 * @l: list
1229 *
1230 * Apply the list of constraints to an interval parameter.
1231 */
1232int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1233			       unsigned int cond,
1234			       snd_pcm_hw_param_t var,
1235			       struct snd_pcm_hw_constraint_list *l)
1236{
1237	return snd_pcm_hw_rule_add(runtime, cond, var,
1238				   snd_pcm_hw_rule_list, l,
1239				   var, -1);
1240}
1241
1242EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1243
1244static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1245				   struct snd_pcm_hw_rule *rule)
1246{
1247	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1248	unsigned int num = 0, den = 0;
1249	int err;
1250	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1251				  r->nrats, r->rats, &num, &den);
1252	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1253		params->rate_num = num;
1254		params->rate_den = den;
1255	}
1256	return err;
1257}
1258
1259/**
1260 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1261 * @runtime: PCM runtime instance
1262 * @cond: condition bits
1263 * @var: hw_params variable to apply the ratnums constraint
1264 * @r: struct snd_ratnums constriants
1265 */
1266int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1267				  unsigned int cond,
1268				  snd_pcm_hw_param_t var,
1269				  struct snd_pcm_hw_constraint_ratnums *r)
1270{
1271	return snd_pcm_hw_rule_add(runtime, cond, var,
1272				   snd_pcm_hw_rule_ratnums, r,
1273				   var, -1);
1274}
1275
1276EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1277
1278static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1279				   struct snd_pcm_hw_rule *rule)
1280{
1281	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1282	unsigned int num = 0, den = 0;
1283	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1284				  r->nrats, r->rats, &num, &den);
1285	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1286		params->rate_num = num;
1287		params->rate_den = den;
1288	}
1289	return err;
1290}
1291
1292/**
1293 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1294 * @runtime: PCM runtime instance
1295 * @cond: condition bits
1296 * @var: hw_params variable to apply the ratdens constraint
1297 * @r: struct snd_ratdens constriants
1298 */
1299int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1300				  unsigned int cond,
1301				  snd_pcm_hw_param_t var,
1302				  struct snd_pcm_hw_constraint_ratdens *r)
1303{
1304	return snd_pcm_hw_rule_add(runtime, cond, var,
1305				   snd_pcm_hw_rule_ratdens, r,
1306				   var, -1);
1307}
1308
1309EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1310
1311static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1312				  struct snd_pcm_hw_rule *rule)
1313{
1314	unsigned int l = (unsigned long) rule->private;
1315	int width = l & 0xffff;
1316	unsigned int msbits = l >> 16;
1317	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1318	if (snd_interval_single(i) && snd_interval_value(i) == width)
1319		params->msbits = msbits;
1320	return 0;
1321}
1322
1323/**
1324 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1325 * @runtime: PCM runtime instance
1326 * @cond: condition bits
1327 * @width: sample bits width
1328 * @msbits: msbits width
1329 */
1330int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1331				 unsigned int cond,
1332				 unsigned int width,
1333				 unsigned int msbits)
1334{
1335	unsigned long l = (msbits << 16) | width;
1336	return snd_pcm_hw_rule_add(runtime, cond, -1,
1337				    snd_pcm_hw_rule_msbits,
1338				    (void*) l,
1339				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1340}
1341
1342EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1343
1344static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1345				struct snd_pcm_hw_rule *rule)
1346{
1347	unsigned long step = (unsigned long) rule->private;
1348	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1349}
1350
1351/**
1352 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1353 * @runtime: PCM runtime instance
1354 * @cond: condition bits
1355 * @var: hw_params variable to apply the step constraint
1356 * @step: step size
1357 */
1358int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1359			       unsigned int cond,
1360			       snd_pcm_hw_param_t var,
1361			       unsigned long step)
1362{
1363	return snd_pcm_hw_rule_add(runtime, cond, var,
1364				   snd_pcm_hw_rule_step, (void *) step,
1365				   var, -1);
1366}
1367
1368EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1369
1370static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1371{
1372	static unsigned int pow2_sizes[] = {
1373		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1374		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1375		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1376		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1377	};
1378	return snd_interval_list(hw_param_interval(params, rule->var),
1379				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1380}
1381
1382/**
1383 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1384 * @runtime: PCM runtime instance
1385 * @cond: condition bits
1386 * @var: hw_params variable to apply the power-of-2 constraint
1387 */
1388int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1389			       unsigned int cond,
1390			       snd_pcm_hw_param_t var)
1391{
1392	return snd_pcm_hw_rule_add(runtime, cond, var,
1393				   snd_pcm_hw_rule_pow2, NULL,
1394				   var, -1);
1395}
1396
1397EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1398
1399static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1400				  snd_pcm_hw_param_t var)
1401{
1402	if (hw_is_mask(var)) {
1403		snd_mask_any(hw_param_mask(params, var));
1404		params->cmask |= 1 << var;
1405		params->rmask |= 1 << var;
1406		return;
1407	}
1408	if (hw_is_interval(var)) {
1409		snd_interval_any(hw_param_interval(params, var));
1410		params->cmask |= 1 << var;
1411		params->rmask |= 1 << var;
1412		return;
1413	}
1414	snd_BUG();
1415}
1416
1417void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1418{
1419	unsigned int k;
1420	memset(params, 0, sizeof(*params));
1421	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1422		_snd_pcm_hw_param_any(params, k);
1423	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1424		_snd_pcm_hw_param_any(params, k);
1425	params->info = ~0U;
1426}
1427
1428EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1429
1430/**
1431 * snd_pcm_hw_param_value - return @params field @var value
1432 * @params: the hw_params instance
1433 * @var: parameter to retrieve
1434 * @dir: pointer to the direction (-1,0,1) or %NULL
1435 *
1436 * Return the value for field @var if it's fixed in configuration space
1437 * defined by @params. Return -%EINVAL otherwise.
1438 */
1439int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1440			   snd_pcm_hw_param_t var, int *dir)
1441{
1442	if (hw_is_mask(var)) {
1443		const struct snd_mask *mask = hw_param_mask_c(params, var);
1444		if (!snd_mask_single(mask))
1445			return -EINVAL;
1446		if (dir)
1447			*dir = 0;
1448		return snd_mask_value(mask);
1449	}
1450	if (hw_is_interval(var)) {
1451		const struct snd_interval *i = hw_param_interval_c(params, var);
1452		if (!snd_interval_single(i))
1453			return -EINVAL;
1454		if (dir)
1455			*dir = i->openmin;
1456		return snd_interval_value(i);
1457	}
1458	return -EINVAL;
1459}
1460
1461EXPORT_SYMBOL(snd_pcm_hw_param_value);
1462
1463void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1464				snd_pcm_hw_param_t var)
1465{
1466	if (hw_is_mask(var)) {
1467		snd_mask_none(hw_param_mask(params, var));
1468		params->cmask |= 1 << var;
1469		params->rmask |= 1 << var;
1470	} else if (hw_is_interval(var)) {
1471		snd_interval_none(hw_param_interval(params, var));
1472		params->cmask |= 1 << var;
1473		params->rmask |= 1 << var;
1474	} else {
1475		snd_BUG();
1476	}
1477}
1478
1479EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1480
1481static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1482				   snd_pcm_hw_param_t var)
1483{
1484	int changed;
1485	if (hw_is_mask(var))
1486		changed = snd_mask_refine_first(hw_param_mask(params, var));
1487	else if (hw_is_interval(var))
1488		changed = snd_interval_refine_first(hw_param_interval(params, var));
1489	else
1490		return -EINVAL;
1491	if (changed) {
1492		params->cmask |= 1 << var;
1493		params->rmask |= 1 << var;
1494	}
1495	return changed;
1496}
1497
1498
1499/**
1500 * snd_pcm_hw_param_first - refine config space and return minimum value
1501 * @pcm: PCM instance
1502 * @params: the hw_params instance
1503 * @var: parameter to retrieve
1504 * @dir: pointer to the direction (-1,0,1) or %NULL
1505 *
1506 * Inside configuration space defined by @params remove from @var all
1507 * values > minimum. Reduce configuration space accordingly.
1508 * Return the minimum.
1509 */
1510int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1511			   struct snd_pcm_hw_params *params,
1512			   snd_pcm_hw_param_t var, int *dir)
1513{
1514	int changed = _snd_pcm_hw_param_first(params, var);
1515	if (changed < 0)
1516		return changed;
1517	if (params->rmask) {
1518		int err = snd_pcm_hw_refine(pcm, params);
1519		if (snd_BUG_ON(err < 0))
1520			return err;
1521	}
1522	return snd_pcm_hw_param_value(params, var, dir);
1523}
1524
1525EXPORT_SYMBOL(snd_pcm_hw_param_first);
1526
1527static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1528				  snd_pcm_hw_param_t var)
1529{
1530	int changed;
1531	if (hw_is_mask(var))
1532		changed = snd_mask_refine_last(hw_param_mask(params, var));
1533	else if (hw_is_interval(var))
1534		changed = snd_interval_refine_last(hw_param_interval(params, var));
1535	else
1536		return -EINVAL;
1537	if (changed) {
1538		params->cmask |= 1 << var;
1539		params->rmask |= 1 << var;
1540	}
1541	return changed;
1542}
1543
1544
1545/**
1546 * snd_pcm_hw_param_last - refine config space and return maximum value
1547 * @pcm: PCM instance
1548 * @params: the hw_params instance
1549 * @var: parameter to retrieve
1550 * @dir: pointer to the direction (-1,0,1) or %NULL
1551 *
1552 * Inside configuration space defined by @params remove from @var all
1553 * values < maximum. Reduce configuration space accordingly.
1554 * Return the maximum.
1555 */
1556int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1557			  struct snd_pcm_hw_params *params,
1558			  snd_pcm_hw_param_t var, int *dir)
1559{
1560	int changed = _snd_pcm_hw_param_last(params, var);
1561	if (changed < 0)
1562		return changed;
1563	if (params->rmask) {
1564		int err = snd_pcm_hw_refine(pcm, params);
1565		if (snd_BUG_ON(err < 0))
1566			return err;
1567	}
1568	return snd_pcm_hw_param_value(params, var, dir);
1569}
1570
1571EXPORT_SYMBOL(snd_pcm_hw_param_last);
1572
1573/**
1574 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1575 * @pcm: PCM instance
1576 * @params: the hw_params instance
1577 *
1578 * Choose one configuration from configuration space defined by @params.
1579 * The configuration chosen is that obtained fixing in this order:
1580 * first access, first format, first subformat, min channels,
1581 * min rate, min period time, max buffer size, min tick time
1582 */
1583int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1584			     struct snd_pcm_hw_params *params)
1585{
1586	static int vars[] = {
1587		SNDRV_PCM_HW_PARAM_ACCESS,
1588		SNDRV_PCM_HW_PARAM_FORMAT,
1589		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1590		SNDRV_PCM_HW_PARAM_CHANNELS,
1591		SNDRV_PCM_HW_PARAM_RATE,
1592		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1593		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1594		SNDRV_PCM_HW_PARAM_TICK_TIME,
1595		-1
1596	};
1597	int err, *v;
1598
1599	for (v = vars; *v != -1; v++) {
1600		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1601			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1602		else
1603			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1604		if (snd_BUG_ON(err < 0))
1605			return err;
1606	}
1607	return 0;
1608}
1609
1610static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1611				   void *arg)
1612{
1613	struct snd_pcm_runtime *runtime = substream->runtime;
1614	unsigned long flags;
1615	snd_pcm_stream_lock_irqsave(substream, flags);
1616	if (snd_pcm_running(substream) &&
1617	    snd_pcm_update_hw_ptr(substream) >= 0)
1618		runtime->status->hw_ptr %= runtime->buffer_size;
1619	else
1620		runtime->status->hw_ptr = 0;
1621	snd_pcm_stream_unlock_irqrestore(substream, flags);
1622	return 0;
1623}
1624
1625static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1626					  void *arg)
1627{
1628	struct snd_pcm_channel_info *info = arg;
1629	struct snd_pcm_runtime *runtime = substream->runtime;
1630	int width;
1631	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1632		info->offset = -1;
1633		return 0;
1634	}
1635	width = snd_pcm_format_physical_width(runtime->format);
1636	if (width < 0)
1637		return width;
1638	info->offset = 0;
1639	switch (runtime->access) {
1640	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1641	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1642		info->first = info->channel * width;
1643		info->step = runtime->channels * width;
1644		break;
1645	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1646	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1647	{
1648		size_t size = runtime->dma_bytes / runtime->channels;
1649		info->first = info->channel * size * 8;
1650		info->step = width;
1651		break;
1652	}
1653	default:
1654		snd_BUG();
1655		break;
1656	}
1657	return 0;
1658}
1659
1660static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1661				       void *arg)
1662{
1663	struct snd_pcm_hw_params *params = arg;
1664	snd_pcm_format_t format;
1665	int channels, width;
1666
1667	params->fifo_size = substream->runtime->hw.fifo_size;
1668	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1669		format = params_format(params);
1670		channels = params_channels(params);
1671		width = snd_pcm_format_physical_width(format);
1672		params->fifo_size /= width * channels;
1673	}
1674	return 0;
1675}
1676
1677/**
1678 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1679 * @substream: the pcm substream instance
1680 * @cmd: ioctl command
1681 * @arg: ioctl argument
1682 *
1683 * Processes the generic ioctl commands for PCM.
1684 * Can be passed as the ioctl callback for PCM ops.
1685 *
1686 * Returns zero if successful, or a negative error code on failure.
1687 */
1688int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1689		      unsigned int cmd, void *arg)
1690{
1691	switch (cmd) {
1692	case SNDRV_PCM_IOCTL1_INFO:
1693		return 0;
1694	case SNDRV_PCM_IOCTL1_RESET:
1695		return snd_pcm_lib_ioctl_reset(substream, arg);
1696	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1697		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1698	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1699		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1700	}
1701	return -ENXIO;
1702}
1703
1704EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1705
1706/**
1707 * snd_pcm_period_elapsed - update the pcm status for the next period
1708 * @substream: the pcm substream instance
1709 *
1710 * This function is called from the interrupt handler when the
1711 * PCM has processed the period size.  It will update the current
1712 * pointer, wake up sleepers, etc.
1713 *
1714 * Even if more than one periods have elapsed since the last call, you
1715 * have to call this only once.
1716 */
1717void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1718{
1719	struct snd_pcm_runtime *runtime;
1720	unsigned long flags;
1721
1722	if (PCM_RUNTIME_CHECK(substream))
1723		return;
1724	runtime = substream->runtime;
1725
1726	if (runtime->transfer_ack_begin)
1727		runtime->transfer_ack_begin(substream);
1728
1729	snd_pcm_stream_lock_irqsave(substream, flags);
1730	if (!snd_pcm_running(substream) ||
1731	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1732		goto _end;
1733
1734	if (substream->timer_running)
1735		snd_timer_interrupt(substream->timer, 1);
1736 _end:
1737	snd_pcm_stream_unlock_irqrestore(substream, flags);
1738	if (runtime->transfer_ack_end)
1739		runtime->transfer_ack_end(substream);
1740	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1741}
1742
1743EXPORT_SYMBOL(snd_pcm_period_elapsed);
1744
1745/*
1746 * Wait until avail_min data becomes available
1747 * Returns a negative error code if any error occurs during operation.
1748 * The available space is stored on availp.  When err = 0 and avail = 0
1749 * on the capture stream, it indicates the stream is in DRAINING state.
1750 */
1751static int wait_for_avail(struct snd_pcm_substream *substream,
1752			      snd_pcm_uframes_t *availp)
1753{
1754	struct snd_pcm_runtime *runtime = substream->runtime;
1755	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1756	wait_queue_t wait;
1757	int err = 0;
1758	snd_pcm_uframes_t avail = 0;
1759	long wait_time, tout;
1760
1761	init_waitqueue_entry(&wait, current);
1762	set_current_state(TASK_INTERRUPTIBLE);
1763	add_wait_queue(&runtime->tsleep, &wait);
1764
1765	if (runtime->no_period_wakeup)
1766		wait_time = MAX_SCHEDULE_TIMEOUT;
1767	else {
1768		wait_time = 10;
1769		if (runtime->rate) {
1770			long t = runtime->period_size * 2 / runtime->rate;
1771			wait_time = max(t, wait_time);
1772		}
1773		wait_time = msecs_to_jiffies(wait_time * 1000);
1774	}
1775
1776	for (;;) {
1777		if (signal_pending(current)) {
1778			err = -ERESTARTSYS;
1779			break;
1780		}
1781
1782		/*
1783		 * We need to check if space became available already
1784		 * (and thus the wakeup happened already) first to close
1785		 * the race of space already having become available.
1786		 * This check must happen after been added to the waitqueue
1787		 * and having current state be INTERRUPTIBLE.
1788		 */
1789		if (is_playback)
1790			avail = snd_pcm_playback_avail(runtime);
1791		else
1792			avail = snd_pcm_capture_avail(runtime);
1793		if (avail >= runtime->twake)
1794			break;
1795		snd_pcm_stream_unlock_irq(substream);
1796
1797		tout = schedule_timeout(wait_time);
1798
1799		snd_pcm_stream_lock_irq(substream);
1800		set_current_state(TASK_INTERRUPTIBLE);
1801		switch (runtime->status->state) {
1802		case SNDRV_PCM_STATE_SUSPENDED:
1803			err = -ESTRPIPE;
1804			goto _endloop;
1805		case SNDRV_PCM_STATE_XRUN:
1806			err = -EPIPE;
1807			goto _endloop;
1808		case SNDRV_PCM_STATE_DRAINING:
1809			if (is_playback)
1810				err = -EPIPE;
1811			else
1812				avail = 0; /* indicate draining */
1813			goto _endloop;
1814		case SNDRV_PCM_STATE_OPEN:
1815		case SNDRV_PCM_STATE_SETUP:
1816		case SNDRV_PCM_STATE_DISCONNECTED:
1817			err = -EBADFD;
1818			goto _endloop;
1819		}
1820		if (!tout) {
1821			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1822				   is_playback ? "playback" : "capture");
1823			err = -EIO;
1824			break;
1825		}
1826	}
1827 _endloop:
1828	set_current_state(TASK_RUNNING);
1829	remove_wait_queue(&runtime->tsleep, &wait);
1830	*availp = avail;
1831	return err;
1832}
1833
1834static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1835				      unsigned int hwoff,
1836				      unsigned long data, unsigned int off,
1837				      snd_pcm_uframes_t frames)
1838{
1839	struct snd_pcm_runtime *runtime = substream->runtime;
1840	int err;
1841	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1842	if (substream->ops->copy) {
1843		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1844			return err;
1845	} else {
1846		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1847		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1848			return -EFAULT;
1849	}
1850	return 0;
1851}
1852
1853typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1854			  unsigned long data, unsigned int off,
1855			  snd_pcm_uframes_t size);
1856
1857static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1858					    unsigned long data,
1859					    snd_pcm_uframes_t size,
1860					    int nonblock,
1861					    transfer_f transfer)
1862{
1863	struct snd_pcm_runtime *runtime = substream->runtime;
1864	snd_pcm_uframes_t xfer = 0;
1865	snd_pcm_uframes_t offset = 0;
1866	int err = 0;
1867
1868	if (size == 0)
1869		return 0;
1870
1871	snd_pcm_stream_lock_irq(substream);
1872	switch (runtime->status->state) {
1873	case SNDRV_PCM_STATE_PREPARED:
1874	case SNDRV_PCM_STATE_RUNNING:
1875	case SNDRV_PCM_STATE_PAUSED:
1876		break;
1877	case SNDRV_PCM_STATE_XRUN:
1878		err = -EPIPE;
1879		goto _end_unlock;
1880	case SNDRV_PCM_STATE_SUSPENDED:
1881		err = -ESTRPIPE;
1882		goto _end_unlock;
1883	default:
1884		err = -EBADFD;
1885		goto _end_unlock;
1886	}
1887
1888	runtime->twake = runtime->control->avail_min ? : 1;
1889	while (size > 0) {
1890		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1891		snd_pcm_uframes_t avail;
1892		snd_pcm_uframes_t cont;
1893		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1894			snd_pcm_update_hw_ptr(substream);
1895		avail = snd_pcm_playback_avail(runtime);
1896		if (!avail) {
1897			if (nonblock) {
1898				err = -EAGAIN;
1899				goto _end_unlock;
1900			}
1901			runtime->twake = min_t(snd_pcm_uframes_t, size,
1902					runtime->control->avail_min ? : 1);
1903			err = wait_for_avail(substream, &avail);
1904			if (err < 0)
1905				goto _end_unlock;
1906		}
1907		frames = size > avail ? avail : size;
1908		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1909		if (frames > cont)
1910			frames = cont;
1911		if (snd_BUG_ON(!frames)) {
1912			runtime->twake = 0;
1913			snd_pcm_stream_unlock_irq(substream);
1914			return -EINVAL;
1915		}
1916		appl_ptr = runtime->control->appl_ptr;
1917		appl_ofs = appl_ptr % runtime->buffer_size;
1918		snd_pcm_stream_unlock_irq(substream);
1919		err = transfer(substream, appl_ofs, data, offset, frames);
1920		snd_pcm_stream_lock_irq(substream);
1921		if (err < 0)
1922			goto _end_unlock;
1923		switch (runtime->status->state) {
1924		case SNDRV_PCM_STATE_XRUN:
1925			err = -EPIPE;
1926			goto _end_unlock;
1927		case SNDRV_PCM_STATE_SUSPENDED:
1928			err = -ESTRPIPE;
1929			goto _end_unlock;
1930		default:
1931			break;
1932		}
1933		appl_ptr += frames;
1934		if (appl_ptr >= runtime->boundary)
1935			appl_ptr -= runtime->boundary;
1936		runtime->control->appl_ptr = appl_ptr;
1937		if (substream->ops->ack)
1938			substream->ops->ack(substream);
1939
1940		offset += frames;
1941		size -= frames;
1942		xfer += frames;
1943		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1944		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1945			err = snd_pcm_start(substream);
1946			if (err < 0)
1947				goto _end_unlock;
1948		}
1949	}
1950 _end_unlock:
1951	runtime->twake = 0;
1952	if (xfer > 0 && err >= 0)
1953		snd_pcm_update_state(substream, runtime);
1954	snd_pcm_stream_unlock_irq(substream);
1955	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1956}
1957
1958/* sanity-check for read/write methods */
1959static int pcm_sanity_check(struct snd_pcm_substream *substream)
1960{
1961	struct snd_pcm_runtime *runtime;
1962	if (PCM_RUNTIME_CHECK(substream))
1963		return -ENXIO;
1964	runtime = substream->runtime;
1965	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1966		return -EINVAL;
1967	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1968		return -EBADFD;
1969	return 0;
1970}
1971
1972snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1973{
1974	struct snd_pcm_runtime *runtime;
1975	int nonblock;
1976	int err;
1977
1978	err = pcm_sanity_check(substream);
1979	if (err < 0)
1980		return err;
1981	runtime = substream->runtime;
1982	nonblock = !!(substream->f_flags & O_NONBLOCK);
1983
1984	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1985	    runtime->channels > 1)
1986		return -EINVAL;
1987	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1988				  snd_pcm_lib_write_transfer);
1989}
1990
1991EXPORT_SYMBOL(snd_pcm_lib_write);
1992
1993static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1994				       unsigned int hwoff,
1995				       unsigned long data, unsigned int off,
1996				       snd_pcm_uframes_t frames)
1997{
1998	struct snd_pcm_runtime *runtime = substream->runtime;
1999	int err;
2000	void __user **bufs = (void __user **)data;
2001	int channels = runtime->channels;
2002	int c;
2003	if (substream->ops->copy) {
2004		if (snd_BUG_ON(!substream->ops->silence))
2005			return -EINVAL;
2006		for (c = 0; c < channels; ++c, ++bufs) {
2007			if (*bufs == NULL) {
2008				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2009					return err;
2010			} else {
2011				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2012				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2013					return err;
2014			}
2015		}
2016	} else {
2017		/* default transfer behaviour */
2018		size_t dma_csize = runtime->dma_bytes / channels;
2019		for (c = 0; c < channels; ++c, ++bufs) {
2020			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2021			if (*bufs == NULL) {
2022				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2023			} else {
2024				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2025				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2026					return -EFAULT;
2027			}
2028		}
2029	}
2030	return 0;
2031}
2032
2033snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2034				     void __user **bufs,
2035				     snd_pcm_uframes_t frames)
2036{
2037	struct snd_pcm_runtime *runtime;
2038	int nonblock;
2039	int err;
2040
2041	err = pcm_sanity_check(substream);
2042	if (err < 0)
2043		return err;
2044	runtime = substream->runtime;
2045	nonblock = !!(substream->f_flags & O_NONBLOCK);
2046
2047	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2048		return -EINVAL;
2049	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2050				  nonblock, snd_pcm_lib_writev_transfer);
2051}
2052
2053EXPORT_SYMBOL(snd_pcm_lib_writev);
2054
2055static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2056				     unsigned int hwoff,
2057				     unsigned long data, unsigned int off,
2058				     snd_pcm_uframes_t frames)
2059{
2060	struct snd_pcm_runtime *runtime = substream->runtime;
2061	int err;
2062	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2063	if (substream->ops->copy) {
2064		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2065			return err;
2066	} else {
2067		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2068		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2069			return -EFAULT;
2070	}
2071	return 0;
2072}
2073
2074static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2075					   unsigned long data,
2076					   snd_pcm_uframes_t size,
2077					   int nonblock,
2078					   transfer_f transfer)
2079{
2080	struct snd_pcm_runtime *runtime = substream->runtime;
2081	snd_pcm_uframes_t xfer = 0;
2082	snd_pcm_uframes_t offset = 0;
2083	int err = 0;
2084
2085	if (size == 0)
2086		return 0;
2087
2088	snd_pcm_stream_lock_irq(substream);
2089	switch (runtime->status->state) {
2090	case SNDRV_PCM_STATE_PREPARED:
2091		if (size >= runtime->start_threshold) {
2092			err = snd_pcm_start(substream);
2093			if (err < 0)
2094				goto _end_unlock;
2095		}
2096		break;
2097	case SNDRV_PCM_STATE_DRAINING:
2098	case SNDRV_PCM_STATE_RUNNING:
2099	case SNDRV_PCM_STATE_PAUSED:
2100		break;
2101	case SNDRV_PCM_STATE_XRUN:
2102		err = -EPIPE;
2103		goto _end_unlock;
2104	case SNDRV_PCM_STATE_SUSPENDED:
2105		err = -ESTRPIPE;
2106		goto _end_unlock;
2107	default:
2108		err = -EBADFD;
2109		goto _end_unlock;
2110	}
2111
2112	runtime->twake = runtime->control->avail_min ? : 1;
2113	while (size > 0) {
2114		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2115		snd_pcm_uframes_t avail;
2116		snd_pcm_uframes_t cont;
2117		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2118			snd_pcm_update_hw_ptr(substream);
2119		avail = snd_pcm_capture_avail(runtime);
2120		if (!avail) {
2121			if (runtime->status->state ==
2122			    SNDRV_PCM_STATE_DRAINING) {
2123				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2124				goto _end_unlock;
2125			}
2126			if (nonblock) {
2127				err = -EAGAIN;
2128				goto _end_unlock;
2129			}
2130			runtime->twake = min_t(snd_pcm_uframes_t, size,
2131					runtime->control->avail_min ? : 1);
2132			err = wait_for_avail(substream, &avail);
2133			if (err < 0)
2134				goto _end_unlock;
2135			if (!avail)
2136				continue; /* draining */
2137		}
2138		frames = size > avail ? avail : size;
2139		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2140		if (frames > cont)
2141			frames = cont;
2142		if (snd_BUG_ON(!frames)) {
2143			runtime->twake = 0;
2144			snd_pcm_stream_unlock_irq(substream);
2145			return -EINVAL;
2146		}
2147		appl_ptr = runtime->control->appl_ptr;
2148		appl_ofs = appl_ptr % runtime->buffer_size;
2149		snd_pcm_stream_unlock_irq(substream);
2150		err = transfer(substream, appl_ofs, data, offset, frames);
2151		snd_pcm_stream_lock_irq(substream);
2152		if (err < 0)
2153			goto _end_unlock;
2154		switch (runtime->status->state) {
2155		case SNDRV_PCM_STATE_XRUN:
2156			err = -EPIPE;
2157			goto _end_unlock;
2158		case SNDRV_PCM_STATE_SUSPENDED:
2159			err = -ESTRPIPE;
2160			goto _end_unlock;
2161		default:
2162			break;
2163		}
2164		appl_ptr += frames;
2165		if (appl_ptr >= runtime->boundary)
2166			appl_ptr -= runtime->boundary;
2167		runtime->control->appl_ptr = appl_ptr;
2168		if (substream->ops->ack)
2169			substream->ops->ack(substream);
2170
2171		offset += frames;
2172		size -= frames;
2173		xfer += frames;
2174	}
2175 _end_unlock:
2176	runtime->twake = 0;
2177	if (xfer > 0 && err >= 0)
2178		snd_pcm_update_state(substream, runtime);
2179	snd_pcm_stream_unlock_irq(substream);
2180	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2181}
2182
2183snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2184{
2185	struct snd_pcm_runtime *runtime;
2186	int nonblock;
2187	int err;
2188
2189	err = pcm_sanity_check(substream);
2190	if (err < 0)
2191		return err;
2192	runtime = substream->runtime;
2193	nonblock = !!(substream->f_flags & O_NONBLOCK);
2194	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2195		return -EINVAL;
2196	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2197}
2198
2199EXPORT_SYMBOL(snd_pcm_lib_read);
2200
2201static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2202				      unsigned int hwoff,
2203				      unsigned long data, unsigned int off,
2204				      snd_pcm_uframes_t frames)
2205{
2206	struct snd_pcm_runtime *runtime = substream->runtime;
2207	int err;
2208	void __user **bufs = (void __user **)data;
2209	int channels = runtime->channels;
2210	int c;
2211	if (substream->ops->copy) {
2212		for (c = 0; c < channels; ++c, ++bufs) {
2213			char __user *buf;
2214			if (*bufs == NULL)
2215				continue;
2216			buf = *bufs + samples_to_bytes(runtime, off);
2217			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2218				return err;
2219		}
2220	} else {
2221		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2222		for (c = 0; c < channels; ++c, ++bufs) {
2223			char *hwbuf;
2224			char __user *buf;
2225			if (*bufs == NULL)
2226				continue;
2227
2228			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2229			buf = *bufs + samples_to_bytes(runtime, off);
2230			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2231				return -EFAULT;
2232		}
2233	}
2234	return 0;
2235}
2236
2237snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2238				    void __user **bufs,
2239				    snd_pcm_uframes_t frames)
2240{
2241	struct snd_pcm_runtime *runtime;
2242	int nonblock;
2243	int err;
2244
2245	err = pcm_sanity_check(substream);
2246	if (err < 0)
2247		return err;
2248	runtime = substream->runtime;
2249	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2250		return -EBADFD;
2251
2252	nonblock = !!(substream->f_flags & O_NONBLOCK);
2253	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2254		return -EINVAL;
2255	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2256}
2257
2258EXPORT_SYMBOL(snd_pcm_lib_readv);
2259