1/*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4 *
5 *   This program is free software; you can redistribute it and/or modify
6 *   it under the terms of the GNU General Public License as published by
7 *   the Free Software Foundation; either version 2 of the License, or
8 *   (at your option) any later version.
9 *
10 *   This program is distributed in the hope that it will be useful,
11 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 *   GNU General Public License for more details.
14 *
15 *   You should have received a copy of the GNU General Public License
16 *   along with this program; if not, write to the Free Software
17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 */
19
20/* Does not work. Warning may block system in capture mode */
21/* #define USE_VAR48KRATE */
22
23#include <asm/io.h>
24#include <linux/delay.h>
25#include <linux/interrupt.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/gameport.h>
30#include <linux/moduleparam.h>
31#include <linux/mutex.h>
32#include <sound/core.h>
33#include <sound/info.h>
34#include <sound/control.h>
35#include <sound/pcm.h>
36#include <sound/rawmidi.h>
37#include <sound/mpu401.h>
38#include <sound/opl3.h>
39#include <sound/sb.h>
40#include <sound/asoundef.h>
41#include <sound/initval.h>
42
43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45MODULE_LICENSE("GPL");
46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47		"{C-Media,CMI8738B},"
48		"{C-Media,CMI8338A},"
49		"{C-Media,CMI8338B}}");
50
51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52#define SUPPORT_JOYSTICK 1
53#endif
54
55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
57static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
58static long mpu_port[SNDRV_CARDS];
59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61#ifdef SUPPORT_JOYSTICK
62static int joystick_port[SNDRV_CARDS];
63#endif
64
65module_param_array(index, int, NULL, 0444);
66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67module_param_array(id, charp, NULL, 0444);
68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69module_param_array(enable, bool, NULL, 0444);
70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71module_param_array(mpu_port, long, NULL, 0444);
72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73module_param_array(fm_port, long, NULL, 0444);
74MODULE_PARM_DESC(fm_port, "FM port.");
75module_param_array(soft_ac3, bool, NULL, 0444);
76MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77#ifdef SUPPORT_JOYSTICK
78module_param_array(joystick_port, int, NULL, 0444);
79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80#endif
81
82/*
83 * CM8x38 registers definition
84 */
85
86#define CM_REG_FUNCTRL0		0x00
87#define CM_RST_CH1		0x00080000
88#define CM_RST_CH0		0x00040000
89#define CM_CHEN1		0x00020000	/* ch1: enable */
90#define CM_CHEN0		0x00010000	/* ch0: enable */
91#define CM_PAUSE1		0x00000008	/* ch1: pause */
92#define CM_PAUSE0		0x00000004	/* ch0: pause */
93#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
94#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
95
96#define CM_REG_FUNCTRL1		0x04
97#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
98#define CM_DSFC_SHIFT		13
99#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
100#define CM_ASFC_SHIFT		10
101#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
102#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
103#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
104#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
105#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
106#define CM_BREQ			0x00000010	/* bus master enabled */
107#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
108#define CM_UART_EN		0x00000004	/* legacy UART */
109#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
110#define CM_ZVPORT		0x00000001	/* ZVPORT */
111
112#define CM_REG_CHFORMAT		0x08
113
114#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
115#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
116#define CM_CHB3D		0x20000000	/* 4 channels */
117
118#define CM_CHIP_MASK1		0x1f000000
119#define CM_CHIP_037		0x01000000
120#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
121#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
122#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
123#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
124#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
125#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
126/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
127
128#define CM_ADCBITLEN_MASK	0x0000C000
129#define CM_ADCBITLEN_16		0x00000000
130#define CM_ADCBITLEN_15		0x00004000
131#define CM_ADCBITLEN_14		0x00008000
132#define CM_ADCBITLEN_13		0x0000C000
133
134#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
135#define CM_ADCDACLEN_060	0x00000000
136#define CM_ADCDACLEN_066	0x00001000
137#define CM_ADCDACLEN_130	0x00002000
138#define CM_ADCDACLEN_280	0x00003000
139
140#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
141#define CM_ADCDLEN_ORIGINAL	0x00000000
142#define CM_ADCDLEN_EXTRA	0x00001000
143#define CM_ADCDLEN_24K		0x00002000
144#define CM_ADCDLEN_WEIGHT	0x00003000
145
146#define CM_CH1_SRATE_176K	0x00000800
147#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
148#define CM_CH1_SRATE_88K	0x00000400
149#define CM_CH0_SRATE_176K	0x00000200
150#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
151#define CM_CH0_SRATE_88K	0x00000100
152#define CM_CH0_SRATE_128K	0x00000300
153#define CM_CH0_SRATE_MASK	0x00000300
154
155#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
156#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
157#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
158#define CM_SPDLOCKED		0x00000010
159
160#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
161#define CM_CH1FMT_SHIFT		2
162#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
163#define CM_CH0FMT_SHIFT		0
164
165#define CM_REG_INT_HLDCLR	0x0C
166#define CM_CHIP_MASK2		0xff000000
167#define CM_CHIP_8768		0x20000000
168#define CM_CHIP_055		0x08000000
169#define CM_CHIP_039		0x04000000
170#define CM_CHIP_039_6CH		0x01000000
171#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
172#define CM_TDMA_INT_EN		0x00040000
173#define CM_CH1_INT_EN		0x00020000
174#define CM_CH0_INT_EN		0x00010000
175
176#define CM_REG_INT_STATUS	0x10
177#define CM_INTR			0x80000000
178#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
179#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
180#define CM_UARTINT		0x00010000
181#define CM_LTDMAINT		0x00008000
182#define CM_HTDMAINT		0x00004000
183#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
184#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
185#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
186#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
187#define CM_CH1BUSY		0x00000008
188#define CM_CH0BUSY		0x00000004
189#define CM_CHINT1		0x00000002
190#define CM_CHINT0		0x00000001
191
192#define CM_REG_LEGACY_CTRL	0x14
193#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
194#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
195#define CM_VMPU_330		0x00000000
196#define CM_VMPU_320		0x20000000
197#define CM_VMPU_310		0x40000000
198#define CM_VMPU_300		0x60000000
199#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
200#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
201#define CM_VSBSEL_220		0x00000000
202#define CM_VSBSEL_240		0x04000000
203#define CM_VSBSEL_260		0x08000000
204#define CM_VSBSEL_280		0x0C000000
205#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
206#define CM_FMSEL_388		0x00000000
207#define CM_FMSEL_3C8		0x01000000
208#define CM_FMSEL_3E0		0x02000000
209#define CM_FMSEL_3E8		0x03000000
210#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
211#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
212#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
213#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
214#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
216#define CM_C_EECS		0x00040000
217#define CM_C_EEDI46		0x00020000
218#define CM_C_EECK46		0x00010000
219#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
220#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
221#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
222#define CM_EXBASEN		0x00001000	/* external bass input enable */
223
224#define CM_REG_MISC_CTRL	0x18
225#define CM_PWD			0x80000000	/* power down */
226#define CM_RESET		0x40000000
227#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
228#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
229#define CM_TXVX			0x08000000	/* model 037? */
230#define CM_N4SPK3D		0x04000000	/* copy front to rear */
231#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
232#define CM_SPDIF48K		0x01000000	/* write */
233#define CM_SPATUS48K		0x01000000	/* read */
234#define CM_ENDBDAC		0x00800000	/* enable double dac */
235#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
236#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
237#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
238#define CM_FM_EN		0x00080000	/* enable legacy FM */
239#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
240#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
241#define CM_VIDWPDSB		0x00010000	/* model 037? */
242#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
243#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
244#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
245#define CM_VIDWPPRT		0x00002000	/* model 037? */
246#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
247#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
248#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
249#define CM_ENCENTER		0x00000080
250#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
251#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
252#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
253#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
254#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
255#define CM_UPDDMA_2048		0x00000000
256#define CM_UPDDMA_1024		0x00000004
257#define CM_UPDDMA_512		0x00000008
258#define CM_UPDDMA_256		0x0000000C
259#define CM_TWAIT_MASK		0x00000003	/* model 037 */
260#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263#define CM_REG_TDMA_POSITION	0x1C
264#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
265#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
266
267	/* byte */
268#define CM_REG_MIXER0		0x20
269#define CM_REG_SBVR		0x20		/* write: sb16 version */
270#define CM_REG_DEV		0x20		/* read: hardware device version */
271
272#define CM_REG_MIXER21		0x21
273#define CM_UNKNOWN_21_MASK	0x78		/* ? */
274#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
275#define CM_PROINV		0x02		/* SBPro left/right channel switching */
276#define CM_X_SB16		0x01		/* SB16 compatible */
277
278#define CM_REG_SB16_DATA	0x22
279#define CM_REG_SB16_ADDR	0x23
280
281#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
282#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
284#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
285
286#define CM_REG_MIXER1		0x24
287#define CM_FMMUTE		0x80	/* mute FM */
288#define CM_FMMUTE_SHIFT		7
289#define CM_WSMUTE		0x40	/* mute PCM */
290#define CM_WSMUTE_SHIFT		6
291#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
292#define CM_REAR2LIN_SHIFT	5
293#define CM_REAR2FRONT		0x10	/* exchange rear/front */
294#define CM_REAR2FRONT_SHIFT	4
295#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
296#define CM_WAVEINL_SHIFT	3
297#define CM_WAVEINR		0x04	/* digical wave rec. right */
298#define CM_WAVEINR_SHIFT	2
299#define CM_X3DEN		0x02	/* 3D surround enable */
300#define CM_X3DEN_SHIFT		1
301#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
302#define CM_CDPLAY_SHIFT		0
303
304#define CM_REG_MIXER2		0x25
305#define CM_RAUXREN		0x80	/* AUX right capture */
306#define CM_RAUXREN_SHIFT	7
307#define CM_RAUXLEN		0x40	/* AUX left capture */
308#define CM_RAUXLEN_SHIFT	6
309#define CM_VAUXRM		0x20	/* AUX right mute */
310#define CM_VAUXRM_SHIFT		5
311#define CM_VAUXLM		0x10	/* AUX left mute */
312#define CM_VAUXLM_SHIFT		4
313#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
314#define CM_VADMIC_SHIFT		1
315#define CM_MICGAINZ		0x01	/* mic boost */
316#define CM_MICGAINZ_SHIFT	0
317
318#define CM_REG_MIXER3		0x24
319#define CM_REG_AUX_VOL		0x26
320#define CM_VAUXL_MASK		0xf0
321#define CM_VAUXR_MASK		0x0f
322
323#define CM_REG_MISC		0x27
324#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
325#define CM_XGPO1		0x20
326// #define CM_XGPBIO		0x04
327#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
328#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
329#define CM_SPDVALID		0x02	/* spdif input valid check */
330#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
331
332#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
333/*
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
336 */
337#define CM_REG_EXTERN_CODEC	CM_REG_AC97
338
339/*
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341 */
342#define CM_REG_MPU_PCI		0x40
343
344/*
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346 */
347#define CM_REG_FM_PCI		0x50
348
349/*
350 * access from SB-mixer port
351 */
352#define CM_REG_EXTENT_IND	0xf0
353#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
354#define CM_VPHONE_SHIFT		5
355#define CM_VPHOM		0x10	/* Phone mute control */
356#define CM_VSPKM		0x08	/* Speaker mute control, default high */
357#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
358#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
359#define CM_VADMIC3		0x01	/* Mic record boost */
360
361/*
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
365 */
366#define CM_REG_PLL		0xf8
367
368/*
369 * extended registers
370 */
371#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
372#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
373#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
374#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
375
376#define CM_REG_EXT_MISC		0x90
377#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
378#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
379#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
380#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
381#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
382#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
383#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
384#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
385
386/*
387 * size of i/o region
388 */
389#define CM_EXTENT_CODEC	  0x100
390#define CM_EXTENT_MIDI	  0x2
391#define CM_EXTENT_SYNTH	  0x4
392
393
394/*
395 * channels for playback / capture
396 */
397#define CM_CH_PLAY	0
398#define CM_CH_CAPT	1
399
400/*
401 * flags to check device open/close
402 */
403#define CM_OPEN_NONE	0
404#define CM_OPEN_CH_MASK	0x01
405#define CM_OPEN_DAC	0x10
406#define CM_OPEN_ADC	0x20
407#define CM_OPEN_SPDIF	0x40
408#define CM_OPEN_MCHAN	0x80
409#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
410#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
411#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
413#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415
416
417#if CM_CH_PLAY == 1
418#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
419#define CM_PLAYBACK_SPDF	CM_SPDF_1
420#define CM_CAPTURE_SPDF		CM_SPDF_0
421#else
422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423#define CM_PLAYBACK_SPDF	CM_SPDF_0
424#define CM_CAPTURE_SPDF		CM_SPDF_1
425#endif
426
427
428/*
429 * driver data
430 */
431
432struct cmipci_pcm {
433	struct snd_pcm_substream *substream;
434	u8 running;		/* dac/adc running? */
435	u8 fmt;			/* format bits */
436	u8 is_dac;
437	u8 needs_silencing;
438	unsigned int dma_size;	/* in frames */
439	unsigned int shift;
440	unsigned int ch;	/* channel (0/1) */
441	unsigned int offset;	/* physical address of the buffer */
442};
443
444/* mixer elements toggled/resumed during ac3 playback */
445struct cmipci_mixer_auto_switches {
446	const char *name;	/* switch to toggle */
447	int toggle_on;		/* value to change when ac3 mode */
448};
449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450	{"PCM Playback Switch", 0},
451	{"IEC958 Output Switch", 1},
452	{"IEC958 Mix Analog", 0},
453	// {"IEC958 Out To DAC", 1}, // no longer used
454	{"IEC958 Loop", 0},
455};
456#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
457
458struct cmipci {
459	struct snd_card *card;
460
461	struct pci_dev *pci;
462	unsigned int device;	/* device ID */
463	int irq;
464
465	unsigned long iobase;
466	unsigned int ctrl;	/* FUNCTRL0 current value */
467
468	struct snd_pcm *pcm;		/* DAC/ADC PCM */
469	struct snd_pcm *pcm2;	/* 2nd DAC */
470	struct snd_pcm *pcm_spdif;	/* SPDIF */
471
472	int chip_version;
473	int max_channels;
474	unsigned int can_ac3_sw: 1;
475	unsigned int can_ac3_hw: 1;
476	unsigned int can_multi_ch: 1;
477	unsigned int can_96k: 1;	/* samplerate above 48k */
478	unsigned int do_soft_ac3: 1;
479
480	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
481	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
482	int spdif_counter;	/* for software AC3 */
483
484	unsigned int dig_status;
485	unsigned int dig_pcm_status;
486
487	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488
489	int opened[2];	/* open mode */
490	struct mutex open_mutex;
491
492	unsigned int mixer_insensitive: 1;
493	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494	int mixer_res_status[CM_SAVED_MIXERS];
495
496	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
497
498	/* external MIDI */
499	struct snd_rawmidi *rmidi;
500
501#ifdef SUPPORT_JOYSTICK
502	struct gameport *gameport;
503#endif
504
505	spinlock_t reg_lock;
506
507#ifdef CONFIG_PM
508	unsigned int saved_regs[0x20];
509	unsigned char saved_mixers[0x20];
510#endif
511};
512
513
514/* read/write operations for dword register */
515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516{
517	outl(data, cm->iobase + cmd);
518}
519
520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521{
522	return inl(cm->iobase + cmd);
523}
524
525/* read/write operations for word register */
526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527{
528	outw(data, cm->iobase + cmd);
529}
530
531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532{
533	return inw(cm->iobase + cmd);
534}
535
536/* read/write operations for byte register */
537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538{
539	outb(data, cm->iobase + cmd);
540}
541
542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543{
544	return inb(cm->iobase + cmd);
545}
546
547/* bit operations for dword register */
548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549{
550	unsigned int val, oval;
551	val = oval = inl(cm->iobase + cmd);
552	val |= flag;
553	if (val == oval)
554		return 0;
555	outl(val, cm->iobase + cmd);
556	return 1;
557}
558
559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560{
561	unsigned int val, oval;
562	val = oval = inl(cm->iobase + cmd);
563	val &= ~flag;
564	if (val == oval)
565		return 0;
566	outl(val, cm->iobase + cmd);
567	return 1;
568}
569
570/* bit operations for byte register */
571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572{
573	unsigned char val, oval;
574	val = oval = inb(cm->iobase + cmd);
575	val |= flag;
576	if (val == oval)
577		return 0;
578	outb(val, cm->iobase + cmd);
579	return 1;
580}
581
582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583{
584	unsigned char val, oval;
585	val = oval = inb(cm->iobase + cmd);
586	val &= ~flag;
587	if (val == oval)
588		return 0;
589	outb(val, cm->iobase + cmd);
590	return 1;
591}
592
593
594/*
595 * PCM interface
596 */
597
598/*
599 * calculate frequency
600 */
601
602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603
604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605{
606	unsigned int i;
607
608	for (i = 0; i < ARRAY_SIZE(rates); i++) {
609		if (rates[i] == rate)
610			return i;
611	}
612	snd_BUG();
613	return 0;
614}
615
616#ifdef USE_VAR48KRATE
617/*
618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619 * does it this way .. maybe not.  Never get any information from C-Media about
620 * that <werner@suse.de>.
621 */
622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623{
624	unsigned int delta, tolerance;
625	int xm, xn, xr;
626
627	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628		rate <<= 1;
629	*n = -1;
630	if (*r > 0xff)
631		goto out;
632	tolerance = rate*CM_TOLERANCE_RATE;
633
634	for (xn = (1+2); xn < (0x1f+2); xn++) {
635		for (xm = (1+2); xm < (0xff+2); xm++) {
636			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637
638			if (xr < rate)
639				delta = rate - xr;
640			else
641				delta = xr - rate;
642
643			/*
644			 * If we found one, remember this,
645			 * and try to find a closer one
646			 */
647			if (delta < tolerance) {
648				tolerance = delta;
649				*m = xm - 2;
650				*n = xn - 2;
651			}
652		}
653	}
654out:
655	return (*n > -1);
656}
657
658/*
659 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661 * at the register CM_REG_FUNCTRL1 (0x04).
662 * Problem: other ways are also possible (any information about that?)
663 */
664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665{
666	unsigned int reg = CM_REG_PLL + slot;
667	/*
668	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669	 * for DSFC/ASFC (000 up to 111).
670	 */
671
672	/* FIXME: Init (Do we've to set an other register first before programming?) */
673
674	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675	snd_cmipci_write_b(cm, reg, rate>>8);
676	snd_cmipci_write_b(cm, reg, rate&0xff);
677
678	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
679}
680#endif /* USE_VAR48KRATE */
681
682static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683				struct snd_pcm_hw_params *hw_params)
684{
685	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686}
687
688static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689					  struct snd_pcm_hw_params *hw_params)
690{
691	struct cmipci *cm = snd_pcm_substream_chip(substream);
692	if (params_channels(hw_params) > 2) {
693		mutex_lock(&cm->open_mutex);
694		if (cm->opened[CM_CH_PLAY]) {
695			mutex_unlock(&cm->open_mutex);
696			return -EBUSY;
697		}
698		/* reserve the channel A */
699		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700		mutex_unlock(&cm->open_mutex);
701	}
702	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703}
704
705static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706{
707	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710	udelay(10);
711}
712
713static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714{
715	return snd_pcm_lib_free_pages(substream);
716}
717
718
719/*
720 */
721
722static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724	.count = 3,
725	.list = hw_channels,
726	.mask = 0,
727};
728static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729	.count = 4,
730	.list = hw_channels,
731	.mask = 0,
732};
733static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734	.count = 5,
735	.list = hw_channels,
736	.mask = 0,
737};
738
739static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740{
741	if (channels > 2) {
742		if (!cm->can_multi_ch || !rec->ch)
743			return -EINVAL;
744		if (rec->fmt != 0x03) /* stereo 16bit only */
745			return -EINVAL;
746	}
747
748	if (cm->can_multi_ch) {
749		spin_lock_irq(&cm->reg_lock);
750		if (channels > 2) {
751			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753		} else {
754			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756		}
757		if (channels == 8)
758			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759		else
760			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761		if (channels == 6) {
762			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764		} else {
765			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767		}
768		if (channels == 4)
769			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770		else
771			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772		spin_unlock_irq(&cm->reg_lock);
773	}
774	return 0;
775}
776
777
778/*
779 * prepare playback/capture channel
780 * channel to be used must have been set in rec->ch.
781 */
782static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783				 struct snd_pcm_substream *substream)
784{
785	unsigned int reg, freq, freq_ext, val;
786	unsigned int period_size;
787	struct snd_pcm_runtime *runtime = substream->runtime;
788
789	rec->fmt = 0;
790	rec->shift = 0;
791	if (snd_pcm_format_width(runtime->format) >= 16) {
792		rec->fmt |= 0x02;
793		if (snd_pcm_format_width(runtime->format) > 16)
794			rec->shift++; /* 24/32bit */
795	}
796	if (runtime->channels > 1)
797		rec->fmt |= 0x01;
798	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799		snd_printd("cannot set dac channels\n");
800		return -EINVAL;
801	}
802
803	rec->offset = runtime->dma_addr;
804	/* buffer and period sizes in frame */
805	rec->dma_size = runtime->buffer_size << rec->shift;
806	period_size = runtime->period_size << rec->shift;
807	if (runtime->channels > 2) {
808		/* multi-channels */
809		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810		period_size = (period_size * runtime->channels) / 2;
811	}
812
813	spin_lock_irq(&cm->reg_lock);
814
815	/* set buffer address */
816	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817	snd_cmipci_write(cm, reg, rec->offset);
818	/* program sample counts */
819	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822
823	/* set adc/dac flag */
824	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825	if (rec->is_dac)
826		cm->ctrl &= ~val;
827	else
828		cm->ctrl |= val;
829	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830	//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
831
832	/* set sample rate */
833	freq = 0;
834	freq_ext = 0;
835	if (runtime->rate > 48000)
836		switch (runtime->rate) {
837		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
838		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
839		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840		default:     snd_BUG(); break;
841		}
842	else
843		freq = snd_cmipci_rate_freq(runtime->rate);
844	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845	if (rec->ch) {
846		val &= ~CM_DSFC_MASK;
847		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848	} else {
849		val &= ~CM_ASFC_MASK;
850		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851	}
852	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853	//snd_printd("cmipci: functrl1 = %08x\n", val);
854
855	/* set format */
856	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857	if (rec->ch) {
858		val &= ~CM_CH1FMT_MASK;
859		val |= rec->fmt << CM_CH1FMT_SHIFT;
860	} else {
861		val &= ~CM_CH0FMT_MASK;
862		val |= rec->fmt << CM_CH0FMT_SHIFT;
863	}
864	if (cm->can_96k) {
865		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866		val |= freq_ext << (rec->ch * 2);
867	}
868	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869	//snd_printd("cmipci: chformat = %08x\n", val);
870
871	if (!rec->is_dac && cm->chip_version) {
872		if (runtime->rate > 44100)
873			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874		else
875			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876	}
877
878	rec->running = 0;
879	spin_unlock_irq(&cm->reg_lock);
880
881	return 0;
882}
883
884/*
885 * PCM trigger/stop
886 */
887static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888				  int cmd)
889{
890	unsigned int inthld, chen, reset, pause;
891	int result = 0;
892
893	inthld = CM_CH0_INT_EN << rec->ch;
894	chen = CM_CHEN0 << rec->ch;
895	reset = CM_RST_CH0 << rec->ch;
896	pause = CM_PAUSE0 << rec->ch;
897
898	spin_lock(&cm->reg_lock);
899	switch (cmd) {
900	case SNDRV_PCM_TRIGGER_START:
901		rec->running = 1;
902		/* set interrupt */
903		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904		cm->ctrl |= chen;
905		/* enable channel */
906		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907		//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
908		break;
909	case SNDRV_PCM_TRIGGER_STOP:
910		rec->running = 0;
911		/* disable interrupt */
912		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913		/* reset */
914		cm->ctrl &= ~chen;
915		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917		rec->needs_silencing = rec->is_dac;
918		break;
919	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920	case SNDRV_PCM_TRIGGER_SUSPEND:
921		cm->ctrl |= pause;
922		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923		break;
924	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925	case SNDRV_PCM_TRIGGER_RESUME:
926		cm->ctrl &= ~pause;
927		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928		break;
929	default:
930		result = -EINVAL;
931		break;
932	}
933	spin_unlock(&cm->reg_lock);
934	return result;
935}
936
937/*
938 * return the current pointer
939 */
940static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941						struct snd_pcm_substream *substream)
942{
943	size_t ptr;
944	unsigned int reg, rem, tries;
945
946	if (!rec->running)
947		return 0;
948#if 1 // this seems better..
949	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950	for (tries = 0; tries < 3; tries++) {
951		rem = snd_cmipci_read_w(cm, reg);
952		if (rem < rec->dma_size)
953			goto ok;
954	}
955	printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
956	return SNDRV_PCM_POS_XRUN;
957ok:
958	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959#else
960	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961	ptr = snd_cmipci_read(cm, reg) - rec->offset;
962	ptr = bytes_to_frames(substream->runtime, ptr);
963#endif
964	if (substream->runtime->channels > 2)
965		ptr = (ptr * 2) / substream->runtime->channels;
966	return ptr;
967}
968
969/*
970 * playback
971 */
972
973static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974				       int cmd)
975{
976	struct cmipci *cm = snd_pcm_substream_chip(substream);
977	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978}
979
980static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981{
982	struct cmipci *cm = snd_pcm_substream_chip(substream);
983	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984}
985
986
987
988/*
989 * capture
990 */
991
992static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993				     int cmd)
994{
995	struct cmipci *cm = snd_pcm_substream_chip(substream);
996	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997}
998
999static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000{
1001	struct cmipci *cm = snd_pcm_substream_chip(substream);
1002	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003}
1004
1005
1006/*
1007 * hw preparation for spdif
1008 */
1009
1010static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011					 struct snd_ctl_elem_info *uinfo)
1012{
1013	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014	uinfo->count = 1;
1015	return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019					struct snd_ctl_elem_value *ucontrol)
1020{
1021	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022	int i;
1023
1024	spin_lock_irq(&chip->reg_lock);
1025	for (i = 0; i < 4; i++)
1026		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027	spin_unlock_irq(&chip->reg_lock);
1028	return 0;
1029}
1030
1031static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032					 struct snd_ctl_elem_value *ucontrol)
1033{
1034	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035	int i, change;
1036	unsigned int val;
1037
1038	val = 0;
1039	spin_lock_irq(&chip->reg_lock);
1040	for (i = 0; i < 4; i++)
1041		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042	change = val != chip->dig_status;
1043	chip->dig_status = val;
1044	spin_unlock_irq(&chip->reg_lock);
1045	return change;
1046}
1047
1048static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1049{
1050	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1051	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052	.info =		snd_cmipci_spdif_default_info,
1053	.get =		snd_cmipci_spdif_default_get,
1054	.put =		snd_cmipci_spdif_default_put
1055};
1056
1057static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058				      struct snd_ctl_elem_info *uinfo)
1059{
1060	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061	uinfo->count = 1;
1062	return 0;
1063}
1064
1065static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066				     struct snd_ctl_elem_value *ucontrol)
1067{
1068	ucontrol->value.iec958.status[0] = 0xff;
1069	ucontrol->value.iec958.status[1] = 0xff;
1070	ucontrol->value.iec958.status[2] = 0xff;
1071	ucontrol->value.iec958.status[3] = 0xff;
1072	return 0;
1073}
1074
1075static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1076{
1077	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1078	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1079	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080	.info =		snd_cmipci_spdif_mask_info,
1081	.get =		snd_cmipci_spdif_mask_get,
1082};
1083
1084static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085					struct snd_ctl_elem_info *uinfo)
1086{
1087	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088	uinfo->count = 1;
1089	return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093				       struct snd_ctl_elem_value *ucontrol)
1094{
1095	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096	int i;
1097
1098	spin_lock_irq(&chip->reg_lock);
1099	for (i = 0; i < 4; i++)
1100		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101	spin_unlock_irq(&chip->reg_lock);
1102	return 0;
1103}
1104
1105static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106				       struct snd_ctl_elem_value *ucontrol)
1107{
1108	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109	int i, change;
1110	unsigned int val;
1111
1112	val = 0;
1113	spin_lock_irq(&chip->reg_lock);
1114	for (i = 0; i < 4; i++)
1115		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116	change = val != chip->dig_pcm_status;
1117	chip->dig_pcm_status = val;
1118	spin_unlock_irq(&chip->reg_lock);
1119	return change;
1120}
1121
1122static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1123{
1124	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1126	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127	.info =		snd_cmipci_spdif_stream_info,
1128	.get =		snd_cmipci_spdif_stream_get,
1129	.put =		snd_cmipci_spdif_stream_put
1130};
1131
1132/*
1133 */
1134
1135/* save mixer setting and mute for AC3 playback */
1136static int save_mixer_state(struct cmipci *cm)
1137{
1138	if (! cm->mixer_insensitive) {
1139		struct snd_ctl_elem_value *val;
1140		unsigned int i;
1141
1142		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143		if (!val)
1144			return -ENOMEM;
1145		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147			if (ctl) {
1148				int event;
1149				memset(val, 0, sizeof(*val));
1150				ctl->get(ctl, val);
1151				cm->mixer_res_status[i] = val->value.integer.value[0];
1152				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153				event = SNDRV_CTL_EVENT_MASK_INFO;
1154				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155					ctl->put(ctl, val); /* toggle */
1156					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157				}
1158				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159				snd_ctl_notify(cm->card, event, &ctl->id);
1160			}
1161		}
1162		kfree(val);
1163		cm->mixer_insensitive = 1;
1164	}
1165	return 0;
1166}
1167
1168
1169/* restore the previously saved mixer status */
1170static void restore_mixer_state(struct cmipci *cm)
1171{
1172	if (cm->mixer_insensitive) {
1173		struct snd_ctl_elem_value *val;
1174		unsigned int i;
1175
1176		val = kmalloc(sizeof(*val), GFP_KERNEL);
1177		if (!val)
1178			return;
1179		cm->mixer_insensitive = 0; /* at first clear this;
1180					      otherwise the changes will be ignored */
1181		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183			if (ctl) {
1184				int event;
1185
1186				memset(val, 0, sizeof(*val));
1187				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188				ctl->get(ctl, val);
1189				event = SNDRV_CTL_EVENT_MASK_INFO;
1190				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191					val->value.integer.value[0] = cm->mixer_res_status[i];
1192					ctl->put(ctl, val);
1193					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194				}
1195				snd_ctl_notify(cm->card, event, &ctl->id);
1196			}
1197		}
1198		kfree(val);
1199	}
1200}
1201
1202/* spinlock held! */
1203static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204{
1205	if (do_ac3) {
1206		/* AC3EN for 037 */
1207		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208		/* AC3EN for 039 */
1209		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210
1211		if (cm->can_ac3_hw) {
1212			/* SPD24SEL for 037, 0x02 */
1213			/* SPD24SEL for 039, 0x20, but cannot be set */
1214			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216		} else { /* can_ac3_sw */
1217			/* SPD32SEL for 037 & 039, 0x20 */
1218			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219			/* set 176K sample rate to fix 033 HW bug */
1220			if (cm->chip_version == 33) {
1221				if (rate >= 48000) {
1222					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223				} else {
1224					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225				}
1226			}
1227		}
1228
1229	} else {
1230		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233		if (cm->can_ac3_hw) {
1234			/* chip model >= 37 */
1235			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238			} else {
1239				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241			}
1242		} else {
1243			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246		}
1247	}
1248}
1249
1250static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251{
1252	int rate, err;
1253
1254	rate = subs->runtime->rate;
1255
1256	if (up && do_ac3)
1257		if ((err = save_mixer_state(cm)) < 0)
1258			return err;
1259
1260	spin_lock_irq(&cm->reg_lock);
1261	cm->spdif_playback_avail = up;
1262	if (up) {
1263		/* they are controlled via "IEC958 Output Switch" */
1264		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266		if (cm->spdif_playback_enabled)
1267			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268		setup_ac3(cm, subs, do_ac3, rate);
1269
1270		if (rate == 48000 || rate == 96000)
1271			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272		else
1273			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274		if (rate > 48000)
1275			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276		else
1277			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278	} else {
1279		/* they are controlled via "IEC958 Output Switch" */
1280		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284		setup_ac3(cm, subs, 0, 0);
1285	}
1286	spin_unlock_irq(&cm->reg_lock);
1287	return 0;
1288}
1289
1290
1291/*
1292 * preparation
1293 */
1294
1295/* playback - enable spdif only on the certain condition */
1296static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297{
1298	struct cmipci *cm = snd_pcm_substream_chip(substream);
1299	int rate = substream->runtime->rate;
1300	int err, do_spdif, do_ac3 = 0;
1301
1302	do_spdif = (rate >= 44100 && rate <= 96000 &&
1303		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304		    substream->runtime->channels == 2);
1305	if (do_spdif && cm->can_ac3_hw)
1306		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308		return err;
1309	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310}
1311
1312/* playback  (via device #2) - enable spdif always */
1313static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314{
1315	struct cmipci *cm = snd_pcm_substream_chip(substream);
1316	int err, do_ac3;
1317
1318	if (cm->can_ac3_hw)
1319		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320	else
1321		do_ac3 = 1; /* doesn't matter */
1322	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323		return err;
1324	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325}
1326
1327/*
1328 * Apparently, the samples last played on channel A stay in some buffer, even
1329 * after the channel is reset, and get added to the data for the rear DACs when
1330 * playing a multichannel stream on channel B.  This is likely to generate
1331 * wraparounds and thus distortions.
1332 * To avoid this, we play at least one zero sample after the actual stream has
1333 * stopped.
1334 */
1335static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336{
1337	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338	unsigned int reg, val;
1339
1340	if (rec->needs_silencing && runtime && runtime->dma_area) {
1341		/* set up a small silence buffer */
1342		memset(runtime->dma_area, 0, PAGE_SIZE);
1343		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345		snd_cmipci_write(cm, reg, val);
1346
1347		/* configure for 16 bits, 2 channels, 8 kHz */
1348		if (runtime->channels > 2)
1349			set_dac_channels(cm, rec, 2);
1350		spin_lock_irq(&cm->reg_lock);
1351		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358		if (cm->can_96k)
1359			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361
1362		/* start stream (we don't need interrupts) */
1363		cm->ctrl |= CM_CHEN0 << rec->ch;
1364		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365		spin_unlock_irq(&cm->reg_lock);
1366
1367		msleep(1);
1368
1369		/* stop and reset stream */
1370		spin_lock_irq(&cm->reg_lock);
1371		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372		val = CM_RST_CH0 << rec->ch;
1373		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375		spin_unlock_irq(&cm->reg_lock);
1376
1377		rec->needs_silencing = 0;
1378	}
1379}
1380
1381static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382{
1383	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384	setup_spdif_playback(cm, substream, 0, 0);
1385	restore_mixer_state(cm);
1386	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387	return snd_cmipci_hw_free(substream);
1388}
1389
1390static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391{
1392	struct cmipci *cm = snd_pcm_substream_chip(substream);
1393	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394	return snd_cmipci_hw_free(substream);
1395}
1396
1397/* capture */
1398static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399{
1400	struct cmipci *cm = snd_pcm_substream_chip(substream);
1401	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402}
1403
1404/* capture with spdif (via device #2) */
1405static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406{
1407	struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409	spin_lock_irq(&cm->reg_lock);
1410	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411	if (cm->can_96k) {
1412		if (substream->runtime->rate > 48000)
1413			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414		else
1415			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416	}
1417	if (snd_pcm_format_width(substream->runtime->format) > 16)
1418		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419	else
1420		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422	spin_unlock_irq(&cm->reg_lock);
1423
1424	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425}
1426
1427static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428{
1429	struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431	spin_lock_irq(&cm->reg_lock);
1432	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434	spin_unlock_irq(&cm->reg_lock);
1435
1436	return snd_cmipci_hw_free(subs);
1437}
1438
1439
1440/*
1441 * interrupt handler
1442 */
1443static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444{
1445	struct cmipci *cm = dev_id;
1446	unsigned int status, mask = 0;
1447
1448	/* fastpath out, to ease interrupt sharing */
1449	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450	if (!(status & CM_INTR))
1451		return IRQ_NONE;
1452
1453	/* acknowledge interrupt */
1454	spin_lock(&cm->reg_lock);
1455	if (status & CM_CHINT0)
1456		mask |= CM_CH0_INT_EN;
1457	if (status & CM_CHINT1)
1458		mask |= CM_CH1_INT_EN;
1459	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461	spin_unlock(&cm->reg_lock);
1462
1463	if (cm->rmidi && (status & CM_UARTINT))
1464		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466	if (cm->pcm) {
1467		if ((status & CM_CHINT0) && cm->channel[0].running)
1468			snd_pcm_period_elapsed(cm->channel[0].substream);
1469		if ((status & CM_CHINT1) && cm->channel[1].running)
1470			snd_pcm_period_elapsed(cm->channel[1].substream);
1471	}
1472	return IRQ_HANDLED;
1473}
1474
1475/*
1476 * h/w infos
1477 */
1478
1479/* playback on channel A */
1480static struct snd_pcm_hardware snd_cmipci_playback =
1481{
1482	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487	.rate_min =		5512,
1488	.rate_max =		48000,
1489	.channels_min =		1,
1490	.channels_max =		2,
1491	.buffer_bytes_max =	(128*1024),
1492	.period_bytes_min =	64,
1493	.period_bytes_max =	(128*1024),
1494	.periods_min =		2,
1495	.periods_max =		1024,
1496	.fifo_size =		0,
1497};
1498
1499/* capture on channel B */
1500static struct snd_pcm_hardware snd_cmipci_capture =
1501{
1502	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507	.rate_min =		5512,
1508	.rate_max =		48000,
1509	.channels_min =		1,
1510	.channels_max =		2,
1511	.buffer_bytes_max =	(128*1024),
1512	.period_bytes_min =	64,
1513	.period_bytes_max =	(128*1024),
1514	.periods_min =		2,
1515	.periods_max =		1024,
1516	.fifo_size =		0,
1517};
1518
1519/* playback on channel B - stereo 16bit only? */
1520static struct snd_pcm_hardware snd_cmipci_playback2 =
1521{
1522	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1526	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527	.rate_min =		5512,
1528	.rate_max =		48000,
1529	.channels_min =		2,
1530	.channels_max =		2,
1531	.buffer_bytes_max =	(128*1024),
1532	.period_bytes_min =	64,
1533	.period_bytes_max =	(128*1024),
1534	.periods_min =		2,
1535	.periods_max =		1024,
1536	.fifo_size =		0,
1537};
1538
1539/* spdif playback on channel A */
1540static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541{
1542	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1546	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547	.rate_min =		44100,
1548	.rate_max =		48000,
1549	.channels_min =		2,
1550	.channels_max =		2,
1551	.buffer_bytes_max =	(128*1024),
1552	.period_bytes_min =	64,
1553	.period_bytes_max =	(128*1024),
1554	.periods_min =		2,
1555	.periods_max =		1024,
1556	.fifo_size =		0,
1557};
1558
1559/* spdif playback on channel A (32bit, IEC958 subframes) */
1560static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561{
1562	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567	.rate_min =		44100,
1568	.rate_max =		48000,
1569	.channels_min =		2,
1570	.channels_max =		2,
1571	.buffer_bytes_max =	(128*1024),
1572	.period_bytes_min =	64,
1573	.period_bytes_max =	(128*1024),
1574	.periods_min =		2,
1575	.periods_max =		1024,
1576	.fifo_size =		0,
1577};
1578
1579/* spdif capture on channel B */
1580static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581{
1582	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1586				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588	.rate_min =		44100,
1589	.rate_max =		48000,
1590	.channels_min =		2,
1591	.channels_max =		2,
1592	.buffer_bytes_max =	(128*1024),
1593	.period_bytes_min =	64,
1594	.period_bytes_max =	(128*1024),
1595	.periods_min =		2,
1596	.periods_max =		1024,
1597	.fifo_size =		0,
1598};
1599
1600static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601			32000, 44100, 48000, 88200, 96000, 128000 };
1602static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603		.count = ARRAY_SIZE(rate_constraints),
1604		.list = rate_constraints,
1605		.mask = 0,
1606};
1607
1608/*
1609 * check device open/close
1610 */
1611static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612{
1613	int ch = mode & CM_OPEN_CH_MASK;
1614
1615	/* FIXME: a file should wait until the device becomes free
1616	 * when it's opened on blocking mode.  however, since the current
1617	 * pcm framework doesn't pass file pointer before actually opened,
1618	 * we can't know whether blocking mode or not in open callback..
1619	 */
1620	mutex_lock(&cm->open_mutex);
1621	if (cm->opened[ch]) {
1622		mutex_unlock(&cm->open_mutex);
1623		return -EBUSY;
1624	}
1625	cm->opened[ch] = mode;
1626	cm->channel[ch].substream = subs;
1627	if (! (mode & CM_OPEN_DAC)) {
1628		/* disable dual DAC mode */
1629		cm->channel[ch].is_dac = 0;
1630		spin_lock_irq(&cm->reg_lock);
1631		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632		spin_unlock_irq(&cm->reg_lock);
1633	}
1634	mutex_unlock(&cm->open_mutex);
1635	return 0;
1636}
1637
1638static void close_device_check(struct cmipci *cm, int mode)
1639{
1640	int ch = mode & CM_OPEN_CH_MASK;
1641
1642	mutex_lock(&cm->open_mutex);
1643	if (cm->opened[ch] == mode) {
1644		if (cm->channel[ch].substream) {
1645			snd_cmipci_ch_reset(cm, ch);
1646			cm->channel[ch].running = 0;
1647			cm->channel[ch].substream = NULL;
1648		}
1649		cm->opened[ch] = 0;
1650		if (! cm->channel[ch].is_dac) {
1651			/* enable dual DAC mode again */
1652			cm->channel[ch].is_dac = 1;
1653			spin_lock_irq(&cm->reg_lock);
1654			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655			spin_unlock_irq(&cm->reg_lock);
1656		}
1657	}
1658	mutex_unlock(&cm->open_mutex);
1659}
1660
1661/*
1662 */
1663
1664static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665{
1666	struct cmipci *cm = snd_pcm_substream_chip(substream);
1667	struct snd_pcm_runtime *runtime = substream->runtime;
1668	int err;
1669
1670	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671		return err;
1672	runtime->hw = snd_cmipci_playback;
1673	if (cm->chip_version == 68) {
1674		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675				     SNDRV_PCM_RATE_96000;
1676		runtime->hw.rate_max = 96000;
1677	} else if (cm->chip_version == 55) {
1678		err = snd_pcm_hw_constraint_list(runtime, 0,
1679			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680		if (err < 0)
1681			return err;
1682		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683		runtime->hw.rate_max = 128000;
1684	}
1685	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686	cm->dig_pcm_status = cm->dig_status;
1687	return 0;
1688}
1689
1690static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691{
1692	struct cmipci *cm = snd_pcm_substream_chip(substream);
1693	struct snd_pcm_runtime *runtime = substream->runtime;
1694	int err;
1695
1696	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697		return err;
1698	runtime->hw = snd_cmipci_capture;
1699	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1700		runtime->hw.rate_min = 41000;
1701		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702	} else if (cm->chip_version == 55) {
1703		err = snd_pcm_hw_constraint_list(runtime, 0,
1704			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705		if (err < 0)
1706			return err;
1707		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708		runtime->hw.rate_max = 128000;
1709	}
1710	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711	return 0;
1712}
1713
1714static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715{
1716	struct cmipci *cm = snd_pcm_substream_chip(substream);
1717	struct snd_pcm_runtime *runtime = substream->runtime;
1718	int err;
1719
1720	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721		return err;
1722	runtime->hw = snd_cmipci_playback2;
1723	mutex_lock(&cm->open_mutex);
1724	if (! cm->opened[CM_CH_PLAY]) {
1725		if (cm->can_multi_ch) {
1726			runtime->hw.channels_max = cm->max_channels;
1727			if (cm->max_channels == 4)
1728				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729			else if (cm->max_channels == 6)
1730				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731			else if (cm->max_channels == 8)
1732				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733		}
1734	}
1735	mutex_unlock(&cm->open_mutex);
1736	if (cm->chip_version == 68) {
1737		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738				     SNDRV_PCM_RATE_96000;
1739		runtime->hw.rate_max = 96000;
1740	} else if (cm->chip_version == 55) {
1741		err = snd_pcm_hw_constraint_list(runtime, 0,
1742			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743		if (err < 0)
1744			return err;
1745		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746		runtime->hw.rate_max = 128000;
1747	}
1748	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749	return 0;
1750}
1751
1752static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753{
1754	struct cmipci *cm = snd_pcm_substream_chip(substream);
1755	struct snd_pcm_runtime *runtime = substream->runtime;
1756	int err;
1757
1758	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759		return err;
1760	if (cm->can_ac3_hw) {
1761		runtime->hw = snd_cmipci_playback_spdif;
1762		if (cm->chip_version >= 37) {
1763			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765		}
1766		if (cm->can_96k) {
1767			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768					     SNDRV_PCM_RATE_96000;
1769			runtime->hw.rate_max = 96000;
1770		}
1771	} else {
1772		runtime->hw = snd_cmipci_playback_iec958_subframe;
1773	}
1774	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775	cm->dig_pcm_status = cm->dig_status;
1776	return 0;
1777}
1778
1779static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780{
1781	struct cmipci *cm = snd_pcm_substream_chip(substream);
1782	struct snd_pcm_runtime *runtime = substream->runtime;
1783	int err;
1784
1785	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786		return err;
1787	runtime->hw = snd_cmipci_capture_spdif;
1788	if (cm->can_96k && !(cm->chip_version == 68)) {
1789		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790				     SNDRV_PCM_RATE_96000;
1791		runtime->hw.rate_max = 96000;
1792	}
1793	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794	return 0;
1795}
1796
1797
1798/*
1799 */
1800
1801static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802{
1803	struct cmipci *cm = snd_pcm_substream_chip(substream);
1804	close_device_check(cm, CM_OPEN_PLAYBACK);
1805	return 0;
1806}
1807
1808static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809{
1810	struct cmipci *cm = snd_pcm_substream_chip(substream);
1811	close_device_check(cm, CM_OPEN_CAPTURE);
1812	return 0;
1813}
1814
1815static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816{
1817	struct cmipci *cm = snd_pcm_substream_chip(substream);
1818	close_device_check(cm, CM_OPEN_PLAYBACK2);
1819	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820	return 0;
1821}
1822
1823static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824{
1825	struct cmipci *cm = snd_pcm_substream_chip(substream);
1826	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827	return 0;
1828}
1829
1830static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831{
1832	struct cmipci *cm = snd_pcm_substream_chip(substream);
1833	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834	return 0;
1835}
1836
1837
1838/*
1839 */
1840
1841static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842	.open =		snd_cmipci_playback_open,
1843	.close =	snd_cmipci_playback_close,
1844	.ioctl =	snd_pcm_lib_ioctl,
1845	.hw_params =	snd_cmipci_hw_params,
1846	.hw_free =	snd_cmipci_playback_hw_free,
1847	.prepare =	snd_cmipci_playback_prepare,
1848	.trigger =	snd_cmipci_playback_trigger,
1849	.pointer =	snd_cmipci_playback_pointer,
1850};
1851
1852static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853	.open =		snd_cmipci_capture_open,
1854	.close =	snd_cmipci_capture_close,
1855	.ioctl =	snd_pcm_lib_ioctl,
1856	.hw_params =	snd_cmipci_hw_params,
1857	.hw_free =	snd_cmipci_hw_free,
1858	.prepare =	snd_cmipci_capture_prepare,
1859	.trigger =	snd_cmipci_capture_trigger,
1860	.pointer =	snd_cmipci_capture_pointer,
1861};
1862
1863static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864	.open =		snd_cmipci_playback2_open,
1865	.close =	snd_cmipci_playback2_close,
1866	.ioctl =	snd_pcm_lib_ioctl,
1867	.hw_params =	snd_cmipci_playback2_hw_params,
1868	.hw_free =	snd_cmipci_playback2_hw_free,
1869	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1870	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1871	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1872};
1873
1874static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875	.open =		snd_cmipci_playback_spdif_open,
1876	.close =	snd_cmipci_playback_spdif_close,
1877	.ioctl =	snd_pcm_lib_ioctl,
1878	.hw_params =	snd_cmipci_hw_params,
1879	.hw_free =	snd_cmipci_playback_hw_free,
1880	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1881	.trigger =	snd_cmipci_playback_trigger,
1882	.pointer =	snd_cmipci_playback_pointer,
1883};
1884
1885static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886	.open =		snd_cmipci_capture_spdif_open,
1887	.close =	snd_cmipci_capture_spdif_close,
1888	.ioctl =	snd_pcm_lib_ioctl,
1889	.hw_params =	snd_cmipci_hw_params,
1890	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1891	.prepare =	snd_cmipci_capture_spdif_prepare,
1892	.trigger =	snd_cmipci_capture_trigger,
1893	.pointer =	snd_cmipci_capture_pointer,
1894};
1895
1896
1897/*
1898 */
1899
1900static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901{
1902	struct snd_pcm *pcm;
1903	int err;
1904
1905	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906	if (err < 0)
1907		return err;
1908
1909	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912	pcm->private_data = cm;
1913	pcm->info_flags = 0;
1914	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915	cm->pcm = pcm;
1916
1917	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920	return 0;
1921}
1922
1923static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924{
1925	struct snd_pcm *pcm;
1926	int err;
1927
1928	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929	if (err < 0)
1930		return err;
1931
1932	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934	pcm->private_data = cm;
1935	pcm->info_flags = 0;
1936	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937	cm->pcm2 = pcm;
1938
1939	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942	return 0;
1943}
1944
1945static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946{
1947	struct snd_pcm *pcm;
1948	int err;
1949
1950	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951	if (err < 0)
1952		return err;
1953
1954	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957	pcm->private_data = cm;
1958	pcm->info_flags = 0;
1959	strcpy(pcm->name, "C-Media PCI IEC958");
1960	cm->pcm_spdif = pcm;
1961
1962	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965	return 0;
1966}
1967
1968/*
1969 * mixer interface:
1970 * - CM8338/8738 has a compatible mixer interface with SB16, but
1971 *   lack of some elements like tone control, i/o gain and AGC.
1972 * - Access to native registers:
1973 *   - A 3D switch
1974 *   - Output mute switches
1975 */
1976
1977static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1978{
1979	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1980	outb(data, s->iobase + CM_REG_SB16_DATA);
1981}
1982
1983static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1984{
1985	unsigned char v;
1986
1987	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1988	v = inb(s->iobase + CM_REG_SB16_DATA);
1989	return v;
1990}
1991
1992/*
1993 * general mixer element
1994 */
1995struct cmipci_sb_reg {
1996	unsigned int left_reg, right_reg;
1997	unsigned int left_shift, right_shift;
1998	unsigned int mask;
1999	unsigned int invert: 1;
2000	unsigned int stereo: 1;
2001};
2002
2003#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2004 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2005
2006#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2007{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2008  .info = snd_cmipci_info_volume, \
2009  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2010  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2011}
2012
2013#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2014#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2015#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2016#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2017
2018static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2019{
2020	r->left_reg = val & 0xff;
2021	r->right_reg = (val >> 8) & 0xff;
2022	r->left_shift = (val >> 16) & 0x07;
2023	r->right_shift = (val >> 19) & 0x07;
2024	r->invert = (val >> 22) & 1;
2025	r->stereo = (val >> 23) & 1;
2026	r->mask = (val >> 24) & 0xff;
2027}
2028
2029static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2030				  struct snd_ctl_elem_info *uinfo)
2031{
2032	struct cmipci_sb_reg reg;
2033
2034	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2035	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2036	uinfo->count = reg.stereo + 1;
2037	uinfo->value.integer.min = 0;
2038	uinfo->value.integer.max = reg.mask;
2039	return 0;
2040}
2041
2042static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2043				 struct snd_ctl_elem_value *ucontrol)
2044{
2045	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2046	struct cmipci_sb_reg reg;
2047	int val;
2048
2049	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2050	spin_lock_irq(&cm->reg_lock);
2051	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2052	if (reg.invert)
2053		val = reg.mask - val;
2054	ucontrol->value.integer.value[0] = val;
2055	if (reg.stereo) {
2056		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2057		if (reg.invert)
2058			val = reg.mask - val;
2059		 ucontrol->value.integer.value[1] = val;
2060	}
2061	spin_unlock_irq(&cm->reg_lock);
2062	return 0;
2063}
2064
2065static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2066				 struct snd_ctl_elem_value *ucontrol)
2067{
2068	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2069	struct cmipci_sb_reg reg;
2070	int change;
2071	int left, right, oleft, oright;
2072
2073	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2074	left = ucontrol->value.integer.value[0] & reg.mask;
2075	if (reg.invert)
2076		left = reg.mask - left;
2077	left <<= reg.left_shift;
2078	if (reg.stereo) {
2079		right = ucontrol->value.integer.value[1] & reg.mask;
2080		if (reg.invert)
2081			right = reg.mask - right;
2082		right <<= reg.right_shift;
2083	} else
2084		right = 0;
2085	spin_lock_irq(&cm->reg_lock);
2086	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2087	left |= oleft & ~(reg.mask << reg.left_shift);
2088	change = left != oleft;
2089	if (reg.stereo) {
2090		if (reg.left_reg != reg.right_reg) {
2091			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2092			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2093		} else
2094			oright = left;
2095		right |= oright & ~(reg.mask << reg.right_shift);
2096		change |= right != oright;
2097		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2098	} else
2099		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2100	spin_unlock_irq(&cm->reg_lock);
2101	return change;
2102}
2103
2104/*
2105 * input route (left,right) -> (left,right)
2106 */
2107#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2108{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2109  .info = snd_cmipci_info_input_sw, \
2110  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2111  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2112}
2113
2114static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2115				    struct snd_ctl_elem_info *uinfo)
2116{
2117	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2118	uinfo->count = 4;
2119	uinfo->value.integer.min = 0;
2120	uinfo->value.integer.max = 1;
2121	return 0;
2122}
2123
2124static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2125				   struct snd_ctl_elem_value *ucontrol)
2126{
2127	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2128	struct cmipci_sb_reg reg;
2129	int val1, val2;
2130
2131	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2132	spin_lock_irq(&cm->reg_lock);
2133	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2134	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2135	spin_unlock_irq(&cm->reg_lock);
2136	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2137	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2138	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2139	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2140	return 0;
2141}
2142
2143static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2144				   struct snd_ctl_elem_value *ucontrol)
2145{
2146	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2147	struct cmipci_sb_reg reg;
2148	int change;
2149	int val1, val2, oval1, oval2;
2150
2151	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2152	spin_lock_irq(&cm->reg_lock);
2153	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2154	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2155	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2156	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2157	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2158	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2159	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2160	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2161	change = val1 != oval1 || val2 != oval2;
2162	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2163	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2164	spin_unlock_irq(&cm->reg_lock);
2165	return change;
2166}
2167
2168/*
2169 * native mixer switches/volumes
2170 */
2171
2172#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2173{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174  .info = snd_cmipci_info_native_mixer, \
2175  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2177}
2178
2179#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2180{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181  .info = snd_cmipci_info_native_mixer, \
2182  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2184}
2185
2186#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2187{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2188  .info = snd_cmipci_info_native_mixer, \
2189  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2190  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2191}
2192
2193#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2194{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2195  .info = snd_cmipci_info_native_mixer, \
2196  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2197  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2198}
2199
2200static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2201					struct snd_ctl_elem_info *uinfo)
2202{
2203	struct cmipci_sb_reg reg;
2204
2205	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2206	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2207	uinfo->count = reg.stereo + 1;
2208	uinfo->value.integer.min = 0;
2209	uinfo->value.integer.max = reg.mask;
2210	return 0;
2211
2212}
2213
2214static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2215				       struct snd_ctl_elem_value *ucontrol)
2216{
2217	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2218	struct cmipci_sb_reg reg;
2219	unsigned char oreg, val;
2220
2221	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2222	spin_lock_irq(&cm->reg_lock);
2223	oreg = inb(cm->iobase + reg.left_reg);
2224	val = (oreg >> reg.left_shift) & reg.mask;
2225	if (reg.invert)
2226		val = reg.mask - val;
2227	ucontrol->value.integer.value[0] = val;
2228	if (reg.stereo) {
2229		val = (oreg >> reg.right_shift) & reg.mask;
2230		if (reg.invert)
2231			val = reg.mask - val;
2232		ucontrol->value.integer.value[1] = val;
2233	}
2234	spin_unlock_irq(&cm->reg_lock);
2235	return 0;
2236}
2237
2238static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2239				       struct snd_ctl_elem_value *ucontrol)
2240{
2241	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2242	struct cmipci_sb_reg reg;
2243	unsigned char oreg, nreg, val;
2244
2245	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2246	spin_lock_irq(&cm->reg_lock);
2247	oreg = inb(cm->iobase + reg.left_reg);
2248	val = ucontrol->value.integer.value[0] & reg.mask;
2249	if (reg.invert)
2250		val = reg.mask - val;
2251	nreg = oreg & ~(reg.mask << reg.left_shift);
2252	nreg |= (val << reg.left_shift);
2253	if (reg.stereo) {
2254		val = ucontrol->value.integer.value[1] & reg.mask;
2255		if (reg.invert)
2256			val = reg.mask - val;
2257		nreg &= ~(reg.mask << reg.right_shift);
2258		nreg |= (val << reg.right_shift);
2259	}
2260	outb(nreg, cm->iobase + reg.left_reg);
2261	spin_unlock_irq(&cm->reg_lock);
2262	return (nreg != oreg);
2263}
2264
2265/*
2266 * special case - check mixer sensitivity
2267 */
2268static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2269						 struct snd_ctl_elem_value *ucontrol)
2270{
2271	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2272	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2273}
2274
2275static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2276						 struct snd_ctl_elem_value *ucontrol)
2277{
2278	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2279	if (cm->mixer_insensitive) {
2280		/* ignored */
2281		return 0;
2282	}
2283	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2284}
2285
2286
2287static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2288	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2289	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2290	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2291	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2292	{ /* switch with sensitivity */
2293		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2294		.name = "PCM Playback Switch",
2295		.info = snd_cmipci_info_native_mixer,
2296		.get = snd_cmipci_get_native_mixer_sensitive,
2297		.put = snd_cmipci_put_native_mixer_sensitive,
2298		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2299	},
2300	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2301	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2302	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2303	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2304	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2305	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2306	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2307	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2308	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2309	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2310	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2311	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2312	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2313	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2314	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2315	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2316	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2317	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2318	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2319	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2320	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2321	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2322	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2323};
2324
2325/*
2326 * other switches
2327 */
2328
2329struct cmipci_switch_args {
2330	int reg;		/* register index */
2331	unsigned int mask;	/* mask bits */
2332	unsigned int mask_on;	/* mask bits to turn on */
2333	unsigned int is_byte: 1;		/* byte access? */
2334	unsigned int ac3_sensitive: 1;	/* access forbidden during
2335					 * non-audio operation?
2336					 */
2337};
2338
2339#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2340
2341static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2342				   struct snd_ctl_elem_value *ucontrol,
2343				   struct cmipci_switch_args *args)
2344{
2345	unsigned int val;
2346	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2347
2348	spin_lock_irq(&cm->reg_lock);
2349	if (args->ac3_sensitive && cm->mixer_insensitive) {
2350		ucontrol->value.integer.value[0] = 0;
2351		spin_unlock_irq(&cm->reg_lock);
2352		return 0;
2353	}
2354	if (args->is_byte)
2355		val = inb(cm->iobase + args->reg);
2356	else
2357		val = snd_cmipci_read(cm, args->reg);
2358	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2359	spin_unlock_irq(&cm->reg_lock);
2360	return 0;
2361}
2362
2363static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2364				  struct snd_ctl_elem_value *ucontrol)
2365{
2366	struct cmipci_switch_args *args;
2367	args = (struct cmipci_switch_args *)kcontrol->private_value;
2368	if (snd_BUG_ON(!args))
2369		return -EINVAL;
2370	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2371}
2372
2373static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2374				   struct snd_ctl_elem_value *ucontrol,
2375				   struct cmipci_switch_args *args)
2376{
2377	unsigned int val;
2378	int change;
2379	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2380
2381	spin_lock_irq(&cm->reg_lock);
2382	if (args->ac3_sensitive && cm->mixer_insensitive) {
2383		/* ignored */
2384		spin_unlock_irq(&cm->reg_lock);
2385		return 0;
2386	}
2387	if (args->is_byte)
2388		val = inb(cm->iobase + args->reg);
2389	else
2390		val = snd_cmipci_read(cm, args->reg);
2391	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2392			args->mask_on : (args->mask & ~args->mask_on));
2393	if (change) {
2394		val &= ~args->mask;
2395		if (ucontrol->value.integer.value[0])
2396			val |= args->mask_on;
2397		else
2398			val |= (args->mask & ~args->mask_on);
2399		if (args->is_byte)
2400			outb((unsigned char)val, cm->iobase + args->reg);
2401		else
2402			snd_cmipci_write(cm, args->reg, val);
2403	}
2404	spin_unlock_irq(&cm->reg_lock);
2405	return change;
2406}
2407
2408static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2409				  struct snd_ctl_elem_value *ucontrol)
2410{
2411	struct cmipci_switch_args *args;
2412	args = (struct cmipci_switch_args *)kcontrol->private_value;
2413	if (snd_BUG_ON(!args))
2414		return -EINVAL;
2415	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2416}
2417
2418#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2419static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2420  .reg = xreg, \
2421  .mask = xmask, \
2422  .mask_on = xmask_on, \
2423  .is_byte = xis_byte, \
2424  .ac3_sensitive = xac3, \
2425}
2426
2427#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2428	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2429
2430#if 0 /* these will be controlled in pcm device */
2431DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2432DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2433#endif
2434DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2435DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2436DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2437DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2438DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2439DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2440DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2441DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2442// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2443DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2444DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2445/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2446DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2447DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2448#if CM_CH_PLAY == 1
2449DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2450#else
2451DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2452#endif
2453DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2454// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2455// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2456// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2457DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2458
2459#define DEFINE_SWITCH(sname, stype, sarg) \
2460{ .name = sname, \
2461  .iface = stype, \
2462  .info = snd_cmipci_uswitch_info, \
2463  .get = snd_cmipci_uswitch_get, \
2464  .put = snd_cmipci_uswitch_put, \
2465  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2466}
2467
2468#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2469#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2470
2471
2472/*
2473 * callbacks for spdif output switch
2474 * needs toggle two registers..
2475 */
2476static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2477					struct snd_ctl_elem_value *ucontrol)
2478{
2479	int changed;
2480	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2481	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2482	return changed;
2483}
2484
2485static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2486					struct snd_ctl_elem_value *ucontrol)
2487{
2488	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2489	int changed;
2490	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2491	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2492	if (changed) {
2493		if (ucontrol->value.integer.value[0]) {
2494			if (chip->spdif_playback_avail)
2495				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2496		} else {
2497			if (chip->spdif_playback_avail)
2498				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2499		}
2500	}
2501	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2502	return changed;
2503}
2504
2505
2506static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2507					struct snd_ctl_elem_info *uinfo)
2508{
2509	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2510	static const char *const texts[3] = {
2511		"Line-In", "Rear Output", "Bass Output"
2512	};
2513
2514	return snd_ctl_enum_info(uinfo, 1,
2515				 cm->chip_version >= 39 ? 3 : 2, texts);
2516}
2517
2518static inline unsigned int get_line_in_mode(struct cmipci *cm)
2519{
2520	unsigned int val;
2521	if (cm->chip_version >= 39) {
2522		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2523		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2524			return 2;
2525	}
2526	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2527	if (val & CM_REAR2LIN)
2528		return 1;
2529	return 0;
2530}
2531
2532static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2533				       struct snd_ctl_elem_value *ucontrol)
2534{
2535	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2536
2537	spin_lock_irq(&cm->reg_lock);
2538	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2539	spin_unlock_irq(&cm->reg_lock);
2540	return 0;
2541}
2542
2543static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2544				       struct snd_ctl_elem_value *ucontrol)
2545{
2546	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2547	int change;
2548
2549	spin_lock_irq(&cm->reg_lock);
2550	if (ucontrol->value.enumerated.item[0] == 2)
2551		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2552	else
2553		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2554	if (ucontrol->value.enumerated.item[0] == 1)
2555		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2556	else
2557		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2558	spin_unlock_irq(&cm->reg_lock);
2559	return change;
2560}
2561
2562static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2563				       struct snd_ctl_elem_info *uinfo)
2564{
2565	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2566
2567	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2568}
2569
2570static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2571				      struct snd_ctl_elem_value *ucontrol)
2572{
2573	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2574	/* same bit as spdi_phase */
2575	spin_lock_irq(&cm->reg_lock);
2576	ucontrol->value.enumerated.item[0] =
2577		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2578	spin_unlock_irq(&cm->reg_lock);
2579	return 0;
2580}
2581
2582static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2583				      struct snd_ctl_elem_value *ucontrol)
2584{
2585	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2586	int change;
2587
2588	spin_lock_irq(&cm->reg_lock);
2589	if (ucontrol->value.enumerated.item[0])
2590		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2591	else
2592		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2593	spin_unlock_irq(&cm->reg_lock);
2594	return change;
2595}
2596
2597/* both for CM8338/8738 */
2598static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2599	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2600	{
2601		.name = "Line-In Mode",
2602		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2603		.info = snd_cmipci_line_in_mode_info,
2604		.get = snd_cmipci_line_in_mode_get,
2605		.put = snd_cmipci_line_in_mode_put,
2606	},
2607};
2608
2609/* for non-multichannel chips */
2610static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2611DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2612
2613/* only for CM8738 */
2614static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2615#if 0 /* controlled in pcm device */
2616	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2617	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2618	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2619#endif
2620	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2621	{ .name = "IEC958 Output Switch",
2622	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2623	  .info = snd_cmipci_uswitch_info,
2624	  .get = snd_cmipci_spdout_enable_get,
2625	  .put = snd_cmipci_spdout_enable_put,
2626	},
2627	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2628	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2629	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2630//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2631	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2632	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2633};
2634
2635/* only for model 033/037 */
2636static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2637	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2638	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2639	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2640};
2641
2642/* only for model 039 or later */
2643static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2644	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2645	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2646	{
2647		.name = "Mic-In Mode",
2648		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2649		.info = snd_cmipci_mic_in_mode_info,
2650		.get = snd_cmipci_mic_in_mode_get,
2651		.put = snd_cmipci_mic_in_mode_put,
2652	}
2653};
2654
2655/* card control switches */
2656static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2657DEFINE_CARD_SWITCH("Modem", modem);
2658
2659
2660static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2661{
2662	struct snd_card *card;
2663	struct snd_kcontrol_new *sw;
2664	struct snd_kcontrol *kctl;
2665	unsigned int idx;
2666	int err;
2667
2668	if (snd_BUG_ON(!cm || !cm->card))
2669		return -EINVAL;
2670
2671	card = cm->card;
2672
2673	strcpy(card->mixername, "CMedia PCI");
2674
2675	spin_lock_irq(&cm->reg_lock);
2676	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2677	spin_unlock_irq(&cm->reg_lock);
2678
2679	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2680		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2681			if (!strcmp(snd_cmipci_mixers[idx].name,
2682				"PCM Playback Volume"))
2683				continue;
2684		}
2685		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2686			return err;
2687	}
2688
2689	/* mixer switches */
2690	sw = snd_cmipci_mixer_switches;
2691	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2692		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2693		if (err < 0)
2694			return err;
2695	}
2696	if (! cm->can_multi_ch) {
2697		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2698		if (err < 0)
2699			return err;
2700	}
2701	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2702	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2703		sw = snd_cmipci_8738_mixer_switches;
2704		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2705			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2706			if (err < 0)
2707				return err;
2708		}
2709		if (cm->can_ac3_hw) {
2710			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2711				return err;
2712			kctl->id.device = pcm_spdif_device;
2713			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2714				return err;
2715			kctl->id.device = pcm_spdif_device;
2716			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2717				return err;
2718			kctl->id.device = pcm_spdif_device;
2719		}
2720		if (cm->chip_version <= 37) {
2721			sw = snd_cmipci_old_mixer_switches;
2722			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2723				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2724				if (err < 0)
2725					return err;
2726			}
2727		}
2728	}
2729	if (cm->chip_version >= 39) {
2730		sw = snd_cmipci_extra_mixer_switches;
2731		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2732			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2733			if (err < 0)
2734				return err;
2735		}
2736	}
2737
2738	/* card switches */
2739	/*
2740	 * newer chips don't have the register bits to force modem link
2741	 * detection; the bit that was FLINKON now mutes CH1
2742	 */
2743	if (cm->chip_version < 39) {
2744		err = snd_ctl_add(cm->card,
2745				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2746		if (err < 0)
2747			return err;
2748	}
2749
2750	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2751		struct snd_ctl_elem_id elem_id;
2752		struct snd_kcontrol *ctl;
2753		memset(&elem_id, 0, sizeof(elem_id));
2754		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2755		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2756		ctl = snd_ctl_find_id(cm->card, &elem_id);
2757		if (ctl)
2758			cm->mixer_res_ctl[idx] = ctl;
2759	}
2760
2761	return 0;
2762}
2763
2764
2765/*
2766 * proc interface
2767 */
2768
2769#ifdef CONFIG_PROC_FS
2770static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2771				 struct snd_info_buffer *buffer)
2772{
2773	struct cmipci *cm = entry->private_data;
2774	int i, v;
2775
2776	snd_iprintf(buffer, "%s\n", cm->card->longname);
2777	for (i = 0; i < 0x94; i++) {
2778		if (i == 0x28)
2779			i = 0x90;
2780		v = inb(cm->iobase + i);
2781		if (i % 4 == 0)
2782			snd_iprintf(buffer, "\n%02x:", i);
2783		snd_iprintf(buffer, " %02x", v);
2784	}
2785	snd_iprintf(buffer, "\n");
2786}
2787
2788static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2789{
2790	struct snd_info_entry *entry;
2791
2792	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2793		snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2794}
2795#else /* !CONFIG_PROC_FS */
2796static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2797#endif
2798
2799
2800static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2801	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2802	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2803	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2804	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2805	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2806	{0,},
2807};
2808
2809
2810/*
2811 * check chip version and capabilities
2812 * driver name is modified according to the chip model
2813 */
2814static void __devinit query_chip(struct cmipci *cm)
2815{
2816	unsigned int detect;
2817
2818	/* check reg 0Ch, bit 24-31 */
2819	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2820	if (! detect) {
2821		/* check reg 08h, bit 24-28 */
2822		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2823		switch (detect) {
2824		case 0:
2825			cm->chip_version = 33;
2826			if (cm->do_soft_ac3)
2827				cm->can_ac3_sw = 1;
2828			else
2829				cm->can_ac3_hw = 1;
2830			break;
2831		case CM_CHIP_037:
2832			cm->chip_version = 37;
2833			cm->can_ac3_hw = 1;
2834			break;
2835		default:
2836			cm->chip_version = 39;
2837			cm->can_ac3_hw = 1;
2838			break;
2839		}
2840		cm->max_channels = 2;
2841	} else {
2842		if (detect & CM_CHIP_039) {
2843			cm->chip_version = 39;
2844			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2845				cm->max_channels = 6;
2846			else
2847				cm->max_channels = 4;
2848		} else if (detect & CM_CHIP_8768) {
2849			cm->chip_version = 68;
2850			cm->max_channels = 8;
2851			cm->can_96k = 1;
2852		} else {
2853			cm->chip_version = 55;
2854			cm->max_channels = 6;
2855			cm->can_96k = 1;
2856		}
2857		cm->can_ac3_hw = 1;
2858		cm->can_multi_ch = 1;
2859	}
2860}
2861
2862#ifdef SUPPORT_JOYSTICK
2863static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2864{
2865	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2866	struct gameport *gp;
2867	struct resource *r = NULL;
2868	int i, io_port = 0;
2869
2870	if (joystick_port[dev] == 0)
2871		return -ENODEV;
2872
2873	if (joystick_port[dev] == 1) { /* auto-detect */
2874		for (i = 0; ports[i]; i++) {
2875			io_port = ports[i];
2876			r = request_region(io_port, 1, "CMIPCI gameport");
2877			if (r)
2878				break;
2879		}
2880	} else {
2881		io_port = joystick_port[dev];
2882		r = request_region(io_port, 1, "CMIPCI gameport");
2883	}
2884
2885	if (!r) {
2886		printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2887		return -EBUSY;
2888	}
2889
2890	cm->gameport = gp = gameport_allocate_port();
2891	if (!gp) {
2892		printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2893		release_and_free_resource(r);
2894		return -ENOMEM;
2895	}
2896	gameport_set_name(gp, "C-Media Gameport");
2897	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2898	gameport_set_dev_parent(gp, &cm->pci->dev);
2899	gp->io = io_port;
2900	gameport_set_port_data(gp, r);
2901
2902	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903
2904	gameport_register_port(cm->gameport);
2905
2906	return 0;
2907}
2908
2909static void snd_cmipci_free_gameport(struct cmipci *cm)
2910{
2911	if (cm->gameport) {
2912		struct resource *r = gameport_get_port_data(cm->gameport);
2913
2914		gameport_unregister_port(cm->gameport);
2915		cm->gameport = NULL;
2916
2917		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2918		release_and_free_resource(r);
2919	}
2920}
2921#else
2922static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2923static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2924#endif
2925
2926static int snd_cmipci_free(struct cmipci *cm)
2927{
2928	if (cm->irq >= 0) {
2929		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2930		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2931		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2932		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2933		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2934		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2935		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2936
2937		/* reset mixer */
2938		snd_cmipci_mixer_write(cm, 0, 0);
2939
2940		free_irq(cm->irq, cm);
2941	}
2942
2943	snd_cmipci_free_gameport(cm);
2944	pci_release_regions(cm->pci);
2945	pci_disable_device(cm->pci);
2946	kfree(cm);
2947	return 0;
2948}
2949
2950static int snd_cmipci_dev_free(struct snd_device *device)
2951{
2952	struct cmipci *cm = device->device_data;
2953	return snd_cmipci_free(cm);
2954}
2955
2956static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2957{
2958	long iosynth;
2959	unsigned int val;
2960	struct snd_opl3 *opl3;
2961	int err;
2962
2963	if (!fm_port)
2964		goto disable_fm;
2965
2966	if (cm->chip_version >= 39) {
2967		/* first try FM regs in PCI port range */
2968		iosynth = cm->iobase + CM_REG_FM_PCI;
2969		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2970				      OPL3_HW_OPL3, 1, &opl3);
2971	} else {
2972		err = -EIO;
2973	}
2974	if (err < 0) {
2975		/* then try legacy ports */
2976		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2977		iosynth = fm_port;
2978		switch (iosynth) {
2979		case 0x3E8: val |= CM_FMSEL_3E8; break;
2980		case 0x3E0: val |= CM_FMSEL_3E0; break;
2981		case 0x3C8: val |= CM_FMSEL_3C8; break;
2982		case 0x388: val |= CM_FMSEL_388; break;
2983		default:
2984			goto disable_fm;
2985		}
2986		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2987		/* enable FM */
2988		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2989
2990		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2991				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2992			printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2993			       "skipping...\n", iosynth);
2994			goto disable_fm;
2995		}
2996	}
2997	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2998		printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2999		return err;
3000	}
3001	return 0;
3002
3003 disable_fm:
3004	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3005	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3006	return 0;
3007}
3008
3009static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3010				       int dev, struct cmipci **rcmipci)
3011{
3012	struct cmipci *cm;
3013	int err;
3014	static struct snd_device_ops ops = {
3015		.dev_free =	snd_cmipci_dev_free,
3016	};
3017	unsigned int val;
3018	long iomidi = 0;
3019	int integrated_midi = 0;
3020	char modelstr[16];
3021	int pcm_index, pcm_spdif_index;
3022	static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3023		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3024		{ },
3025	};
3026
3027	*rcmipci = NULL;
3028
3029	if ((err = pci_enable_device(pci)) < 0)
3030		return err;
3031
3032	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3033	if (cm == NULL) {
3034		pci_disable_device(pci);
3035		return -ENOMEM;
3036	}
3037
3038	spin_lock_init(&cm->reg_lock);
3039	mutex_init(&cm->open_mutex);
3040	cm->device = pci->device;
3041	cm->card = card;
3042	cm->pci = pci;
3043	cm->irq = -1;
3044	cm->channel[0].ch = 0;
3045	cm->channel[1].ch = 1;
3046	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3047
3048	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3049		kfree(cm);
3050		pci_disable_device(pci);
3051		return err;
3052	}
3053	cm->iobase = pci_resource_start(pci, 0);
3054
3055	if (request_irq(pci->irq, snd_cmipci_interrupt,
3056			IRQF_SHARED, card->driver, cm)) {
3057		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3058		snd_cmipci_free(cm);
3059		return -EBUSY;
3060	}
3061	cm->irq = pci->irq;
3062
3063	pci_set_master(cm->pci);
3064
3065	/*
3066	 * check chip version, max channels and capabilities
3067	 */
3068
3069	cm->chip_version = 0;
3070	cm->max_channels = 2;
3071	cm->do_soft_ac3 = soft_ac3[dev];
3072
3073	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3074	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3075		query_chip(cm);
3076	/* added -MCx suffix for chip supporting multi-channels */
3077	if (cm->can_multi_ch)
3078		sprintf(cm->card->driver + strlen(cm->card->driver),
3079			"-MC%d", cm->max_channels);
3080	else if (cm->can_ac3_sw)
3081		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3082
3083	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3084	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3085
3086#if CM_CH_PLAY == 1
3087	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3088#else
3089	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3090#endif
3091
3092	/* initialize codec registers */
3093	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3094	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3095	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3096	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3097	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3098	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3099	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3100
3101	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3102	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3103#if CM_CH_PLAY == 1
3104	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3105#else
3106	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3107#endif
3108	if (cm->chip_version) {
3109		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3110		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3111	}
3112	/* Set Bus Master Request */
3113	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3114
3115	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3116	switch (pci->device) {
3117	case PCI_DEVICE_ID_CMEDIA_CM8738:
3118	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3119		if (!pci_dev_present(intel_82437vx))
3120			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3121		break;
3122	default:
3123		break;
3124	}
3125
3126	if (cm->chip_version < 68) {
3127		val = pci->device < 0x110 ? 8338 : 8738;
3128	} else {
3129		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3130		case 0:
3131			val = 8769;
3132			break;
3133		case 2:
3134			val = 8762;
3135			break;
3136		default:
3137			switch ((pci->subsystem_vendor << 16) |
3138				pci->subsystem_device) {
3139			case 0x13f69761:
3140			case 0x584d3741:
3141			case 0x584d3751:
3142			case 0x584d3761:
3143			case 0x584d3771:
3144			case 0x72848384:
3145				val = 8770;
3146				break;
3147			default:
3148				val = 8768;
3149				break;
3150			}
3151		}
3152	}
3153	sprintf(card->shortname, "C-Media CMI%d", val);
3154	if (cm->chip_version < 68)
3155		sprintf(modelstr, " (model %d)", cm->chip_version);
3156	else
3157		modelstr[0] = '\0';
3158	sprintf(card->longname, "%s%s at %#lx, irq %i",
3159		card->shortname, modelstr, cm->iobase, cm->irq);
3160
3161	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3162		snd_cmipci_free(cm);
3163		return err;
3164	}
3165
3166	if (cm->chip_version >= 39) {
3167		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3168		if (val != 0x00 && val != 0xff) {
3169			iomidi = cm->iobase + CM_REG_MPU_PCI;
3170			integrated_midi = 1;
3171		}
3172	}
3173	if (!integrated_midi) {
3174		val = 0;
3175		iomidi = mpu_port[dev];
3176		switch (iomidi) {
3177		case 0x320: val = CM_VMPU_320; break;
3178		case 0x310: val = CM_VMPU_310; break;
3179		case 0x300: val = CM_VMPU_300; break;
3180		case 0x330: val = CM_VMPU_330; break;
3181		default:
3182			    iomidi = 0; break;
3183		}
3184		if (iomidi > 0) {
3185			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3186			/* enable UART */
3187			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3188			if (inb(iomidi + 1) == 0xff) {
3189				snd_printk(KERN_ERR "cannot enable MPU-401 port"
3190					   " at %#lx\n", iomidi);
3191				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3192						     CM_UART_EN);
3193				iomidi = 0;
3194			}
3195		}
3196	}
3197
3198	if (cm->chip_version < 68) {
3199		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3200		if (err < 0)
3201			return err;
3202	}
3203
3204	/* reset mixer */
3205	snd_cmipci_mixer_write(cm, 0, 0);
3206
3207	snd_cmipci_proc_init(cm);
3208
3209	/* create pcm devices */
3210	pcm_index = pcm_spdif_index = 0;
3211	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3212		return err;
3213	pcm_index++;
3214	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3215		return err;
3216	pcm_index++;
3217	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3218		pcm_spdif_index = pcm_index;
3219		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3220			return err;
3221	}
3222
3223	/* create mixer interface & switches */
3224	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3225		return err;
3226
3227	if (iomidi > 0) {
3228		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3229					       iomidi,
3230					       (integrated_midi ?
3231						MPU401_INFO_INTEGRATED : 0),
3232					       cm->irq, 0, &cm->rmidi)) < 0) {
3233			printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3234		}
3235	}
3236
3237#ifdef USE_VAR48KRATE
3238	for (val = 0; val < ARRAY_SIZE(rates); val++)
3239		snd_cmipci_set_pll(cm, rates[val], val);
3240
3241	/*
3242	 * (Re-)Enable external switch spdo_48k
3243	 */
3244	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3245#endif /* USE_VAR48KRATE */
3246
3247	if (snd_cmipci_create_gameport(cm, dev) < 0)
3248		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3249
3250	snd_card_set_dev(card, &pci->dev);
3251
3252	*rcmipci = cm;
3253	return 0;
3254}
3255
3256/*
3257 */
3258
3259MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3260
3261static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3262				      const struct pci_device_id *pci_id)
3263{
3264	static int dev;
3265	struct snd_card *card;
3266	struct cmipci *cm;
3267	int err;
3268
3269	if (dev >= SNDRV_CARDS)
3270		return -ENODEV;
3271	if (! enable[dev]) {
3272		dev++;
3273		return -ENOENT;
3274	}
3275
3276	err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3277	if (err < 0)
3278		return err;
3279
3280	switch (pci->device) {
3281	case PCI_DEVICE_ID_CMEDIA_CM8738:
3282	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3283		strcpy(card->driver, "CMI8738");
3284		break;
3285	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3286	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3287		strcpy(card->driver, "CMI8338");
3288		break;
3289	default:
3290		strcpy(card->driver, "CMIPCI");
3291		break;
3292	}
3293
3294	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3295		snd_card_free(card);
3296		return err;
3297	}
3298	card->private_data = cm;
3299
3300	if ((err = snd_card_register(card)) < 0) {
3301		snd_card_free(card);
3302		return err;
3303	}
3304	pci_set_drvdata(pci, card);
3305	dev++;
3306	return 0;
3307
3308}
3309
3310static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3311{
3312	snd_card_free(pci_get_drvdata(pci));
3313	pci_set_drvdata(pci, NULL);
3314}
3315
3316
3317#ifdef CONFIG_PM
3318/*
3319 * power management
3320 */
3321static unsigned char saved_regs[] = {
3322	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3323	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3324	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3325	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3326	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3327};
3328
3329static unsigned char saved_mixers[] = {
3330	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3331	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3332	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3333	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3334	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3335	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3336	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3337	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3338};
3339
3340static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3341{
3342	struct snd_card *card = pci_get_drvdata(pci);
3343	struct cmipci *cm = card->private_data;
3344	int i;
3345
3346	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3347
3348	snd_pcm_suspend_all(cm->pcm);
3349	snd_pcm_suspend_all(cm->pcm2);
3350	snd_pcm_suspend_all(cm->pcm_spdif);
3351
3352	/* save registers */
3353	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3354		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3355	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3356		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3357
3358	/* disable ints */
3359	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3360
3361	pci_disable_device(pci);
3362	pci_save_state(pci);
3363	pci_set_power_state(pci, pci_choose_state(pci, state));
3364	return 0;
3365}
3366
3367static int snd_cmipci_resume(struct pci_dev *pci)
3368{
3369	struct snd_card *card = pci_get_drvdata(pci);
3370	struct cmipci *cm = card->private_data;
3371	int i;
3372
3373	pci_set_power_state(pci, PCI_D0);
3374	pci_restore_state(pci);
3375	if (pci_enable_device(pci) < 0) {
3376		printk(KERN_ERR "cmipci: pci_enable_device failed, "
3377		       "disabling device\n");
3378		snd_card_disconnect(card);
3379		return -EIO;
3380	}
3381	pci_set_master(pci);
3382
3383	/* reset / initialize to a sane state */
3384	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3385	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3386	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3387	snd_cmipci_mixer_write(cm, 0, 0);
3388
3389	/* restore registers */
3390	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3391		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3392	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3393		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3394
3395	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3396	return 0;
3397}
3398#endif /* CONFIG_PM */
3399
3400static struct pci_driver driver = {
3401	.name = "C-Media PCI",
3402	.id_table = snd_cmipci_ids,
3403	.probe = snd_cmipci_probe,
3404	.remove = __devexit_p(snd_cmipci_remove),
3405#ifdef CONFIG_PM
3406	.suspend = snd_cmipci_suspend,
3407	.resume = snd_cmipci_resume,
3408#endif
3409};
3410
3411static int __init alsa_card_cmipci_init(void)
3412{
3413	return pci_register_driver(&driver);
3414}
3415
3416static void __exit alsa_card_cmipci_exit(void)
3417{
3418	pci_unregister_driver(&driver);
3419}
3420
3421module_init(alsa_card_cmipci_init)
3422module_exit(alsa_card_cmipci_exit)
3423