1/*
2 *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3 *
4 *      Copyright (c) 2003 Winfried Ritsch (IEM)
5 *      code based on hdsp.c   Paul Davis
6 *                             Marcus Andersson
7 *                             Thomas Charbonnel
8 *      Modified 2006-06-01 for AES32 support by Remy Bruno
9 *                                               <remy.bruno@trinnov.com>
10 *
11 *      Modified 2009-04-13 for proper metering by Florian Faber
12 *                                               <faber@faberman.de>
13 *
14 *      Modified 2009-04-14 for native float support by Florian Faber
15 *                                               <faber@faberman.de>
16 *
17 *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18 *                                               <faber@faberman.de>
19 *
20 *      Modified 2009-04-30 added hw serial number support by Florian Faber
21 *
22 *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23 *
24 *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25 *
26 *   This program is free software; you can redistribute it and/or modify
27 *   it under the terms of the GNU General Public License as published by
28 *   the Free Software Foundation; either version 2 of the License, or
29 *   (at your option) any later version.
30 *
31 *   This program is distributed in the hope that it will be useful,
32 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34 *   GNU General Public License for more details.
35 *
36 *   You should have received a copy of the GNU General Public License
37 *   along with this program; if not, write to the Free Software
38 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39 *
40 */
41#include <linux/init.h>
42#include <linux/delay.h>
43#include <linux/interrupt.h>
44#include <linux/moduleparam.h>
45#include <linux/slab.h>
46#include <linux/pci.h>
47#include <linux/math64.h>
48#include <asm/io.h>
49
50#include <sound/core.h>
51#include <sound/control.h>
52#include <sound/pcm.h>
53#include <sound/pcm_params.h>
54#include <sound/info.h>
55#include <sound/asoundef.h>
56#include <sound/rawmidi.h>
57#include <sound/hwdep.h>
58#include <sound/initval.h>
59
60#include <sound/hdspm.h>
61
62static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
63static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
64static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
65
66module_param_array(index, int, NULL, 0444);
67MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
68
69module_param_array(id, charp, NULL, 0444);
70MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
71
72module_param_array(enable, bool, NULL, 0444);
73MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
74
75
76MODULE_AUTHOR
77(
78	"Winfried Ritsch <ritsch_AT_iem.at>, "
79	"Paul Davis <paul@linuxaudiosystems.com>, "
80	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
81	"Remy Bruno <remy.bruno@trinnov.com>, "
82	"Florian Faber <faberman@linuxproaudio.org>, "
83	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
84);
85MODULE_DESCRIPTION("RME HDSPM");
86MODULE_LICENSE("GPL");
87MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
88
89/* --- Write registers. ---
90  These are defined as byte-offsets from the iobase value.  */
91
92#define HDSPM_WR_SETTINGS             0
93#define HDSPM_outputBufferAddress    32
94#define HDSPM_inputBufferAddress     36
95#define HDSPM_controlRegister	     64
96#define HDSPM_interruptConfirmation  96
97#define HDSPM_control2Reg	     256  /* not in specs ???????? */
98#define HDSPM_freqReg                256  /* for AES32 */
99#define HDSPM_midiDataOut0	     352  /* just believe in old code */
100#define HDSPM_midiDataOut1	     356
101#define HDSPM_eeprom_wr		     384  /* for AES32 */
102
103/* DMA enable for 64 channels, only Bit 0 is relevant */
104#define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
105#define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
106
107/* 16 page addresses for each of the 64 channels DMA buffer in and out
108   (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
109#define HDSPM_pageAddressBufferOut       8192
110#define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
111
112#define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
113
114#define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
115
116/* --- Read registers. ---
117   These are defined as byte-offsets from the iobase value */
118#define HDSPM_statusRegister    0
119/*#define HDSPM_statusRegister2  96 */
120/* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
121 * offset 192, for AES32 *and* MADI
122 * => need to check that offset 192 is working on MADI */
123#define HDSPM_statusRegister2  192
124#define HDSPM_timecodeRegister 128
125
126/* AIO, RayDAT */
127#define HDSPM_RD_STATUS_0 0
128#define HDSPM_RD_STATUS_1 64
129#define HDSPM_RD_STATUS_2 128
130#define HDSPM_RD_STATUS_3 192
131
132#define HDSPM_RD_TCO           256
133#define HDSPM_RD_PLL_FREQ      512
134#define HDSPM_WR_TCO           128
135
136#define HDSPM_TCO1_TCO_lock			0x00000001
137#define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
138#define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
139#define HDSPM_TCO1_LTC_Input_valid		0x00000008
140#define HDSPM_TCO1_WCK_Input_valid		0x00000010
141#define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
142#define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
143
144#define HDSPM_TCO1_set_TC			0x00000100
145#define HDSPM_TCO1_set_drop_frame_flag		0x00000200
146#define HDSPM_TCO1_LTC_Format_LSB		0x00000400
147#define HDSPM_TCO1_LTC_Format_MSB		0x00000800
148
149#define HDSPM_TCO2_TC_run			0x00010000
150#define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
151#define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
152#define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
153#define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
154#define HDSPM_TCO2_set_jam_sync			0x00200000
155#define HDSPM_TCO2_set_flywheel			0x00400000
156
157#define HDSPM_TCO2_set_01_4			0x01000000
158#define HDSPM_TCO2_set_pull_down		0x02000000
159#define HDSPM_TCO2_set_pull_up			0x04000000
160#define HDSPM_TCO2_set_freq			0x08000000
161#define HDSPM_TCO2_set_term_75R			0x10000000
162#define HDSPM_TCO2_set_input_LSB		0x20000000
163#define HDSPM_TCO2_set_input_MSB		0x40000000
164#define HDSPM_TCO2_set_freq_from_app		0x80000000
165
166
167#define HDSPM_midiDataOut0    352
168#define HDSPM_midiDataOut1    356
169#define HDSPM_midiDataOut2    368
170
171#define HDSPM_midiDataIn0     360
172#define HDSPM_midiDataIn1     364
173#define HDSPM_midiDataIn2     372
174#define HDSPM_midiDataIn3     376
175
176/* status is data bytes in MIDI-FIFO (0-128) */
177#define HDSPM_midiStatusOut0  384
178#define HDSPM_midiStatusOut1  388
179#define HDSPM_midiStatusOut2  400
180
181#define HDSPM_midiStatusIn0   392
182#define HDSPM_midiStatusIn1   396
183#define HDSPM_midiStatusIn2   404
184#define HDSPM_midiStatusIn3   408
185
186
187/* the meters are regular i/o-mapped registers, but offset
188   considerably from the rest. the peak registers are reset
189   when read; the least-significant 4 bits are full-scale counters;
190   the actual peak value is in the most-significant 24 bits.
191*/
192
193#define HDSPM_MADI_INPUT_PEAK		4096
194#define HDSPM_MADI_PLAYBACK_PEAK	4352
195#define HDSPM_MADI_OUTPUT_PEAK		4608
196
197#define HDSPM_MADI_INPUT_RMS_L		6144
198#define HDSPM_MADI_PLAYBACK_RMS_L	6400
199#define HDSPM_MADI_OUTPUT_RMS_L		6656
200
201#define HDSPM_MADI_INPUT_RMS_H		7168
202#define HDSPM_MADI_PLAYBACK_RMS_H	7424
203#define HDSPM_MADI_OUTPUT_RMS_H		7680
204
205/* --- Control Register bits --------- */
206#define HDSPM_Start                (1<<0) /* start engine */
207
208#define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
209#define HDSPM_Latency1             (1<<2) /* where n is defined */
210#define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
211
212#define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
213#define HDSPM_c0Master		0x1    /* Master clock bit in settings
214					  register [RayDAT, AIO] */
215
216#define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
217
218#define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
219#define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
220#define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
221#define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
222
223#define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
224#define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
225				     56channelMODE=0 */ /* MADI ONLY*/
226#define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
227
228#define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
229                                     0=off, 1=on  */ /* MADI ONLY */
230#define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
231
232#define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
233				    * -- MADI ONLY
234				    */
235#define HDSPM_InputSelect1 (1<<15) /* should be 0 */
236
237#define HDSPM_SyncRef2     (1<<13)
238#define HDSPM_SyncRef3     (1<<25)
239
240#define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
241#define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
242                                      AES additional bits in
243				      lower 5 Audiodatabits ??? */
244#define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
245#define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
246
247#define HDSPM_Midi0InterruptEnable 0x0400000
248#define HDSPM_Midi1InterruptEnable 0x0800000
249#define HDSPM_Midi2InterruptEnable 0x0200000
250#define HDSPM_Midi3InterruptEnable 0x4000000
251
252#define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
253#define HDSPe_FLOAT_FORMAT         0x2000000
254
255#define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
256#define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
257#define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
258
259#define HDSPM_wclk_sel (1<<30)
260
261/* --- bit helper defines */
262#define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
263#define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
264			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
265#define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
266#define HDSPM_InputOptical   0
267#define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
268#define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
269			      HDSPM_SyncRef2|HDSPM_SyncRef3)
270
271#define HDSPM_c0_SyncRef0      0x2
272#define HDSPM_c0_SyncRef1      0x4
273#define HDSPM_c0_SyncRef2      0x8
274#define HDSPM_c0_SyncRef3      0x10
275#define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
276				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
277
278#define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
279#define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
280#define HDSPM_SYNC_FROM_TCO     2
281#define HDSPM_SYNC_FROM_SYNC_IN 3
282
283#define HDSPM_Frequency32KHz    HDSPM_Frequency0
284#define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
285#define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
286#define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
287#define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
288#define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
289				HDSPM_Frequency0)
290#define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
291#define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
292#define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
293				 HDSPM_Frequency0)
294
295
296/* Synccheck Status */
297#define HDSPM_SYNC_CHECK_NO_LOCK 0
298#define HDSPM_SYNC_CHECK_LOCK    1
299#define HDSPM_SYNC_CHECK_SYNC	 2
300
301/* AutoSync References - used by "autosync_ref" control switch */
302#define HDSPM_AUTOSYNC_FROM_WORD      0
303#define HDSPM_AUTOSYNC_FROM_MADI      1
304#define HDSPM_AUTOSYNC_FROM_TCO       2
305#define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
306#define HDSPM_AUTOSYNC_FROM_NONE      4
307
308/* Possible sources of MADI input */
309#define HDSPM_OPTICAL 0		/* optical   */
310#define HDSPM_COAXIAL 1		/* BNC */
311
312#define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
313#define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
314
315#define hdspm_encode_in(x) (((x)&0x3)<<14)
316#define hdspm_decode_in(x) (((x)>>14)&0x3)
317
318/* --- control2 register bits --- */
319#define HDSPM_TMS             (1<<0)
320#define HDSPM_TCK             (1<<1)
321#define HDSPM_TDI             (1<<2)
322#define HDSPM_JTAG            (1<<3)
323#define HDSPM_PWDN            (1<<4)
324#define HDSPM_PROGRAM	      (1<<5)
325#define HDSPM_CONFIG_MODE_0   (1<<6)
326#define HDSPM_CONFIG_MODE_1   (1<<7)
327/*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
328#define HDSPM_BIGENDIAN_MODE  (1<<9)
329#define HDSPM_RD_MULTIPLE     (1<<10)
330
331/* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
332     that do not conflict with specific bits for AES32 seem to be valid also
333     for the AES32
334 */
335#define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
336#define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
337#define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
338					 * (like inp0)
339					 */
340
341#define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
342#define HDSPM_madiSync          (1<<18) /* MADI is in sync */
343
344#define HDSPM_tcoLock    0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */
345#define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status */
346
347#define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */
348#define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */
349
350#define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
351			/* since 64byte accurate, last 6 bits are not used */
352
353
354
355#define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
356
357#define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
358#define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
359#define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
360#define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
361
362#define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
363					 * Interrupt
364					 */
365#define HDSPM_tco_detect         0x08000000
366#define HDSPM_tco_lock	         0x20000000
367
368#define HDSPM_s2_tco_detect      0x00000040
369#define HDSPM_s2_AEBO_D          0x00000080
370#define HDSPM_s2_AEBI_D          0x00000100
371
372
373#define HDSPM_midi0IRQPending    0x40000000
374#define HDSPM_midi1IRQPending    0x80000000
375#define HDSPM_midi2IRQPending    0x20000000
376#define HDSPM_midi2IRQPendingAES 0x00000020
377#define HDSPM_midi3IRQPending    0x00200000
378
379/* --- status bit helpers */
380#define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
381			     HDSPM_madiFreq2|HDSPM_madiFreq3)
382#define HDSPM_madiFreq32    (HDSPM_madiFreq0)
383#define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
384#define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
385#define HDSPM_madiFreq64    (HDSPM_madiFreq2)
386#define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
387#define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
388#define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
389#define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
390#define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
391
392/* Status2 Register bits */ /* MADI ONLY */
393
394#define HDSPM_version0 (1<<0)	/* not really defined but I guess */
395#define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
396#define HDSPM_version2 (1<<2)
397
398#define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
399#define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
400
401#define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
402#define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
403#define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, */
404/* missing Bit   for               111=128, 1000=176.4, 1001=192 */
405
406#define HDSPM_SyncRef0 0x10000  /* Sync Reference */
407#define HDSPM_SyncRef1 0x20000
408
409#define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
410#define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
411#define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
412
413#define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
414
415#define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
416#define HDSPM_wcFreq32    (HDSPM_wc_freq0)
417#define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
418#define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
419#define HDSPM_wcFreq64    (HDSPM_wc_freq2)
420#define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
421#define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
422
423#define HDSPM_status1_F_0 0x0400000
424#define HDSPM_status1_F_1 0x0800000
425#define HDSPM_status1_F_2 0x1000000
426#define HDSPM_status1_F_3 0x2000000
427#define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
428
429
430#define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
431				    HDSPM_SelSyncRef2)
432#define HDSPM_SelSyncRef_WORD      0
433#define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
434#define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
435#define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
436#define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
437				    HDSPM_SelSyncRef2)
438
439/*
440   For AES32, bits for status, status2 and timecode are different
441*/
442/* status */
443#define HDSPM_AES32_wcLock	0x0200000
444#define HDSPM_AES32_wcFreq_bit  22
445/* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
446  HDSPM_bit2freq */
447#define HDSPM_AES32_syncref_bit  16
448/* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
449
450#define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
451#define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
452#define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
453#define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
454#define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
455#define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
456#define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
457#define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
458#define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
459#define HDSPM_AES32_AUTOSYNC_FROM_NONE 9
460
461/*  status2 */
462/* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
463#define HDSPM_LockAES   0x80
464#define HDSPM_LockAES1  0x80
465#define HDSPM_LockAES2  0x40
466#define HDSPM_LockAES3  0x20
467#define HDSPM_LockAES4  0x10
468#define HDSPM_LockAES5  0x8
469#define HDSPM_LockAES6  0x4
470#define HDSPM_LockAES7  0x2
471#define HDSPM_LockAES8  0x1
472/*
473   Timecode
474   After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
475   AES i+1
476 bits 3210
477      0001  32kHz
478      0010  44.1kHz
479      0011  48kHz
480      0100  64kHz
481      0101  88.2kHz
482      0110  96kHz
483      0111  128kHz
484      1000  176.4kHz
485      1001  192kHz
486  NB: Timecode register doesn't seem to work on AES32 card revision 230
487*/
488
489/* Mixer Values */
490#define UNITY_GAIN          32768	/* = 65536/2 */
491#define MINUS_INFINITY_GAIN 0
492
493/* Number of channels for different Speed Modes */
494#define MADI_SS_CHANNELS       64
495#define MADI_DS_CHANNELS       32
496#define MADI_QS_CHANNELS       16
497
498#define RAYDAT_SS_CHANNELS     36
499#define RAYDAT_DS_CHANNELS     20
500#define RAYDAT_QS_CHANNELS     12
501
502#define AIO_IN_SS_CHANNELS        14
503#define AIO_IN_DS_CHANNELS        10
504#define AIO_IN_QS_CHANNELS        8
505#define AIO_OUT_SS_CHANNELS        16
506#define AIO_OUT_DS_CHANNELS        12
507#define AIO_OUT_QS_CHANNELS        10
508
509#define AES32_CHANNELS		16
510
511/* the size of a substream (1 mono data stream) */
512#define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
513#define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
514
515/* the size of the area we need to allocate for DMA transfers. the
516   size is the same regardless of the number of channels, and
517   also the latency to use.
518   for one direction !!!
519*/
520#define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
521#define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
522
523/* revisions >= 230 indicate AES32 card */
524#define HDSPM_MADI_OLD_REV	207
525#define HDSPM_MADI_REV		210
526#define HDSPM_RAYDAT_REV	211
527#define HDSPM_AIO_REV		212
528#define HDSPM_MADIFACE_REV	213
529#define HDSPM_AES_REV		240
530#define HDSPM_AES32_REV		234
531#define HDSPM_AES32_OLD_REV	233
532
533/* speed factor modes */
534#define HDSPM_SPEED_SINGLE 0
535#define HDSPM_SPEED_DOUBLE 1
536#define HDSPM_SPEED_QUAD   2
537
538/* names for speed modes */
539static char *hdspm_speed_names[] = { "single", "double", "quad" };
540
541static char *texts_autosync_aes_tco[] = { "Word Clock",
542					  "AES1", "AES2", "AES3", "AES4",
543					  "AES5", "AES6", "AES7", "AES8",
544					  "TCO" };
545static char *texts_autosync_aes[] = { "Word Clock",
546				      "AES1", "AES2", "AES3", "AES4",
547				      "AES5", "AES6", "AES7", "AES8" };
548static char *texts_autosync_madi_tco[] = { "Word Clock",
549					   "MADI", "TCO", "Sync In" };
550static char *texts_autosync_madi[] = { "Word Clock",
551				       "MADI", "Sync In" };
552
553static char *texts_autosync_raydat_tco[] = {
554	"Word Clock",
555	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
556	"AES", "SPDIF", "TCO", "Sync In"
557};
558static char *texts_autosync_raydat[] = {
559	"Word Clock",
560	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
561	"AES", "SPDIF", "Sync In"
562};
563static char *texts_autosync_aio_tco[] = {
564	"Word Clock",
565	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
566};
567static char *texts_autosync_aio[] = { "Word Clock",
568				      "ADAT", "AES", "SPDIF", "Sync In" };
569
570static char *texts_freq[] = {
571	"No Lock",
572	"32 kHz",
573	"44.1 kHz",
574	"48 kHz",
575	"64 kHz",
576	"88.2 kHz",
577	"96 kHz",
578	"128 kHz",
579	"176.4 kHz",
580	"192 kHz"
581};
582
583static char *texts_ports_madi[] = {
584	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
585	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
586	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
587	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
588	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
589	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
590	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
591	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
592	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
593	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
594	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
595};
596
597
598static char *texts_ports_raydat_ss[] = {
599	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
600	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
601	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
602	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
603	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
604	"ADAT4.7", "ADAT4.8",
605	"AES.L", "AES.R",
606	"SPDIF.L", "SPDIF.R"
607};
608
609static char *texts_ports_raydat_ds[] = {
610	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
611	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
612	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
613	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
614	"AES.L", "AES.R",
615	"SPDIF.L", "SPDIF.R"
616};
617
618static char *texts_ports_raydat_qs[] = {
619	"ADAT1.1", "ADAT1.2",
620	"ADAT2.1", "ADAT2.2",
621	"ADAT3.1", "ADAT3.2",
622	"ADAT4.1", "ADAT4.2",
623	"AES.L", "AES.R",
624	"SPDIF.L", "SPDIF.R"
625};
626
627
628static char *texts_ports_aio_in_ss[] = {
629	"Analogue.L", "Analogue.R",
630	"AES.L", "AES.R",
631	"SPDIF.L", "SPDIF.R",
632	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
633	"ADAT.7", "ADAT.8"
634};
635
636static char *texts_ports_aio_out_ss[] = {
637	"Analogue.L", "Analogue.R",
638	"AES.L", "AES.R",
639	"SPDIF.L", "SPDIF.R",
640	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
641	"ADAT.7", "ADAT.8",
642	"Phone.L", "Phone.R"
643};
644
645static char *texts_ports_aio_in_ds[] = {
646	"Analogue.L", "Analogue.R",
647	"AES.L", "AES.R",
648	"SPDIF.L", "SPDIF.R",
649	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
650};
651
652static char *texts_ports_aio_out_ds[] = {
653	"Analogue.L", "Analogue.R",
654	"AES.L", "AES.R",
655	"SPDIF.L", "SPDIF.R",
656	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
657	"Phone.L", "Phone.R"
658};
659
660static char *texts_ports_aio_in_qs[] = {
661	"Analogue.L", "Analogue.R",
662	"AES.L", "AES.R",
663	"SPDIF.L", "SPDIF.R",
664	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
665};
666
667static char *texts_ports_aio_out_qs[] = {
668	"Analogue.L", "Analogue.R",
669	"AES.L", "AES.R",
670	"SPDIF.L", "SPDIF.R",
671	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
672	"Phone.L", "Phone.R"
673};
674
675static char *texts_ports_aes32[] = {
676	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
677	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
678	"AES.15", "AES.16"
679};
680
681/* These tables map the ALSA channels 1..N to the channels that we
682   need to use in order to find the relevant channel buffer. RME
683   refers to this kind of mapping as between "the ADAT channel and
684   the DMA channel." We index it using the logical audio channel,
685   and the value is the DMA channel (i.e. channel buffer number)
686   where the data for that channel can be read/written from/to.
687*/
688
689static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
690	0, 1, 2, 3, 4, 5, 6, 7,
691	8, 9, 10, 11, 12, 13, 14, 15,
692	16, 17, 18, 19, 20, 21, 22, 23,
693	24, 25, 26, 27, 28, 29, 30, 31,
694	32, 33, 34, 35, 36, 37, 38, 39,
695	40, 41, 42, 43, 44, 45, 46, 47,
696	48, 49, 50, 51, 52, 53, 54, 55,
697	56, 57, 58, 59, 60, 61, 62, 63
698};
699
700static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
701	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
702	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
703	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
704	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
705	0, 1,			/* AES */
706	2, 3,			/* SPDIF */
707	-1, -1, -1, -1,
708	-1, -1, -1, -1, -1, -1, -1, -1,
709	-1, -1, -1, -1, -1, -1, -1, -1,
710	-1, -1, -1, -1, -1, -1, -1, -1,
711};
712
713static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
714	4, 5, 6, 7,		/* ADAT 1 */
715	8, 9, 10, 11,		/* ADAT 2 */
716	12, 13, 14, 15,		/* ADAT 3 */
717	16, 17, 18, 19,		/* ADAT 4 */
718	0, 1,			/* AES */
719	2, 3,			/* SPDIF */
720	-1, -1, -1, -1,
721	-1, -1, -1, -1, -1, -1, -1, -1,
722	-1, -1, -1, -1, -1, -1, -1, -1,
723	-1, -1, -1, -1, -1, -1, -1, -1,
724	-1, -1, -1, -1, -1, -1, -1, -1,
725	-1, -1, -1, -1, -1, -1, -1, -1,
726};
727
728static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
729	4, 5,			/* ADAT 1 */
730	6, 7,			/* ADAT 2 */
731	8, 9,			/* ADAT 3 */
732	10, 11,			/* ADAT 4 */
733	0, 1,			/* AES */
734	2, 3,			/* SPDIF */
735	-1, -1, -1, -1,
736	-1, -1, -1, -1, -1, -1, -1, -1,
737	-1, -1, -1, -1, -1, -1, -1, -1,
738	-1, -1, -1, -1, -1, -1, -1, -1,
739	-1, -1, -1, -1, -1, -1, -1, -1,
740	-1, -1, -1, -1, -1, -1, -1, -1,
741	-1, -1, -1, -1, -1, -1, -1, -1,
742};
743
744static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
745	0, 1,			/* line in */
746	8, 9,			/* aes in, */
747	10, 11,			/* spdif in */
748	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
749	-1, -1,
750	-1, -1, -1, -1, -1, -1, -1, -1,
751	-1, -1, -1, -1, -1, -1, -1, -1,
752	-1, -1, -1, -1, -1, -1, -1, -1,
753	-1, -1, -1, -1, -1, -1, -1, -1,
754	-1, -1, -1, -1, -1, -1, -1, -1,
755	-1, -1, -1, -1, -1, -1, -1, -1,
756};
757
758static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
759	0, 1,			/* line out */
760	8, 9,			/* aes out */
761	10, 11,			/* spdif out */
762	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
763	6, 7,			/* phone out */
764	-1, -1, -1, -1, -1, -1, -1, -1,
765	-1, -1, -1, -1, -1, -1, -1, -1,
766	-1, -1, -1, -1, -1, -1, -1, -1,
767	-1, -1, -1, -1, -1, -1, -1, -1,
768	-1, -1, -1, -1, -1, -1, -1, -1,
769	-1, -1, -1, -1, -1, -1, -1, -1,
770};
771
772static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
773	0, 1,			/* line in */
774	8, 9,			/* aes in */
775	10, 11,			/* spdif in */
776	12, 14, 16, 18,		/* adat in */
777	-1, -1, -1, -1, -1, -1,
778	-1, -1, -1, -1, -1, -1, -1, -1,
779	-1, -1, -1, -1, -1, -1, -1, -1,
780	-1, -1, -1, -1, -1, -1, -1, -1,
781	-1, -1, -1, -1, -1, -1, -1, -1,
782	-1, -1, -1, -1, -1, -1, -1, -1,
783	-1, -1, -1, -1, -1, -1, -1, -1
784};
785
786static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
787	0, 1,			/* line out */
788	8, 9,			/* aes out */
789	10, 11,			/* spdif out */
790	12, 14, 16, 18,		/* adat out */
791	6, 7,			/* phone out */
792	-1, -1, -1, -1,
793	-1, -1, -1, -1, -1, -1, -1, -1,
794	-1, -1, -1, -1, -1, -1, -1, -1,
795	-1, -1, -1, -1, -1, -1, -1, -1,
796	-1, -1, -1, -1, -1, -1, -1, -1,
797	-1, -1, -1, -1, -1, -1, -1, -1,
798	-1, -1, -1, -1, -1, -1, -1, -1
799};
800
801static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
802	0, 1,			/* line in */
803	8, 9,			/* aes in */
804	10, 11,			/* spdif in */
805	12, 16,			/* adat in */
806	-1, -1, -1, -1, -1, -1, -1, -1,
807	-1, -1, -1, -1, -1, -1, -1, -1,
808	-1, -1, -1, -1, -1, -1, -1, -1,
809	-1, -1, -1, -1, -1, -1, -1, -1,
810	-1, -1, -1, -1, -1, -1, -1, -1,
811	-1, -1, -1, -1, -1, -1, -1, -1,
812	-1, -1, -1, -1, -1, -1, -1, -1
813};
814
815static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
816	0, 1,			/* line out */
817	8, 9,			/* aes out */
818	10, 11,			/* spdif out */
819	12, 16,			/* adat out */
820	6, 7,			/* phone out */
821	-1, -1, -1, -1, -1, -1,
822	-1, -1, -1, -1, -1, -1, -1, -1,
823	-1, -1, -1, -1, -1, -1, -1, -1,
824	-1, -1, -1, -1, -1, -1, -1, -1,
825	-1, -1, -1, -1, -1, -1, -1, -1,
826	-1, -1, -1, -1, -1, -1, -1, -1,
827	-1, -1, -1, -1, -1, -1, -1, -1
828};
829
830static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
831	0, 1, 2, 3, 4, 5, 6, 7,
832	8, 9, 10, 11, 12, 13, 14, 15,
833	-1, -1, -1, -1, -1, -1, -1, -1,
834	-1, -1, -1, -1, -1, -1, -1, -1,
835	-1, -1, -1, -1, -1, -1, -1, -1,
836	-1, -1, -1, -1, -1, -1, -1, -1,
837	-1, -1, -1, -1, -1, -1, -1, -1,
838	-1, -1, -1, -1, -1, -1, -1, -1
839};
840
841struct hdspm_midi {
842	struct hdspm *hdspm;
843	int id;
844	struct snd_rawmidi *rmidi;
845	struct snd_rawmidi_substream *input;
846	struct snd_rawmidi_substream *output;
847	char istimer;		/* timer in use */
848	struct timer_list timer;
849	spinlock_t lock;
850	int pending;
851	int dataIn;
852	int statusIn;
853	int dataOut;
854	int statusOut;
855	int ie;
856	int irq;
857};
858
859struct hdspm_tco {
860	int input;
861	int framerate;
862	int wordclock;
863	int samplerate;
864	int pull;
865	int term; /* 0 = off, 1 = on */
866};
867
868struct hdspm {
869        spinlock_t lock;
870	/* only one playback and/or capture stream */
871        struct snd_pcm_substream *capture_substream;
872        struct snd_pcm_substream *playback_substream;
873
874	char *card_name;	     /* for procinfo */
875	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
876
877	uint8_t io_type;
878
879	int monitor_outs;	/* set up monitoring outs init flag */
880
881	u32 control_register;	/* cached value */
882	u32 control2_register;	/* cached value */
883	u32 settings_register;
884
885	struct hdspm_midi midi[4];
886	struct tasklet_struct midi_tasklet;
887
888	size_t period_bytes;
889	unsigned char ss_in_channels;
890	unsigned char ds_in_channels;
891	unsigned char qs_in_channels;
892	unsigned char ss_out_channels;
893	unsigned char ds_out_channels;
894	unsigned char qs_out_channels;
895
896	unsigned char max_channels_in;
897	unsigned char max_channels_out;
898
899	signed char *channel_map_in;
900	signed char *channel_map_out;
901
902	signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
903	signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
904
905	char **port_names_in;
906	char **port_names_out;
907
908	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
909	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
910
911	unsigned char *playback_buffer;	/* suitably aligned address */
912	unsigned char *capture_buffer;	/* suitably aligned address */
913
914	pid_t capture_pid;	/* process id which uses capture */
915	pid_t playback_pid;	/* process id which uses capture */
916	int running;		/* running status */
917
918	int last_external_sample_rate;	/* samplerate mystic ... */
919	int last_internal_sample_rate;
920	int system_sample_rate;
921
922	int dev;		/* Hardware vars... */
923	int irq;
924	unsigned long port;
925	void __iomem *iobase;
926
927	int irq_count;		/* for debug */
928	int midiPorts;
929
930	struct snd_card *card;	/* one card */
931	struct snd_pcm *pcm;		/* has one pcm */
932	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
933	struct pci_dev *pci;	/* and an pci info */
934
935	/* Mixer vars */
936	/* fast alsa mixer */
937	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
938	/* but input to much, so not used */
939	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
940	/* full mixer accessible over mixer ioctl or hwdep-device */
941	struct hdspm_mixer *mixer;
942
943	struct hdspm_tco *tco;  /* NULL if no TCO detected */
944
945	char **texts_autosync;
946	int texts_autosync_items;
947
948	cycles_t last_interrupt;
949
950	struct hdspm_peak_rms peak_rms;
951};
952
953
954static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
955	{
956	 .vendor = PCI_VENDOR_ID_XILINX,
957	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
958	 .subvendor = PCI_ANY_ID,
959	 .subdevice = PCI_ANY_ID,
960	 .class = 0,
961	 .class_mask = 0,
962	 .driver_data = 0},
963	{0,}
964};
965
966MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
967
968/* prototypes */
969static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
970						   struct hdspm * hdspm);
971static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
972					  struct hdspm * hdspm);
973
974static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
975static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
976static int hdspm_autosync_ref(struct hdspm *hdspm);
977static int snd_hdspm_set_defaults(struct hdspm *hdspm);
978static void hdspm_set_sgbuf(struct hdspm *hdspm,
979			    struct snd_pcm_substream *substream,
980			     unsigned int reg, int channels);
981
982static inline int HDSPM_bit2freq(int n)
983{
984	static const int bit2freq_tab[] = {
985		0, 32000, 44100, 48000, 64000, 88200,
986		96000, 128000, 176400, 192000 };
987	if (n < 1 || n > 9)
988		return 0;
989	return bit2freq_tab[n];
990}
991
992/* Write/read to/from HDSPM with Adresses in Bytes
993   not words but only 32Bit writes are allowed */
994
995static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
996			       unsigned int val)
997{
998	writel(val, hdspm->iobase + reg);
999}
1000
1001static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1002{
1003	return readl(hdspm->iobase + reg);
1004}
1005
1006/* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1007   mixer is write only on hardware so we have to cache him for read
1008   each fader is a u32, but uses only the first 16 bit */
1009
1010static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1011				     unsigned int in)
1012{
1013	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1014		return 0;
1015
1016	return hdspm->mixer->ch[chan].in[in];
1017}
1018
1019static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1020				     unsigned int pb)
1021{
1022	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1023		return 0;
1024	return hdspm->mixer->ch[chan].pb[pb];
1025}
1026
1027static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1028				      unsigned int in, unsigned short data)
1029{
1030	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1031		return -1;
1032
1033	hdspm_write(hdspm,
1034		    HDSPM_MADI_mixerBase +
1035		    ((in + 128 * chan) * sizeof(u32)),
1036		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1037	return 0;
1038}
1039
1040static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1041				      unsigned int pb, unsigned short data)
1042{
1043	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1044		return -1;
1045
1046	hdspm_write(hdspm,
1047		    HDSPM_MADI_mixerBase +
1048		    ((64 + pb + 128 * chan) * sizeof(u32)),
1049		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1050	return 0;
1051}
1052
1053
1054/* enable DMA for specific channels, now available for DSP-MADI */
1055static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1056{
1057	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1058}
1059
1060static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1061{
1062	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1063}
1064
1065/* check if same process is writing and reading */
1066static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1067{
1068	unsigned long flags;
1069	int ret = 1;
1070
1071	spin_lock_irqsave(&hdspm->lock, flags);
1072	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1073	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1074		ret = 0;
1075	}
1076	spin_unlock_irqrestore(&hdspm->lock, flags);
1077	return ret;
1078}
1079
1080/* check for external sample rate */
1081static int hdspm_external_sample_rate(struct hdspm *hdspm)
1082{
1083	unsigned int status, status2, timecode;
1084	int syncref, rate = 0, rate_bits;
1085
1086	switch (hdspm->io_type) {
1087	case AES32:
1088		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1089		status = hdspm_read(hdspm, HDSPM_statusRegister);
1090		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
1091
1092		syncref = hdspm_autosync_ref(hdspm);
1093
1094		if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
1095				status & HDSPM_AES32_wcLock)
1096			return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
1097
1098		if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
1099				syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
1100				status2 & (HDSPM_LockAES >>
1101				(syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
1102			return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
1103		return 0;
1104		break;
1105
1106	case MADIface:
1107		status = hdspm_read(hdspm, HDSPM_statusRegister);
1108
1109		if (!(status & HDSPM_madiLock)) {
1110			rate = 0;  /* no lock */
1111		} else {
1112			switch (status & (HDSPM_status1_freqMask)) {
1113			case HDSPM_status1_F_0*1:
1114				rate = 32000; break;
1115			case HDSPM_status1_F_0*2:
1116				rate = 44100; break;
1117			case HDSPM_status1_F_0*3:
1118				rate = 48000; break;
1119			case HDSPM_status1_F_0*4:
1120				rate = 64000; break;
1121			case HDSPM_status1_F_0*5:
1122				rate = 88200; break;
1123			case HDSPM_status1_F_0*6:
1124				rate = 96000; break;
1125			case HDSPM_status1_F_0*7:
1126				rate = 128000; break;
1127			case HDSPM_status1_F_0*8:
1128				rate = 176400; break;
1129			case HDSPM_status1_F_0*9:
1130				rate = 192000; break;
1131			default:
1132				rate = 0; break;
1133			}
1134		}
1135
1136		break;
1137
1138	case MADI:
1139	case AIO:
1140	case RayDAT:
1141		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1142		status = hdspm_read(hdspm, HDSPM_statusRegister);
1143		rate = 0;
1144
1145		/* if wordclock has synced freq and wordclock is valid */
1146		if ((status2 & HDSPM_wcLock) != 0 &&
1147				(status2 & HDSPM_SelSyncRef0) == 0) {
1148
1149			rate_bits = status2 & HDSPM_wcFreqMask;
1150
1151
1152			switch (rate_bits) {
1153			case HDSPM_wcFreq32:
1154				rate = 32000;
1155				break;
1156			case HDSPM_wcFreq44_1:
1157				rate = 44100;
1158				break;
1159			case HDSPM_wcFreq48:
1160				rate = 48000;
1161				break;
1162			case HDSPM_wcFreq64:
1163				rate = 64000;
1164				break;
1165			case HDSPM_wcFreq88_2:
1166				rate = 88200;
1167				break;
1168			case HDSPM_wcFreq96:
1169				rate = 96000;
1170				break;
1171			default:
1172				rate = 0;
1173				break;
1174			}
1175		}
1176
1177		/* if rate detected and Syncref is Word than have it,
1178		 * word has priority to MADI
1179		 */
1180		if (rate != 0 &&
1181		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1182			return rate;
1183
1184		/* maybe a madi input (which is taken if sel sync is madi) */
1185		if (status & HDSPM_madiLock) {
1186			rate_bits = status & HDSPM_madiFreqMask;
1187
1188			switch (rate_bits) {
1189			case HDSPM_madiFreq32:
1190				rate = 32000;
1191				break;
1192			case HDSPM_madiFreq44_1:
1193				rate = 44100;
1194				break;
1195			case HDSPM_madiFreq48:
1196				rate = 48000;
1197				break;
1198			case HDSPM_madiFreq64:
1199				rate = 64000;
1200				break;
1201			case HDSPM_madiFreq88_2:
1202				rate = 88200;
1203				break;
1204			case HDSPM_madiFreq96:
1205				rate = 96000;
1206				break;
1207			case HDSPM_madiFreq128:
1208				rate = 128000;
1209				break;
1210			case HDSPM_madiFreq176_4:
1211				rate = 176400;
1212				break;
1213			case HDSPM_madiFreq192:
1214				rate = 192000;
1215				break;
1216			default:
1217				rate = 0;
1218				break;
1219			}
1220		}
1221		break;
1222	}
1223
1224	return rate;
1225}
1226
1227/* Latency function */
1228static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1229{
1230	hdspm->period_bytes = 1 << ((hdspm_decode_latency(hdspm->control_register) + 8));
1231}
1232
1233
1234static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1235{
1236	int position;
1237
1238	position = hdspm_read(hdspm, HDSPM_statusRegister);
1239
1240	switch (hdspm->io_type) {
1241	case RayDAT:
1242	case AIO:
1243		position &= HDSPM_BufferPositionMask;
1244		position /= 4; /* Bytes per sample */
1245		break;
1246	default:
1247		position = (position & HDSPM_BufferID) ?
1248			(hdspm->period_bytes / 4) : 0;
1249	}
1250
1251	return position;
1252}
1253
1254
1255static inline void hdspm_start_audio(struct hdspm * s)
1256{
1257	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1258	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1259}
1260
1261static inline void hdspm_stop_audio(struct hdspm * s)
1262{
1263	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1264	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1265}
1266
1267/* should I silence all or only opened ones ? doit all for first even is 4MB*/
1268static void hdspm_silence_playback(struct hdspm *hdspm)
1269{
1270	int i;
1271	int n = hdspm->period_bytes;
1272	void *buf = hdspm->playback_buffer;
1273
1274	if (buf == NULL)
1275		return;
1276
1277	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1278		memset(buf, 0, n);
1279		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1280	}
1281}
1282
1283static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1284{
1285	int n;
1286
1287	spin_lock_irq(&s->lock);
1288
1289	frames >>= 7;
1290	n = 0;
1291	while (frames) {
1292		n++;
1293		frames >>= 1;
1294	}
1295	s->control_register &= ~HDSPM_LatencyMask;
1296	s->control_register |= hdspm_encode_latency(n);
1297
1298	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1299
1300	hdspm_compute_period_size(s);
1301
1302	spin_unlock_irq(&s->lock);
1303
1304	return 0;
1305}
1306
1307static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1308{
1309	u64 freq_const;
1310
1311	if (period == 0)
1312		return 0;
1313
1314	switch (hdspm->io_type) {
1315	case MADI:
1316	case AES32:
1317		freq_const = 110069313433624ULL;
1318		break;
1319	case RayDAT:
1320	case AIO:
1321		freq_const = 104857600000000ULL;
1322		break;
1323	case MADIface:
1324		freq_const = 131072000000000ULL;
1325	}
1326
1327	return div_u64(freq_const, period);
1328}
1329
1330
1331static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1332{
1333	u64 n;
1334
1335	if (rate >= 112000)
1336		rate /= 4;
1337	else if (rate >= 56000)
1338		rate /= 2;
1339
1340	switch (hdspm->io_type) {
1341	case MADIface:
1342	  n = 131072000000000ULL;  /* 125 MHz */
1343	  break;
1344	case MADI:
1345	case AES32:
1346	  n = 110069313433624ULL;  /* 105 MHz */
1347	  break;
1348	case RayDAT:
1349	case AIO:
1350	  n = 104857600000000ULL;  /* 100 MHz */
1351	  break;
1352	}
1353
1354	n = div_u64(n, rate);
1355	/* n should be less than 2^32 for being written to FREQ register */
1356	snd_BUG_ON(n >> 32);
1357	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1358}
1359
1360/* dummy set rate lets see what happens */
1361static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1362{
1363	int current_rate;
1364	int rate_bits;
1365	int not_set = 0;
1366	int current_speed, target_speed;
1367
1368	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1369	   it (e.g. during module initialization).
1370	 */
1371
1372	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1373
1374		/* SLAVE --- */
1375		if (called_internally) {
1376
1377			/* request from ctl or card initialization
1378			   just make a warning an remember setting
1379			   for future master mode switching */
1380
1381			snd_printk(KERN_WARNING "HDSPM: "
1382				   "Warning: device is not running "
1383				   "as a clock master.\n");
1384			not_set = 1;
1385		} else {
1386
1387			/* hw_param request while in AutoSync mode */
1388			int external_freq =
1389			    hdspm_external_sample_rate(hdspm);
1390
1391			if (hdspm_autosync_ref(hdspm) ==
1392			    HDSPM_AUTOSYNC_FROM_NONE) {
1393
1394				snd_printk(KERN_WARNING "HDSPM: "
1395					   "Detected no Externel Sync \n");
1396				not_set = 1;
1397
1398			} else if (rate != external_freq) {
1399
1400				snd_printk(KERN_WARNING "HDSPM: "
1401					   "Warning: No AutoSync source for "
1402					   "requested rate\n");
1403				not_set = 1;
1404			}
1405		}
1406	}
1407
1408	current_rate = hdspm->system_sample_rate;
1409
1410	/* Changing between Singe, Double and Quad speed is not
1411	   allowed if any substreams are open. This is because such a change
1412	   causes a shift in the location of the DMA buffers and a reduction
1413	   in the number of available buffers.
1414
1415	   Note that a similar but essentially insoluble problem exists for
1416	   externally-driven rate changes. All we can do is to flag rate
1417	   changes in the read/write routines.
1418	 */
1419
1420	if (current_rate <= 48000)
1421		current_speed = HDSPM_SPEED_SINGLE;
1422	else if (current_rate <= 96000)
1423		current_speed = HDSPM_SPEED_DOUBLE;
1424	else
1425		current_speed = HDSPM_SPEED_QUAD;
1426
1427	if (rate <= 48000)
1428		target_speed = HDSPM_SPEED_SINGLE;
1429	else if (rate <= 96000)
1430		target_speed = HDSPM_SPEED_DOUBLE;
1431	else
1432		target_speed = HDSPM_SPEED_QUAD;
1433
1434	switch (rate) {
1435	case 32000:
1436		rate_bits = HDSPM_Frequency32KHz;
1437		break;
1438	case 44100:
1439		rate_bits = HDSPM_Frequency44_1KHz;
1440		break;
1441	case 48000:
1442		rate_bits = HDSPM_Frequency48KHz;
1443		break;
1444	case 64000:
1445		rate_bits = HDSPM_Frequency64KHz;
1446		break;
1447	case 88200:
1448		rate_bits = HDSPM_Frequency88_2KHz;
1449		break;
1450	case 96000:
1451		rate_bits = HDSPM_Frequency96KHz;
1452		break;
1453	case 128000:
1454		rate_bits = HDSPM_Frequency128KHz;
1455		break;
1456	case 176400:
1457		rate_bits = HDSPM_Frequency176_4KHz;
1458		break;
1459	case 192000:
1460		rate_bits = HDSPM_Frequency192KHz;
1461		break;
1462	default:
1463		return -EINVAL;
1464	}
1465
1466	if (current_speed != target_speed
1467	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1468		snd_printk
1469		    (KERN_ERR "HDSPM: "
1470		     "cannot change from %s speed to %s speed mode "
1471		     "(capture PID = %d, playback PID = %d)\n",
1472		     hdspm_speed_names[current_speed],
1473		     hdspm_speed_names[target_speed],
1474		     hdspm->capture_pid, hdspm->playback_pid);
1475		return -EBUSY;
1476	}
1477
1478	hdspm->control_register &= ~HDSPM_FrequencyMask;
1479	hdspm->control_register |= rate_bits;
1480	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1481
1482	/* For AES32, need to set DDS value in FREQ register
1483	   For MADI, also apparently */
1484	hdspm_set_dds_value(hdspm, rate);
1485
1486	if (AES32 == hdspm->io_type && rate != current_rate)
1487		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1488
1489	hdspm->system_sample_rate = rate;
1490
1491	if (rate <= 48000) {
1492		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1493		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1494		hdspm->max_channels_in = hdspm->ss_in_channels;
1495		hdspm->max_channels_out = hdspm->ss_out_channels;
1496		hdspm->port_names_in = hdspm->port_names_in_ss;
1497		hdspm->port_names_out = hdspm->port_names_out_ss;
1498	} else if (rate <= 96000) {
1499		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1500		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1501		hdspm->max_channels_in = hdspm->ds_in_channels;
1502		hdspm->max_channels_out = hdspm->ds_out_channels;
1503		hdspm->port_names_in = hdspm->port_names_in_ds;
1504		hdspm->port_names_out = hdspm->port_names_out_ds;
1505	} else {
1506		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1507		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1508		hdspm->max_channels_in = hdspm->qs_in_channels;
1509		hdspm->max_channels_out = hdspm->qs_out_channels;
1510		hdspm->port_names_in = hdspm->port_names_in_qs;
1511		hdspm->port_names_out = hdspm->port_names_out_qs;
1512	}
1513
1514	if (not_set != 0)
1515		return -1;
1516
1517	return 0;
1518}
1519
1520/* mainly for init to 0 on load */
1521static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1522{
1523	int i, j;
1524	unsigned int gain;
1525
1526	if (sgain > UNITY_GAIN)
1527		gain = UNITY_GAIN;
1528	else if (sgain < 0)
1529		gain = 0;
1530	else
1531		gain = sgain;
1532
1533	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1534		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1535			hdspm_write_in_gain(hdspm, i, j, gain);
1536			hdspm_write_pb_gain(hdspm, i, j, gain);
1537		}
1538}
1539
1540/*----------------------------------------------------------------------------
1541   MIDI
1542  ----------------------------------------------------------------------------*/
1543
1544static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1545						      int id)
1546{
1547	/* the hardware already does the relevant bit-mask with 0xff */
1548	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1549}
1550
1551static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1552					      int val)
1553{
1554	/* the hardware already does the relevant bit-mask with 0xff */
1555	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1556}
1557
1558static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1559{
1560	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1561}
1562
1563static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1564{
1565	int fifo_bytes_used;
1566
1567	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1568
1569	if (fifo_bytes_used < 128)
1570		return  128 - fifo_bytes_used;
1571	else
1572		return 0;
1573}
1574
1575static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1576{
1577	while (snd_hdspm_midi_input_available (hdspm, id))
1578		snd_hdspm_midi_read_byte (hdspm, id);
1579}
1580
1581static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1582{
1583	unsigned long flags;
1584	int n_pending;
1585	int to_write;
1586	int i;
1587	unsigned char buf[128];
1588
1589	/* Output is not interrupt driven */
1590
1591	spin_lock_irqsave (&hmidi->lock, flags);
1592	if (hmidi->output &&
1593	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1594		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1595							    hmidi->id);
1596		if (n_pending > 0) {
1597			if (n_pending > (int)sizeof (buf))
1598				n_pending = sizeof (buf);
1599
1600			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1601							 n_pending);
1602			if (to_write > 0) {
1603				for (i = 0; i < to_write; ++i)
1604					snd_hdspm_midi_write_byte (hmidi->hdspm,
1605								   hmidi->id,
1606								   buf[i]);
1607			}
1608		}
1609	}
1610	spin_unlock_irqrestore (&hmidi->lock, flags);
1611	return 0;
1612}
1613
1614static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1615{
1616	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1617				 * input FIFO size
1618				 */
1619	unsigned long flags;
1620	int n_pending;
1621	int i;
1622
1623	spin_lock_irqsave (&hmidi->lock, flags);
1624	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1625	if (n_pending > 0) {
1626		if (hmidi->input) {
1627			if (n_pending > (int)sizeof (buf))
1628				n_pending = sizeof (buf);
1629			for (i = 0; i < n_pending; ++i)
1630				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1631								   hmidi->id);
1632			if (n_pending)
1633				snd_rawmidi_receive (hmidi->input, buf,
1634						     n_pending);
1635		} else {
1636			/* flush the MIDI input FIFO */
1637			while (n_pending--)
1638				snd_hdspm_midi_read_byte (hmidi->hdspm,
1639							  hmidi->id);
1640		}
1641	}
1642	hmidi->pending = 0;
1643	spin_unlock_irqrestore(&hmidi->lock, flags);
1644
1645	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1646	hmidi->hdspm->control_register |= hmidi->ie;
1647	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1648		    hmidi->hdspm->control_register);
1649	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1650
1651	return snd_hdspm_midi_output_write (hmidi);
1652}
1653
1654static void
1655snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1656{
1657	struct hdspm *hdspm;
1658	struct hdspm_midi *hmidi;
1659	unsigned long flags;
1660
1661	hmidi = substream->rmidi->private_data;
1662	hdspm = hmidi->hdspm;
1663
1664	spin_lock_irqsave (&hdspm->lock, flags);
1665	if (up) {
1666		if (!(hdspm->control_register & hmidi->ie)) {
1667			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1668			hdspm->control_register |= hmidi->ie;
1669		}
1670	} else {
1671		hdspm->control_register &= ~hmidi->ie;
1672	}
1673
1674	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1675	spin_unlock_irqrestore (&hdspm->lock, flags);
1676}
1677
1678static void snd_hdspm_midi_output_timer(unsigned long data)
1679{
1680	struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1681	unsigned long flags;
1682
1683	snd_hdspm_midi_output_write(hmidi);
1684	spin_lock_irqsave (&hmidi->lock, flags);
1685
1686	/* this does not bump hmidi->istimer, because the
1687	   kernel automatically removed the timer when it
1688	   expired, and we are now adding it back, thus
1689	   leaving istimer wherever it was set before.
1690	*/
1691
1692	if (hmidi->istimer) {
1693		hmidi->timer.expires = 1 + jiffies;
1694		add_timer(&hmidi->timer);
1695	}
1696
1697	spin_unlock_irqrestore (&hmidi->lock, flags);
1698}
1699
1700static void
1701snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1702{
1703	struct hdspm_midi *hmidi;
1704	unsigned long flags;
1705
1706	hmidi = substream->rmidi->private_data;
1707	spin_lock_irqsave (&hmidi->lock, flags);
1708	if (up) {
1709		if (!hmidi->istimer) {
1710			init_timer(&hmidi->timer);
1711			hmidi->timer.function = snd_hdspm_midi_output_timer;
1712			hmidi->timer.data = (unsigned long) hmidi;
1713			hmidi->timer.expires = 1 + jiffies;
1714			add_timer(&hmidi->timer);
1715			hmidi->istimer++;
1716		}
1717	} else {
1718		if (hmidi->istimer && --hmidi->istimer <= 0)
1719			del_timer (&hmidi->timer);
1720	}
1721	spin_unlock_irqrestore (&hmidi->lock, flags);
1722	if (up)
1723		snd_hdspm_midi_output_write(hmidi);
1724}
1725
1726static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1727{
1728	struct hdspm_midi *hmidi;
1729
1730	hmidi = substream->rmidi->private_data;
1731	spin_lock_irq (&hmidi->lock);
1732	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1733	hmidi->input = substream;
1734	spin_unlock_irq (&hmidi->lock);
1735
1736	return 0;
1737}
1738
1739static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
1740{
1741	struct hdspm_midi *hmidi;
1742
1743	hmidi = substream->rmidi->private_data;
1744	spin_lock_irq (&hmidi->lock);
1745	hmidi->output = substream;
1746	spin_unlock_irq (&hmidi->lock);
1747
1748	return 0;
1749}
1750
1751static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
1752{
1753	struct hdspm_midi *hmidi;
1754
1755	snd_hdspm_midi_input_trigger (substream, 0);
1756
1757	hmidi = substream->rmidi->private_data;
1758	spin_lock_irq (&hmidi->lock);
1759	hmidi->input = NULL;
1760	spin_unlock_irq (&hmidi->lock);
1761
1762	return 0;
1763}
1764
1765static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
1766{
1767	struct hdspm_midi *hmidi;
1768
1769	snd_hdspm_midi_output_trigger (substream, 0);
1770
1771	hmidi = substream->rmidi->private_data;
1772	spin_lock_irq (&hmidi->lock);
1773	hmidi->output = NULL;
1774	spin_unlock_irq (&hmidi->lock);
1775
1776	return 0;
1777}
1778
1779static struct snd_rawmidi_ops snd_hdspm_midi_output =
1780{
1781	.open =		snd_hdspm_midi_output_open,
1782	.close =	snd_hdspm_midi_output_close,
1783	.trigger =	snd_hdspm_midi_output_trigger,
1784};
1785
1786static struct snd_rawmidi_ops snd_hdspm_midi_input =
1787{
1788	.open =		snd_hdspm_midi_input_open,
1789	.close =	snd_hdspm_midi_input_close,
1790	.trigger =	snd_hdspm_midi_input_trigger,
1791};
1792
1793static int __devinit snd_hdspm_create_midi (struct snd_card *card,
1794					    struct hdspm *hdspm, int id)
1795{
1796	int err;
1797	char buf[32];
1798
1799	hdspm->midi[id].id = id;
1800	hdspm->midi[id].hdspm = hdspm;
1801	spin_lock_init (&hdspm->midi[id].lock);
1802
1803	if (0 == id) {
1804		if (MADIface == hdspm->io_type) {
1805			/* MIDI-over-MADI on HDSPe MADIface */
1806			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
1807			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
1808			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
1809			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
1810			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
1811			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
1812		} else {
1813			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
1814			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
1815			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
1816			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
1817			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
1818			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
1819		}
1820	} else if (1 == id) {
1821		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
1822		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
1823		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
1824		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
1825		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
1826		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
1827	} else if ((2 == id) && (MADI == hdspm->io_type)) {
1828		/* MIDI-over-MADI on HDSPe MADI */
1829		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1830		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1831		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
1832		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
1833		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1834		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
1835	} else if (2 == id) {
1836		/* TCO MTC, read only */
1837		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1838		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1839		hdspm->midi[2].dataOut = -1;
1840		hdspm->midi[2].statusOut = -1;
1841		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1842		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
1843	} else if (3 == id) {
1844		/* TCO MTC on HDSPe MADI */
1845		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
1846		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
1847		hdspm->midi[3].dataOut = -1;
1848		hdspm->midi[3].statusOut = -1;
1849		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
1850		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
1851	}
1852
1853	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
1854					(MADIface == hdspm->io_type)))) {
1855		if ((id == 0) && (MADIface == hdspm->io_type)) {
1856			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1857		} else if ((id == 2) && (MADI == hdspm->io_type)) {
1858			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1859		} else {
1860			sprintf(buf, "%s MIDI %d", card->shortname, id+1);
1861		}
1862		err = snd_rawmidi_new(card, buf, id, 1, 1,
1863				&hdspm->midi[id].rmidi);
1864		if (err < 0)
1865			return err;
1866
1867		sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
1868				card->id, id+1);
1869		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1870
1871		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1872				SNDRV_RAWMIDI_STREAM_OUTPUT,
1873				&snd_hdspm_midi_output);
1874		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1875				SNDRV_RAWMIDI_STREAM_INPUT,
1876				&snd_hdspm_midi_input);
1877
1878		hdspm->midi[id].rmidi->info_flags |=
1879			SNDRV_RAWMIDI_INFO_OUTPUT |
1880			SNDRV_RAWMIDI_INFO_INPUT |
1881			SNDRV_RAWMIDI_INFO_DUPLEX;
1882	} else {
1883		/* TCO MTC, read only */
1884		sprintf(buf, "%s MTC %d", card->shortname, id+1);
1885		err = snd_rawmidi_new(card, buf, id, 1, 1,
1886				&hdspm->midi[id].rmidi);
1887		if (err < 0)
1888			return err;
1889
1890		sprintf(hdspm->midi[id].rmidi->name,
1891				"%s MTC %d", card->id, id+1);
1892		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1893
1894		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1895				SNDRV_RAWMIDI_STREAM_INPUT,
1896				&snd_hdspm_midi_input);
1897
1898		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
1899	}
1900
1901	return 0;
1902}
1903
1904
1905static void hdspm_midi_tasklet(unsigned long arg)
1906{
1907	struct hdspm *hdspm = (struct hdspm *)arg;
1908	int i = 0;
1909
1910	while (i < hdspm->midiPorts) {
1911		if (hdspm->midi[i].pending)
1912			snd_hdspm_midi_input_read(&hdspm->midi[i]);
1913
1914		i++;
1915	}
1916}
1917
1918
1919/*-----------------------------------------------------------------------------
1920  Status Interface
1921  ----------------------------------------------------------------------------*/
1922
1923/* get the system sample rate which is set */
1924
1925
1926/**
1927 * Calculate the real sample rate from the
1928 * current DDS value.
1929 **/
1930static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
1931{
1932	unsigned int period, rate;
1933
1934	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
1935	rate = hdspm_calc_dds_value(hdspm, period);
1936
1937	return rate;
1938}
1939
1940
1941#define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
1942{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1943  .name = xname, \
1944  .index = xindex, \
1945  .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1946  .info = snd_hdspm_info_system_sample_rate, \
1947  .get = snd_hdspm_get_system_sample_rate \
1948}
1949
1950static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
1951					     struct snd_ctl_elem_info *uinfo)
1952{
1953	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1954	uinfo->count = 1;
1955	uinfo->value.integer.min = 27000;
1956	uinfo->value.integer.max = 207000;
1957	uinfo->value.integer.step = 1;
1958	return 0;
1959}
1960
1961
1962static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
1963					    struct snd_ctl_elem_value *
1964					    ucontrol)
1965{
1966	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1967
1968	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
1969	return 0;
1970}
1971
1972
1973/**
1974 * Returns the WordClock sample rate class for the given card.
1975 **/
1976static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
1977{
1978	int status;
1979
1980	switch (hdspm->io_type) {
1981	case RayDAT:
1982	case AIO:
1983		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
1984		return (status >> 16) & 0xF;
1985		break;
1986	default:
1987		break;
1988	}
1989
1990
1991	return 0;
1992}
1993
1994
1995/**
1996 * Returns the TCO sample rate class for the given card.
1997 **/
1998static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
1999{
2000	int status;
2001
2002	if (hdspm->tco) {
2003		switch (hdspm->io_type) {
2004		case RayDAT:
2005		case AIO:
2006			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2007			return (status >> 20) & 0xF;
2008			break;
2009		default:
2010			break;
2011		}
2012	}
2013
2014	return 0;
2015}
2016
2017
2018/**
2019 * Returns the SYNC_IN sample rate class for the given card.
2020 **/
2021static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2022{
2023	int status;
2024
2025	if (hdspm->tco) {
2026		switch (hdspm->io_type) {
2027		case RayDAT:
2028		case AIO:
2029			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2030			return (status >> 12) & 0xF;
2031			break;
2032		default:
2033			break;
2034		}
2035	}
2036
2037	return 0;
2038}
2039
2040
2041/**
2042 * Returns the sample rate class for input source <idx> for
2043 * 'new style' cards like the AIO and RayDAT.
2044 **/
2045static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2046{
2047	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2048
2049	return (status >> (idx*4)) & 0xF;
2050}
2051
2052
2053
2054#define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2055{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2056	.name = xname, \
2057	.private_value = xindex, \
2058	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2059	.info = snd_hdspm_info_autosync_sample_rate, \
2060	.get = snd_hdspm_get_autosync_sample_rate \
2061}
2062
2063
2064static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2065					       struct snd_ctl_elem_info *uinfo)
2066{
2067	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2068	uinfo->count = 1;
2069	uinfo->value.enumerated.items = 10;
2070
2071	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2072		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2073	strcpy(uinfo->value.enumerated.name,
2074			texts_freq[uinfo->value.enumerated.item]);
2075	return 0;
2076}
2077
2078
2079static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2080					      struct snd_ctl_elem_value *
2081					      ucontrol)
2082{
2083	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2084
2085	switch (hdspm->io_type) {
2086	case RayDAT:
2087		switch (kcontrol->private_value) {
2088		case 0:
2089			ucontrol->value.enumerated.item[0] =
2090				hdspm_get_wc_sample_rate(hdspm);
2091			break;
2092		case 7:
2093			ucontrol->value.enumerated.item[0] =
2094				hdspm_get_tco_sample_rate(hdspm);
2095			break;
2096		case 8:
2097			ucontrol->value.enumerated.item[0] =
2098				hdspm_get_sync_in_sample_rate(hdspm);
2099			break;
2100		default:
2101			ucontrol->value.enumerated.item[0] =
2102				hdspm_get_s1_sample_rate(hdspm,
2103						kcontrol->private_value-1);
2104		}
2105
2106	case AIO:
2107		switch (kcontrol->private_value) {
2108		case 0: /* WC */
2109			ucontrol->value.enumerated.item[0] =
2110				hdspm_get_wc_sample_rate(hdspm);
2111			break;
2112		case 4: /* TCO */
2113			ucontrol->value.enumerated.item[0] =
2114				hdspm_get_tco_sample_rate(hdspm);
2115			break;
2116		case 5: /* SYNC_IN */
2117			ucontrol->value.enumerated.item[0] =
2118				hdspm_get_sync_in_sample_rate(hdspm);
2119			break;
2120		default:
2121			ucontrol->value.enumerated.item[0] =
2122				hdspm_get_s1_sample_rate(hdspm,
2123						ucontrol->id.index-1);
2124		}
2125
2126	case AES32:
2127
2128		switch (kcontrol->private_value) {
2129		case 0: /* WC */
2130			ucontrol->value.enumerated.item[0] =
2131				hdspm_get_wc_sample_rate(hdspm);
2132			break;
2133		case 9: /* TCO */
2134			ucontrol->value.enumerated.item[0] =
2135				hdspm_get_tco_sample_rate(hdspm);
2136			break;
2137		case 10: /* SYNC_IN */
2138			ucontrol->value.enumerated.item[0] =
2139				hdspm_get_sync_in_sample_rate(hdspm);
2140			break;
2141		default: /* AES1 to AES8 */
2142			ucontrol->value.enumerated.item[0] =
2143				hdspm_get_s1_sample_rate(hdspm,
2144						kcontrol->private_value-1);
2145			break;
2146
2147		}
2148	default:
2149		break;
2150	}
2151
2152	return 0;
2153}
2154
2155
2156#define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2157{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2158	.name = xname, \
2159	.index = xindex, \
2160	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2161		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2162	.info = snd_hdspm_info_system_clock_mode, \
2163	.get = snd_hdspm_get_system_clock_mode, \
2164	.put = snd_hdspm_put_system_clock_mode, \
2165}
2166
2167
2168/**
2169 * Returns the system clock mode for the given card.
2170 * @returns 0 - master, 1 - slave
2171 **/
2172static int hdspm_system_clock_mode(struct hdspm *hdspm)
2173{
2174	switch (hdspm->io_type) {
2175	case AIO:
2176	case RayDAT:
2177		if (hdspm->settings_register & HDSPM_c0Master)
2178			return 0;
2179		break;
2180
2181	default:
2182		if (hdspm->control_register & HDSPM_ClockModeMaster)
2183			return 0;
2184	}
2185
2186	return 1;
2187}
2188
2189
2190/**
2191 * Sets the system clock mode.
2192 * @param mode 0 - master, 1 - slave
2193 **/
2194static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2195{
2196	switch (hdspm->io_type) {
2197	case AIO:
2198	case RayDAT:
2199		if (0 == mode)
2200			hdspm->settings_register |= HDSPM_c0Master;
2201		else
2202			hdspm->settings_register &= ~HDSPM_c0Master;
2203
2204		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2205		break;
2206
2207	default:
2208		if (0 == mode)
2209			hdspm->control_register |= HDSPM_ClockModeMaster;
2210		else
2211			hdspm->control_register &= ~HDSPM_ClockModeMaster;
2212
2213		hdspm_write(hdspm, HDSPM_controlRegister,
2214				hdspm->control_register);
2215	}
2216}
2217
2218
2219static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2220					    struct snd_ctl_elem_info *uinfo)
2221{
2222	static char *texts[] = { "Master", "AutoSync" };
2223
2224	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2225	uinfo->count = 1;
2226	uinfo->value.enumerated.items = 2;
2227	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2228		uinfo->value.enumerated.item =
2229		    uinfo->value.enumerated.items - 1;
2230	strcpy(uinfo->value.enumerated.name,
2231	       texts[uinfo->value.enumerated.item]);
2232	return 0;
2233}
2234
2235static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2236					   struct snd_ctl_elem_value *ucontrol)
2237{
2238	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2239
2240	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2241	return 0;
2242}
2243
2244static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2245					   struct snd_ctl_elem_value *ucontrol)
2246{
2247	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2248	int val;
2249
2250	if (!snd_hdspm_use_is_exclusive(hdspm))
2251		return -EBUSY;
2252
2253	val = ucontrol->value.enumerated.item[0];
2254	if (val < 0)
2255		val = 0;
2256	else if (val > 1)
2257		val = 1;
2258
2259	hdspm_set_system_clock_mode(hdspm, val);
2260
2261	return 0;
2262}
2263
2264
2265#define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2266{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2267	.name = xname, \
2268	.index = xindex, \
2269	.info = snd_hdspm_info_clock_source, \
2270	.get = snd_hdspm_get_clock_source, \
2271	.put = snd_hdspm_put_clock_source \
2272}
2273
2274
2275static int hdspm_clock_source(struct hdspm * hdspm)
2276{
2277	switch (hdspm->system_sample_rate) {
2278	case 32000: return 0;
2279	case 44100: return 1;
2280	case 48000: return 2;
2281	case 64000: return 3;
2282	case 88200: return 4;
2283	case 96000: return 5;
2284	case 128000: return 6;
2285	case 176400: return 7;
2286	case 192000: return 8;
2287	}
2288
2289	return -1;
2290}
2291
2292static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2293{
2294	int rate;
2295	switch (mode) {
2296	case 0:
2297		rate = 32000; break;
2298	case 1:
2299		rate = 44100; break;
2300	case 2:
2301		rate = 48000; break;
2302	case 3:
2303		rate = 64000; break;
2304	case 4:
2305		rate = 88200; break;
2306	case 5:
2307		rate = 96000; break;
2308	case 6:
2309		rate = 128000; break;
2310	case 7:
2311		rate = 176400; break;
2312	case 8:
2313		rate = 192000; break;
2314	default:
2315		rate = 48000;
2316	}
2317	hdspm_set_rate(hdspm, rate, 1);
2318	return 0;
2319}
2320
2321static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2322				       struct snd_ctl_elem_info *uinfo)
2323{
2324	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2325	uinfo->count = 1;
2326	uinfo->value.enumerated.items = 9;
2327
2328	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2329		uinfo->value.enumerated.item =
2330		    uinfo->value.enumerated.items - 1;
2331
2332	strcpy(uinfo->value.enumerated.name,
2333	       texts_freq[uinfo->value.enumerated.item+1]);
2334
2335	return 0;
2336}
2337
2338static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2339				      struct snd_ctl_elem_value *ucontrol)
2340{
2341	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2342
2343	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2344	return 0;
2345}
2346
2347static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2348				      struct snd_ctl_elem_value *ucontrol)
2349{
2350	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2351	int change;
2352	int val;
2353
2354	if (!snd_hdspm_use_is_exclusive(hdspm))
2355		return -EBUSY;
2356	val = ucontrol->value.enumerated.item[0];
2357	if (val < 0)
2358		val = 0;
2359	if (val > 9)
2360		val = 9;
2361	spin_lock_irq(&hdspm->lock);
2362	if (val != hdspm_clock_source(hdspm))
2363		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2364	else
2365		change = 0;
2366	spin_unlock_irq(&hdspm->lock);
2367	return change;
2368}
2369
2370
2371#define HDSPM_PREF_SYNC_REF(xname, xindex) \
2372{.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2373	.name = xname, \
2374	.index = xindex, \
2375	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2376			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2377	.info = snd_hdspm_info_pref_sync_ref, \
2378	.get = snd_hdspm_get_pref_sync_ref, \
2379	.put = snd_hdspm_put_pref_sync_ref \
2380}
2381
2382
2383/**
2384 * Returns the current preferred sync reference setting.
2385 * The semantics of the return value are depending on the
2386 * card, please see the comments for clarification.
2387 **/
2388static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2389{
2390	switch (hdspm->io_type) {
2391	case AES32:
2392		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2393		case 0: return 0;  /* WC */
2394		case HDSPM_SyncRef0: return 1; /* AES 1 */
2395		case HDSPM_SyncRef1: return 2; /* AES 2 */
2396		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2397		case HDSPM_SyncRef2: return 4; /* AES 4 */
2398		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2399		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2400		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2401						    return 7; /* AES 7 */
2402		case HDSPM_SyncRef3: return 8; /* AES 8 */
2403		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2404		}
2405		break;
2406
2407	case MADI:
2408	case MADIface:
2409		if (hdspm->tco) {
2410			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2411			case 0: return 0;  /* WC */
2412			case HDSPM_SyncRef0: return 1;  /* MADI */
2413			case HDSPM_SyncRef1: return 2;  /* TCO */
2414			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2415					     return 3;  /* SYNC_IN */
2416			}
2417		} else {
2418			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2419			case 0: return 0;  /* WC */
2420			case HDSPM_SyncRef0: return 1;  /* MADI */
2421			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2422					     return 2;  /* SYNC_IN */
2423			}
2424		}
2425		break;
2426
2427	case RayDAT:
2428		if (hdspm->tco) {
2429			switch ((hdspm->settings_register &
2430				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2431			case 0: return 0;  /* WC */
2432			case 3: return 1;  /* ADAT 1 */
2433			case 4: return 2;  /* ADAT 2 */
2434			case 5: return 3;  /* ADAT 3 */
2435			case 6: return 4;  /* ADAT 4 */
2436			case 1: return 5;  /* AES */
2437			case 2: return 6;  /* SPDIF */
2438			case 9: return 7;  /* TCO */
2439			case 10: return 8; /* SYNC_IN */
2440			}
2441		} else {
2442			switch ((hdspm->settings_register &
2443				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2444			case 0: return 0;  /* WC */
2445			case 3: return 1;  /* ADAT 1 */
2446			case 4: return 2;  /* ADAT 2 */
2447			case 5: return 3;  /* ADAT 3 */
2448			case 6: return 4;  /* ADAT 4 */
2449			case 1: return 5;  /* AES */
2450			case 2: return 6;  /* SPDIF */
2451			case 10: return 7; /* SYNC_IN */
2452			}
2453		}
2454
2455		break;
2456
2457	case AIO:
2458		if (hdspm->tco) {
2459			switch ((hdspm->settings_register &
2460				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2461			case 0: return 0;  /* WC */
2462			case 3: return 1;  /* ADAT */
2463			case 1: return 2;  /* AES */
2464			case 2: return 3;  /* SPDIF */
2465			case 9: return 4;  /* TCO */
2466			case 10: return 5; /* SYNC_IN */
2467			}
2468		} else {
2469			switch ((hdspm->settings_register &
2470				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2471			case 0: return 0;  /* WC */
2472			case 3: return 1;  /* ADAT */
2473			case 1: return 2;  /* AES */
2474			case 2: return 3;  /* SPDIF */
2475			case 10: return 4; /* SYNC_IN */
2476			}
2477		}
2478
2479		break;
2480	}
2481
2482	return -1;
2483}
2484
2485
2486/**
2487 * Set the preferred sync reference to <pref>. The semantics
2488 * of <pref> are depending on the card type, see the comments
2489 * for clarification.
2490 **/
2491static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2492{
2493	int p = 0;
2494
2495	switch (hdspm->io_type) {
2496	case AES32:
2497		hdspm->control_register &= ~HDSPM_SyncRefMask;
2498		switch (pref) {
2499		case 0: /* WC  */
2500			break;
2501		case 1: /* AES 1 */
2502			hdspm->control_register |= HDSPM_SyncRef0;
2503			break;
2504		case 2: /* AES 2 */
2505			hdspm->control_register |= HDSPM_SyncRef1;
2506			break;
2507		case 3: /* AES 3 */
2508			hdspm->control_register |=
2509				HDSPM_SyncRef1+HDSPM_SyncRef0;
2510			break;
2511		case 4: /* AES 4 */
2512			hdspm->control_register |= HDSPM_SyncRef2;
2513			break;
2514		case 5: /* AES 5 */
2515			hdspm->control_register |=
2516				HDSPM_SyncRef2+HDSPM_SyncRef0;
2517			break;
2518		case 6: /* AES 6 */
2519			hdspm->control_register |=
2520				HDSPM_SyncRef2+HDSPM_SyncRef1;
2521			break;
2522		case 7: /* AES 7 */
2523			hdspm->control_register |=
2524				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2525			break;
2526		case 8: /* AES 8 */
2527			hdspm->control_register |= HDSPM_SyncRef3;
2528			break;
2529		case 9: /* TCO */
2530			hdspm->control_register |=
2531				HDSPM_SyncRef3+HDSPM_SyncRef0;
2532			break;
2533		default:
2534			return -1;
2535		}
2536
2537		break;
2538
2539	case MADI:
2540	case MADIface:
2541		hdspm->control_register &= ~HDSPM_SyncRefMask;
2542		if (hdspm->tco) {
2543			switch (pref) {
2544			case 0: /* WC */
2545				break;
2546			case 1: /* MADI */
2547				hdspm->control_register |= HDSPM_SyncRef0;
2548				break;
2549			case 2: /* TCO */
2550				hdspm->control_register |= HDSPM_SyncRef1;
2551				break;
2552			case 3: /* SYNC_IN */
2553				hdspm->control_register |=
2554					HDSPM_SyncRef0+HDSPM_SyncRef1;
2555				break;
2556			default:
2557				return -1;
2558			}
2559		} else {
2560			switch (pref) {
2561			case 0: /* WC */
2562				break;
2563			case 1: /* MADI */
2564				hdspm->control_register |= HDSPM_SyncRef0;
2565				break;
2566			case 2: /* SYNC_IN */
2567				hdspm->control_register |=
2568					HDSPM_SyncRef0+HDSPM_SyncRef1;
2569				break;
2570			default:
2571				return -1;
2572			}
2573		}
2574
2575		break;
2576
2577	case RayDAT:
2578		if (hdspm->tco) {
2579			switch (pref) {
2580			case 0: p = 0; break;  /* WC */
2581			case 1: p = 3; break;  /* ADAT 1 */
2582			case 2: p = 4; break;  /* ADAT 2 */
2583			case 3: p = 5; break;  /* ADAT 3 */
2584			case 4: p = 6; break;  /* ADAT 4 */
2585			case 5: p = 1; break;  /* AES */
2586			case 6: p = 2; break;  /* SPDIF */
2587			case 7: p = 9; break;  /* TCO */
2588			case 8: p = 10; break; /* SYNC_IN */
2589			default: return -1;
2590			}
2591		} else {
2592			switch (pref) {
2593			case 0: p = 0; break;  /* WC */
2594			case 1: p = 3; break;  /* ADAT 1 */
2595			case 2: p = 4; break;  /* ADAT 2 */
2596			case 3: p = 5; break;  /* ADAT 3 */
2597			case 4: p = 6; break;  /* ADAT 4 */
2598			case 5: p = 1; break;  /* AES */
2599			case 6: p = 2; break;  /* SPDIF */
2600			case 7: p = 10; break; /* SYNC_IN */
2601			default: return -1;
2602			}
2603		}
2604		break;
2605
2606	case AIO:
2607		if (hdspm->tco) {
2608			switch (pref) {
2609			case 0: p = 0; break;  /* WC */
2610			case 1: p = 3; break;  /* ADAT */
2611			case 2: p = 1; break;  /* AES */
2612			case 3: p = 2; break;  /* SPDIF */
2613			case 4: p = 9; break;  /* TCO */
2614			case 5: p = 10; break; /* SYNC_IN */
2615			default: return -1;
2616			}
2617		} else {
2618			switch (pref) {
2619			case 0: p = 0; break;  /* WC */
2620			case 1: p = 3; break;  /* ADAT */
2621			case 2: p = 1; break;  /* AES */
2622			case 3: p = 2; break;  /* SPDIF */
2623			case 4: p = 10; break; /* SYNC_IN */
2624			default: return -1;
2625			}
2626		}
2627		break;
2628	}
2629
2630	switch (hdspm->io_type) {
2631	case RayDAT:
2632	case AIO:
2633		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2634		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2635		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2636		break;
2637
2638	case MADI:
2639	case MADIface:
2640	case AES32:
2641		hdspm_write(hdspm, HDSPM_controlRegister,
2642				hdspm->control_register);
2643	}
2644
2645	return 0;
2646}
2647
2648
2649static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2650					struct snd_ctl_elem_info *uinfo)
2651{
2652	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2653
2654	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2655	uinfo->count = 1;
2656	uinfo->value.enumerated.items = hdspm->texts_autosync_items;
2657
2658	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2659		uinfo->value.enumerated.item =
2660			uinfo->value.enumerated.items - 1;
2661
2662	strcpy(uinfo->value.enumerated.name,
2663			hdspm->texts_autosync[uinfo->value.enumerated.item]);
2664
2665	return 0;
2666}
2667
2668static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2669				       struct snd_ctl_elem_value *ucontrol)
2670{
2671	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2672	int psf = hdspm_pref_sync_ref(hdspm);
2673
2674	if (psf >= 0) {
2675		ucontrol->value.enumerated.item[0] = psf;
2676		return 0;
2677	}
2678
2679	return -1;
2680}
2681
2682static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2683				       struct snd_ctl_elem_value *ucontrol)
2684{
2685	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2686	int val, change = 0;
2687
2688	if (!snd_hdspm_use_is_exclusive(hdspm))
2689		return -EBUSY;
2690
2691	val = ucontrol->value.enumerated.item[0];
2692
2693	if (val < 0)
2694		val = 0;
2695	else if (val >= hdspm->texts_autosync_items)
2696		val = hdspm->texts_autosync_items-1;
2697
2698	spin_lock_irq(&hdspm->lock);
2699	if (val != hdspm_pref_sync_ref(hdspm))
2700		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
2701
2702	spin_unlock_irq(&hdspm->lock);
2703	return change;
2704}
2705
2706
2707#define HDSPM_AUTOSYNC_REF(xname, xindex) \
2708{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2709  .name = xname, \
2710  .index = xindex, \
2711  .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2712  .info = snd_hdspm_info_autosync_ref, \
2713  .get = snd_hdspm_get_autosync_ref, \
2714}
2715
2716static int hdspm_autosync_ref(struct hdspm *hdspm)
2717{
2718	if (AES32 == hdspm->io_type) {
2719		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
2720		unsigned int syncref =
2721			(status >> HDSPM_AES32_syncref_bit) & 0xF;
2722		if (syncref == 0)
2723			return HDSPM_AES32_AUTOSYNC_FROM_WORD;
2724		if (syncref <= 8)
2725			return syncref;
2726		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
2727	} else if (MADI == hdspm->io_type) {
2728		/* This looks at the autosync selected sync reference */
2729		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2730
2731		switch (status2 & HDSPM_SelSyncRefMask) {
2732		case HDSPM_SelSyncRef_WORD:
2733			return HDSPM_AUTOSYNC_FROM_WORD;
2734		case HDSPM_SelSyncRef_MADI:
2735			return HDSPM_AUTOSYNC_FROM_MADI;
2736		case HDSPM_SelSyncRef_TCO:
2737			return HDSPM_AUTOSYNC_FROM_TCO;
2738		case HDSPM_SelSyncRef_SyncIn:
2739			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
2740		case HDSPM_SelSyncRef_NVALID:
2741			return HDSPM_AUTOSYNC_FROM_NONE;
2742		default:
2743			return 0;
2744		}
2745
2746	}
2747	return 0;
2748}
2749
2750
2751static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
2752				       struct snd_ctl_elem_info *uinfo)
2753{
2754	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2755
2756	if (AES32 == hdspm->io_type) {
2757		static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
2758			"AES4",	"AES5", "AES6", "AES7", "AES8", "None"};
2759
2760		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2761		uinfo->count = 1;
2762		uinfo->value.enumerated.items = 10;
2763		if (uinfo->value.enumerated.item >=
2764		    uinfo->value.enumerated.items)
2765			uinfo->value.enumerated.item =
2766				uinfo->value.enumerated.items - 1;
2767		strcpy(uinfo->value.enumerated.name,
2768				texts[uinfo->value.enumerated.item]);
2769	} else if (MADI == hdspm->io_type) {
2770		static char *texts[] = {"Word Clock", "MADI", "TCO",
2771			"Sync In", "None" };
2772
2773		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2774		uinfo->count = 1;
2775		uinfo->value.enumerated.items = 5;
2776		if (uinfo->value.enumerated.item >=
2777				uinfo->value.enumerated.items)
2778			uinfo->value.enumerated.item =
2779				uinfo->value.enumerated.items - 1;
2780		strcpy(uinfo->value.enumerated.name,
2781				texts[uinfo->value.enumerated.item]);
2782	}
2783	return 0;
2784}
2785
2786static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
2787				      struct snd_ctl_elem_value *ucontrol)
2788{
2789	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2790
2791	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
2792	return 0;
2793}
2794
2795
2796#define HDSPM_LINE_OUT(xname, xindex) \
2797{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2798  .name = xname, \
2799  .index = xindex, \
2800  .info = snd_hdspm_info_line_out, \
2801  .get = snd_hdspm_get_line_out, \
2802  .put = snd_hdspm_put_line_out \
2803}
2804
2805static int hdspm_line_out(struct hdspm * hdspm)
2806{
2807	return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0;
2808}
2809
2810
2811static int hdspm_set_line_output(struct hdspm * hdspm, int out)
2812{
2813	if (out)
2814		hdspm->control_register |= HDSPM_LineOut;
2815	else
2816		hdspm->control_register &= ~HDSPM_LineOut;
2817	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2818
2819	return 0;
2820}
2821
2822#define snd_hdspm_info_line_out		snd_ctl_boolean_mono_info
2823
2824static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol,
2825				  struct snd_ctl_elem_value *ucontrol)
2826{
2827	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2828
2829	spin_lock_irq(&hdspm->lock);
2830	ucontrol->value.integer.value[0] = hdspm_line_out(hdspm);
2831	spin_unlock_irq(&hdspm->lock);
2832	return 0;
2833}
2834
2835static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol,
2836				  struct snd_ctl_elem_value *ucontrol)
2837{
2838	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2839	int change;
2840	unsigned int val;
2841
2842	if (!snd_hdspm_use_is_exclusive(hdspm))
2843		return -EBUSY;
2844	val = ucontrol->value.integer.value[0] & 1;
2845	spin_lock_irq(&hdspm->lock);
2846	change = (int) val != hdspm_line_out(hdspm);
2847	hdspm_set_line_output(hdspm, val);
2848	spin_unlock_irq(&hdspm->lock);
2849	return change;
2850}
2851
2852
2853#define HDSPM_TX_64(xname, xindex) \
2854{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2855  .name = xname, \
2856  .index = xindex, \
2857  .info = snd_hdspm_info_tx_64, \
2858  .get = snd_hdspm_get_tx_64, \
2859  .put = snd_hdspm_put_tx_64 \
2860}
2861
2862static int hdspm_tx_64(struct hdspm * hdspm)
2863{
2864	return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0;
2865}
2866
2867static int hdspm_set_tx_64(struct hdspm * hdspm, int out)
2868{
2869	if (out)
2870		hdspm->control_register |= HDSPM_TX_64ch;
2871	else
2872		hdspm->control_register &= ~HDSPM_TX_64ch;
2873	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2874
2875	return 0;
2876}
2877
2878#define snd_hdspm_info_tx_64		snd_ctl_boolean_mono_info
2879
2880static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol,
2881			       struct snd_ctl_elem_value *ucontrol)
2882{
2883	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2884
2885	spin_lock_irq(&hdspm->lock);
2886	ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm);
2887	spin_unlock_irq(&hdspm->lock);
2888	return 0;
2889}
2890
2891static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol,
2892			       struct snd_ctl_elem_value *ucontrol)
2893{
2894	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2895	int change;
2896	unsigned int val;
2897
2898	if (!snd_hdspm_use_is_exclusive(hdspm))
2899		return -EBUSY;
2900	val = ucontrol->value.integer.value[0] & 1;
2901	spin_lock_irq(&hdspm->lock);
2902	change = (int) val != hdspm_tx_64(hdspm);
2903	hdspm_set_tx_64(hdspm, val);
2904	spin_unlock_irq(&hdspm->lock);
2905	return change;
2906}
2907
2908
2909#define HDSPM_C_TMS(xname, xindex) \
2910{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2911  .name = xname, \
2912  .index = xindex, \
2913  .info = snd_hdspm_info_c_tms, \
2914  .get = snd_hdspm_get_c_tms, \
2915  .put = snd_hdspm_put_c_tms \
2916}
2917
2918static int hdspm_c_tms(struct hdspm * hdspm)
2919{
2920	return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0;
2921}
2922
2923static int hdspm_set_c_tms(struct hdspm * hdspm, int out)
2924{
2925	if (out)
2926		hdspm->control_register |= HDSPM_clr_tms;
2927	else
2928		hdspm->control_register &= ~HDSPM_clr_tms;
2929	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2930
2931	return 0;
2932}
2933
2934#define snd_hdspm_info_c_tms		snd_ctl_boolean_mono_info
2935
2936static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol,
2937			       struct snd_ctl_elem_value *ucontrol)
2938{
2939	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2940
2941	spin_lock_irq(&hdspm->lock);
2942	ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm);
2943	spin_unlock_irq(&hdspm->lock);
2944	return 0;
2945}
2946
2947static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
2948			       struct snd_ctl_elem_value *ucontrol)
2949{
2950	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2951	int change;
2952	unsigned int val;
2953
2954	if (!snd_hdspm_use_is_exclusive(hdspm))
2955		return -EBUSY;
2956	val = ucontrol->value.integer.value[0] & 1;
2957	spin_lock_irq(&hdspm->lock);
2958	change = (int) val != hdspm_c_tms(hdspm);
2959	hdspm_set_c_tms(hdspm, val);
2960	spin_unlock_irq(&hdspm->lock);
2961	return change;
2962}
2963
2964
2965#define HDSPM_SAFE_MODE(xname, xindex) \
2966{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2967  .name = xname, \
2968  .index = xindex, \
2969  .info = snd_hdspm_info_safe_mode, \
2970  .get = snd_hdspm_get_safe_mode, \
2971  .put = snd_hdspm_put_safe_mode \
2972}
2973
2974static int hdspm_safe_mode(struct hdspm * hdspm)
2975{
2976	return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
2977}
2978
2979static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
2980{
2981	if (out)
2982		hdspm->control_register |= HDSPM_AutoInp;
2983	else
2984		hdspm->control_register &= ~HDSPM_AutoInp;
2985	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2986
2987	return 0;
2988}
2989
2990#define snd_hdspm_info_safe_mode	snd_ctl_boolean_mono_info
2991
2992static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
2993				   struct snd_ctl_elem_value *ucontrol)
2994{
2995	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2996
2997	spin_lock_irq(&hdspm->lock);
2998	ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
2999	spin_unlock_irq(&hdspm->lock);
3000	return 0;
3001}
3002
3003static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
3004				   struct snd_ctl_elem_value *ucontrol)
3005{
3006	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3007	int change;
3008	unsigned int val;
3009
3010	if (!snd_hdspm_use_is_exclusive(hdspm))
3011		return -EBUSY;
3012	val = ucontrol->value.integer.value[0] & 1;
3013	spin_lock_irq(&hdspm->lock);
3014	change = (int) val != hdspm_safe_mode(hdspm);
3015	hdspm_set_safe_mode(hdspm, val);
3016	spin_unlock_irq(&hdspm->lock);
3017	return change;
3018}
3019
3020
3021#define HDSPM_EMPHASIS(xname, xindex) \
3022{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3023  .name = xname, \
3024  .index = xindex, \
3025  .info = snd_hdspm_info_emphasis, \
3026  .get = snd_hdspm_get_emphasis, \
3027  .put = snd_hdspm_put_emphasis \
3028}
3029
3030static int hdspm_emphasis(struct hdspm * hdspm)
3031{
3032	return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
3033}
3034
3035static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
3036{
3037	if (emp)
3038		hdspm->control_register |= HDSPM_Emphasis;
3039	else
3040		hdspm->control_register &= ~HDSPM_Emphasis;
3041	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3042
3043	return 0;
3044}
3045
3046#define snd_hdspm_info_emphasis		snd_ctl_boolean_mono_info
3047
3048static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
3049				  struct snd_ctl_elem_value *ucontrol)
3050{
3051	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3052
3053	spin_lock_irq(&hdspm->lock);
3054	ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
3055	spin_unlock_irq(&hdspm->lock);
3056	return 0;
3057}
3058
3059static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
3060				  struct snd_ctl_elem_value *ucontrol)
3061{
3062	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3063	int change;
3064	unsigned int val;
3065
3066	if (!snd_hdspm_use_is_exclusive(hdspm))
3067		return -EBUSY;
3068	val = ucontrol->value.integer.value[0] & 1;
3069	spin_lock_irq(&hdspm->lock);
3070	change = (int) val != hdspm_emphasis(hdspm);
3071	hdspm_set_emphasis(hdspm, val);
3072	spin_unlock_irq(&hdspm->lock);
3073	return change;
3074}
3075
3076
3077#define HDSPM_DOLBY(xname, xindex) \
3078{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3079  .name = xname, \
3080  .index = xindex, \
3081  .info = snd_hdspm_info_dolby, \
3082  .get = snd_hdspm_get_dolby, \
3083  .put = snd_hdspm_put_dolby \
3084}
3085
3086static int hdspm_dolby(struct hdspm * hdspm)
3087{
3088	return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
3089}
3090
3091static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
3092{
3093	if (dol)
3094		hdspm->control_register |= HDSPM_Dolby;
3095	else
3096		hdspm->control_register &= ~HDSPM_Dolby;
3097	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3098
3099	return 0;
3100}
3101
3102#define snd_hdspm_info_dolby		snd_ctl_boolean_mono_info
3103
3104static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
3105			       struct snd_ctl_elem_value *ucontrol)
3106{
3107	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3108
3109	spin_lock_irq(&hdspm->lock);
3110	ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
3111	spin_unlock_irq(&hdspm->lock);
3112	return 0;
3113}
3114
3115static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
3116			       struct snd_ctl_elem_value *ucontrol)
3117{
3118	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3119	int change;
3120	unsigned int val;
3121
3122	if (!snd_hdspm_use_is_exclusive(hdspm))
3123		return -EBUSY;
3124	val = ucontrol->value.integer.value[0] & 1;
3125	spin_lock_irq(&hdspm->lock);
3126	change = (int) val != hdspm_dolby(hdspm);
3127	hdspm_set_dolby(hdspm, val);
3128	spin_unlock_irq(&hdspm->lock);
3129	return change;
3130}
3131
3132
3133#define HDSPM_PROFESSIONAL(xname, xindex) \
3134{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3135  .name = xname, \
3136  .index = xindex, \
3137  .info = snd_hdspm_info_professional, \
3138  .get = snd_hdspm_get_professional, \
3139  .put = snd_hdspm_put_professional \
3140}
3141
3142static int hdspm_professional(struct hdspm * hdspm)
3143{
3144	return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
3145}
3146
3147static int hdspm_set_professional(struct hdspm * hdspm, int dol)
3148{
3149	if (dol)
3150		hdspm->control_register |= HDSPM_Professional;
3151	else
3152		hdspm->control_register &= ~HDSPM_Professional;
3153	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3154
3155	return 0;
3156}
3157
3158#define snd_hdspm_info_professional	snd_ctl_boolean_mono_info
3159
3160static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
3161				      struct snd_ctl_elem_value *ucontrol)
3162{
3163	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3164
3165	spin_lock_irq(&hdspm->lock);
3166	ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
3167	spin_unlock_irq(&hdspm->lock);
3168	return 0;
3169}
3170
3171static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
3172				      struct snd_ctl_elem_value *ucontrol)
3173{
3174	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3175	int change;
3176	unsigned int val;
3177
3178	if (!snd_hdspm_use_is_exclusive(hdspm))
3179		return -EBUSY;
3180	val = ucontrol->value.integer.value[0] & 1;
3181	spin_lock_irq(&hdspm->lock);
3182	change = (int) val != hdspm_professional(hdspm);
3183	hdspm_set_professional(hdspm, val);
3184	spin_unlock_irq(&hdspm->lock);
3185	return change;
3186}
3187
3188#define HDSPM_INPUT_SELECT(xname, xindex) \
3189{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3190  .name = xname, \
3191  .index = xindex, \
3192  .info = snd_hdspm_info_input_select, \
3193  .get = snd_hdspm_get_input_select, \
3194  .put = snd_hdspm_put_input_select \
3195}
3196
3197static int hdspm_input_select(struct hdspm * hdspm)
3198{
3199	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3200}
3201
3202static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3203{
3204	if (out)
3205		hdspm->control_register |= HDSPM_InputSelect0;
3206	else
3207		hdspm->control_register &= ~HDSPM_InputSelect0;
3208	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3209
3210	return 0;
3211}
3212
3213static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3214				       struct snd_ctl_elem_info *uinfo)
3215{
3216	static char *texts[] = { "optical", "coaxial" };
3217
3218	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3219	uinfo->count = 1;
3220	uinfo->value.enumerated.items = 2;
3221
3222	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3223		uinfo->value.enumerated.item =
3224		    uinfo->value.enumerated.items - 1;
3225	strcpy(uinfo->value.enumerated.name,
3226	       texts[uinfo->value.enumerated.item]);
3227
3228	return 0;
3229}
3230
3231static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3232				      struct snd_ctl_elem_value *ucontrol)
3233{
3234	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3235
3236	spin_lock_irq(&hdspm->lock);
3237	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3238	spin_unlock_irq(&hdspm->lock);
3239	return 0;
3240}
3241
3242static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3243				      struct snd_ctl_elem_value *ucontrol)
3244{
3245	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3246	int change;
3247	unsigned int val;
3248
3249	if (!snd_hdspm_use_is_exclusive(hdspm))
3250		return -EBUSY;
3251	val = ucontrol->value.integer.value[0] & 1;
3252	spin_lock_irq(&hdspm->lock);
3253	change = (int) val != hdspm_input_select(hdspm);
3254	hdspm_set_input_select(hdspm, val);
3255	spin_unlock_irq(&hdspm->lock);
3256	return change;
3257}
3258
3259
3260#define HDSPM_DS_WIRE(xname, xindex) \
3261{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3262  .name = xname, \
3263  .index = xindex, \
3264  .info = snd_hdspm_info_ds_wire, \
3265  .get = snd_hdspm_get_ds_wire, \
3266  .put = snd_hdspm_put_ds_wire \
3267}
3268
3269static int hdspm_ds_wire(struct hdspm * hdspm)
3270{
3271	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3272}
3273
3274static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3275{
3276	if (ds)
3277		hdspm->control_register |= HDSPM_DS_DoubleWire;
3278	else
3279		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3280	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3281
3282	return 0;
3283}
3284
3285static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3286				  struct snd_ctl_elem_info *uinfo)
3287{
3288	static char *texts[] = { "Single", "Double" };
3289
3290	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3291	uinfo->count = 1;
3292	uinfo->value.enumerated.items = 2;
3293
3294	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3295		uinfo->value.enumerated.item =
3296		    uinfo->value.enumerated.items - 1;
3297	strcpy(uinfo->value.enumerated.name,
3298	       texts[uinfo->value.enumerated.item]);
3299
3300	return 0;
3301}
3302
3303static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3304				 struct snd_ctl_elem_value *ucontrol)
3305{
3306	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3307
3308	spin_lock_irq(&hdspm->lock);
3309	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3310	spin_unlock_irq(&hdspm->lock);
3311	return 0;
3312}
3313
3314static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3315				 struct snd_ctl_elem_value *ucontrol)
3316{
3317	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3318	int change;
3319	unsigned int val;
3320
3321	if (!snd_hdspm_use_is_exclusive(hdspm))
3322		return -EBUSY;
3323	val = ucontrol->value.integer.value[0] & 1;
3324	spin_lock_irq(&hdspm->lock);
3325	change = (int) val != hdspm_ds_wire(hdspm);
3326	hdspm_set_ds_wire(hdspm, val);
3327	spin_unlock_irq(&hdspm->lock);
3328	return change;
3329}
3330
3331
3332#define HDSPM_QS_WIRE(xname, xindex) \
3333{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3334  .name = xname, \
3335  .index = xindex, \
3336  .info = snd_hdspm_info_qs_wire, \
3337  .get = snd_hdspm_get_qs_wire, \
3338  .put = snd_hdspm_put_qs_wire \
3339}
3340
3341static int hdspm_qs_wire(struct hdspm * hdspm)
3342{
3343	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3344		return 1;
3345	if (hdspm->control_register & HDSPM_QS_QuadWire)
3346		return 2;
3347	return 0;
3348}
3349
3350static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3351{
3352	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3353	switch (mode) {
3354	case 0:
3355		break;
3356	case 1:
3357		hdspm->control_register |= HDSPM_QS_DoubleWire;
3358		break;
3359	case 2:
3360		hdspm->control_register |= HDSPM_QS_QuadWire;
3361		break;
3362	}
3363	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3364
3365	return 0;
3366}
3367
3368static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3369				       struct snd_ctl_elem_info *uinfo)
3370{
3371	static char *texts[] = { "Single", "Double", "Quad" };
3372
3373	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3374	uinfo->count = 1;
3375	uinfo->value.enumerated.items = 3;
3376
3377	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3378		uinfo->value.enumerated.item =
3379		    uinfo->value.enumerated.items - 1;
3380	strcpy(uinfo->value.enumerated.name,
3381	       texts[uinfo->value.enumerated.item]);
3382
3383	return 0;
3384}
3385
3386static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3387				      struct snd_ctl_elem_value *ucontrol)
3388{
3389	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3390
3391	spin_lock_irq(&hdspm->lock);
3392	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3393	spin_unlock_irq(&hdspm->lock);
3394	return 0;
3395}
3396
3397static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3398				      struct snd_ctl_elem_value *ucontrol)
3399{
3400	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3401	int change;
3402	int val;
3403
3404	if (!snd_hdspm_use_is_exclusive(hdspm))
3405		return -EBUSY;
3406	val = ucontrol->value.integer.value[0];
3407	if (val < 0)
3408		val = 0;
3409	if (val > 2)
3410		val = 2;
3411	spin_lock_irq(&hdspm->lock);
3412	change = val != hdspm_qs_wire(hdspm);
3413	hdspm_set_qs_wire(hdspm, val);
3414	spin_unlock_irq(&hdspm->lock);
3415	return change;
3416}
3417
3418
3419#define HDSPM_MIXER(xname, xindex) \
3420{ .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3421  .name = xname, \
3422  .index = xindex, \
3423  .device = 0, \
3424  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3425		 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3426  .info = snd_hdspm_info_mixer, \
3427  .get = snd_hdspm_get_mixer, \
3428  .put = snd_hdspm_put_mixer \
3429}
3430
3431static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3432				struct snd_ctl_elem_info *uinfo)
3433{
3434	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3435	uinfo->count = 3;
3436	uinfo->value.integer.min = 0;
3437	uinfo->value.integer.max = 65535;
3438	uinfo->value.integer.step = 1;
3439	return 0;
3440}
3441
3442static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3443			       struct snd_ctl_elem_value *ucontrol)
3444{
3445	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3446	int source;
3447	int destination;
3448
3449	source = ucontrol->value.integer.value[0];
3450	if (source < 0)
3451		source = 0;
3452	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3453		source = 2 * HDSPM_MAX_CHANNELS - 1;
3454
3455	destination = ucontrol->value.integer.value[1];
3456	if (destination < 0)
3457		destination = 0;
3458	else if (destination >= HDSPM_MAX_CHANNELS)
3459		destination = HDSPM_MAX_CHANNELS - 1;
3460
3461	spin_lock_irq(&hdspm->lock);
3462	if (source >= HDSPM_MAX_CHANNELS)
3463		ucontrol->value.integer.value[2] =
3464		    hdspm_read_pb_gain(hdspm, destination,
3465				       source - HDSPM_MAX_CHANNELS);
3466	else
3467		ucontrol->value.integer.value[2] =
3468		    hdspm_read_in_gain(hdspm, destination, source);
3469
3470	spin_unlock_irq(&hdspm->lock);
3471
3472	return 0;
3473}
3474
3475static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3476			       struct snd_ctl_elem_value *ucontrol)
3477{
3478	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3479	int change;
3480	int source;
3481	int destination;
3482	int gain;
3483
3484	if (!snd_hdspm_use_is_exclusive(hdspm))
3485		return -EBUSY;
3486
3487	source = ucontrol->value.integer.value[0];
3488	destination = ucontrol->value.integer.value[1];
3489
3490	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3491		return -1;
3492	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3493		return -1;
3494
3495	gain = ucontrol->value.integer.value[2];
3496
3497	spin_lock_irq(&hdspm->lock);
3498
3499	if (source >= HDSPM_MAX_CHANNELS)
3500		change = gain != hdspm_read_pb_gain(hdspm, destination,
3501						    source -
3502						    HDSPM_MAX_CHANNELS);
3503	else
3504		change = gain != hdspm_read_in_gain(hdspm, destination,
3505						    source);
3506
3507	if (change) {
3508		if (source >= HDSPM_MAX_CHANNELS)
3509			hdspm_write_pb_gain(hdspm, destination,
3510					    source - HDSPM_MAX_CHANNELS,
3511					    gain);
3512		else
3513			hdspm_write_in_gain(hdspm, destination, source,
3514					    gain);
3515	}
3516	spin_unlock_irq(&hdspm->lock);
3517
3518	return change;
3519}
3520
3521/* The simple mixer control(s) provide gain control for the
3522   basic 1:1 mappings of playback streams to output
3523   streams.
3524*/
3525
3526#define HDSPM_PLAYBACK_MIXER \
3527{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3528  .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3529		 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3530  .info = snd_hdspm_info_playback_mixer, \
3531  .get = snd_hdspm_get_playback_mixer, \
3532  .put = snd_hdspm_put_playback_mixer \
3533}
3534
3535static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3536					 struct snd_ctl_elem_info *uinfo)
3537{
3538	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3539	uinfo->count = 1;
3540	uinfo->value.integer.min = 0;
3541	uinfo->value.integer.max = 64;
3542	uinfo->value.integer.step = 1;
3543	return 0;
3544}
3545
3546static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3547					struct snd_ctl_elem_value *ucontrol)
3548{
3549	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3550	int channel;
3551
3552	channel = ucontrol->id.index - 1;
3553
3554	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3555		return -EINVAL;
3556
3557	spin_lock_irq(&hdspm->lock);
3558	ucontrol->value.integer.value[0] =
3559	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3560	spin_unlock_irq(&hdspm->lock);
3561
3562	return 0;
3563}
3564
3565static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3566					struct snd_ctl_elem_value *ucontrol)
3567{
3568	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3569	int change;
3570	int channel;
3571	int gain;
3572
3573	if (!snd_hdspm_use_is_exclusive(hdspm))
3574		return -EBUSY;
3575
3576	channel = ucontrol->id.index - 1;
3577
3578	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3579		return -EINVAL;
3580
3581	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3582
3583	spin_lock_irq(&hdspm->lock);
3584	change =
3585	    gain != hdspm_read_pb_gain(hdspm, channel,
3586				       channel);
3587	if (change)
3588		hdspm_write_pb_gain(hdspm, channel, channel,
3589				    gain);
3590	spin_unlock_irq(&hdspm->lock);
3591	return change;
3592}
3593
3594#define HDSPM_SYNC_CHECK(xname, xindex) \
3595{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3596	.name = xname, \
3597	.private_value = xindex, \
3598	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3599	.info = snd_hdspm_info_sync_check, \
3600	.get = snd_hdspm_get_sync_check \
3601}
3602
3603
3604static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3605				     struct snd_ctl_elem_info *uinfo)
3606{
3607	static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3608	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3609	uinfo->count = 1;
3610	uinfo->value.enumerated.items = 4;
3611	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3612		uinfo->value.enumerated.item =
3613			uinfo->value.enumerated.items - 1;
3614	strcpy(uinfo->value.enumerated.name,
3615			texts[uinfo->value.enumerated.item]);
3616	return 0;
3617}
3618
3619static int hdspm_wc_sync_check(struct hdspm *hdspm)
3620{
3621	int status, status2;
3622
3623	switch (hdspm->io_type) {
3624	case AES32:
3625		status = hdspm_read(hdspm, HDSPM_statusRegister);
3626		if (status & HDSPM_wcSync)
3627			return 2;
3628		else if (status & HDSPM_wcLock)
3629			return 1;
3630		return 0;
3631		break;
3632
3633	case MADI:
3634		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3635		if (status2 & HDSPM_wcLock) {
3636			if (status2 & HDSPM_wcSync)
3637				return 2;
3638			else
3639				return 1;
3640		}
3641		return 0;
3642		break;
3643
3644	case RayDAT:
3645	case AIO:
3646		status = hdspm_read(hdspm, HDSPM_statusRegister);
3647
3648		if (status & 0x2000000)
3649			return 2;
3650		else if (status & 0x1000000)
3651			return 1;
3652		return 0;
3653
3654		break;
3655
3656	case MADIface:
3657		break;
3658	}
3659
3660
3661	return 3;
3662}
3663
3664
3665static int hdspm_madi_sync_check(struct hdspm *hdspm)
3666{
3667	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3668	if (status & HDSPM_madiLock) {
3669		if (status & HDSPM_madiSync)
3670			return 2;
3671		else
3672			return 1;
3673	}
3674	return 0;
3675}
3676
3677
3678static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3679{
3680	int status, lock, sync;
3681
3682	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3683
3684	lock = (status & (0x1<<idx)) ? 1 : 0;
3685	sync = (status & (0x100<<idx)) ? 1 : 0;
3686
3687	if (lock && sync)
3688		return 2;
3689	else if (lock)
3690		return 1;
3691	return 0;
3692}
3693
3694
3695static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3696{
3697	int status, lock = 0, sync = 0;
3698
3699	switch (hdspm->io_type) {
3700	case RayDAT:
3701	case AIO:
3702		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3703		lock = (status & 0x400) ? 1 : 0;
3704		sync = (status & 0x800) ? 1 : 0;
3705		break;
3706
3707	case MADI:
3708	case AES32:
3709		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3710		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3711		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3712		break;
3713
3714	case MADIface:
3715		break;
3716	}
3717
3718	if (lock && sync)
3719		return 2;
3720	else if (lock)
3721		return 1;
3722
3723	return 0;
3724}
3725
3726static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3727{
3728	int status2, lock, sync;
3729	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3730
3731	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3732	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3733
3734	if (sync)
3735		return 2;
3736	else if (lock)
3737		return 1;
3738	return 0;
3739}
3740
3741
3742static int hdspm_tco_sync_check(struct hdspm *hdspm)
3743{
3744	int status;
3745
3746	if (hdspm->tco) {
3747		switch (hdspm->io_type) {
3748		case MADI:
3749		case AES32:
3750			status = hdspm_read(hdspm, HDSPM_statusRegister);
3751			if (status & HDSPM_tcoLock) {
3752				if (status & HDSPM_tcoSync)
3753					return 2;
3754				else
3755					return 1;
3756			}
3757			return 0;
3758
3759			break;
3760
3761		case RayDAT:
3762		case AIO:
3763			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3764
3765			if (status & 0x8000000)
3766				return 2; /* Sync */
3767			if (status & 0x4000000)
3768				return 1; /* Lock */
3769			return 0; /* No signal */
3770			break;
3771
3772		default:
3773			break;
3774		}
3775	}
3776
3777	return 3; /* N/A */
3778}
3779
3780
3781static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
3782				    struct snd_ctl_elem_value *ucontrol)
3783{
3784	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3785	int val = -1;
3786
3787	switch (hdspm->io_type) {
3788	case RayDAT:
3789		switch (kcontrol->private_value) {
3790		case 0: /* WC */
3791			val = hdspm_wc_sync_check(hdspm); break;
3792		case 7: /* TCO */
3793			val = hdspm_tco_sync_check(hdspm); break;
3794		case 8: /* SYNC IN */
3795			val = hdspm_sync_in_sync_check(hdspm); break;
3796		default:
3797			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3798		}
3799
3800	case AIO:
3801		switch (kcontrol->private_value) {
3802		case 0: /* WC */
3803			val = hdspm_wc_sync_check(hdspm); break;
3804		case 4: /* TCO */
3805			val = hdspm_tco_sync_check(hdspm); break;
3806		case 5: /* SYNC IN */
3807			val = hdspm_sync_in_sync_check(hdspm); break;
3808		default:
3809			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3810		}
3811
3812	case MADI:
3813		switch (kcontrol->private_value) {
3814		case 0: /* WC */
3815			val = hdspm_wc_sync_check(hdspm); break;
3816		case 1: /* MADI */
3817			val = hdspm_madi_sync_check(hdspm); break;
3818		case 2: /* TCO */
3819			val = hdspm_tco_sync_check(hdspm); break;
3820		case 3: /* SYNC_IN */
3821			val = hdspm_sync_in_sync_check(hdspm); break;
3822		}
3823
3824	case MADIface:
3825		val = hdspm_madi_sync_check(hdspm); /* MADI */
3826		break;
3827
3828	case AES32:
3829		switch (kcontrol->private_value) {
3830		case 0: /* WC */
3831			val = hdspm_wc_sync_check(hdspm); break;
3832		case 9: /* TCO */
3833			val = hdspm_tco_sync_check(hdspm); break;
3834		case 10 /* SYNC IN */:
3835			val = hdspm_sync_in_sync_check(hdspm); break;
3836		default: /* AES1 to AES8 */
3837			 val = hdspm_aes_sync_check(hdspm,
3838					 kcontrol->private_value-1);
3839		}
3840
3841	}
3842
3843	if (-1 == val)
3844		val = 3;
3845
3846	ucontrol->value.enumerated.item[0] = val;
3847	return 0;
3848}
3849
3850
3851
3852/**
3853 * TCO controls
3854 **/
3855static void hdspm_tco_write(struct hdspm *hdspm)
3856{
3857	unsigned int tc[4] = { 0, 0, 0, 0};
3858
3859	switch (hdspm->tco->input) {
3860	case 0:
3861		tc[2] |= HDSPM_TCO2_set_input_MSB;
3862		break;
3863	case 1:
3864		tc[2] |= HDSPM_TCO2_set_input_LSB;
3865		break;
3866	default:
3867		break;
3868	}
3869
3870	switch (hdspm->tco->framerate) {
3871	case 1:
3872		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
3873		break;
3874	case 2:
3875		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
3876		break;
3877	case 3:
3878		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
3879			HDSPM_TCO1_set_drop_frame_flag;
3880		break;
3881	case 4:
3882		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3883			HDSPM_TCO1_LTC_Format_MSB;
3884		break;
3885	case 5:
3886		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3887			HDSPM_TCO1_LTC_Format_MSB +
3888			HDSPM_TCO1_set_drop_frame_flag;
3889		break;
3890	default:
3891		break;
3892	}
3893
3894	switch (hdspm->tco->wordclock) {
3895	case 1:
3896		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
3897		break;
3898	case 2:
3899		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
3900		break;
3901	default:
3902		break;
3903	}
3904
3905	switch (hdspm->tco->samplerate) {
3906	case 1:
3907		tc[2] |= HDSPM_TCO2_set_freq;
3908		break;
3909	case 2:
3910		tc[2] |= HDSPM_TCO2_set_freq_from_app;
3911		break;
3912	default:
3913		break;
3914	}
3915
3916	switch (hdspm->tco->pull) {
3917	case 1:
3918		tc[2] |= HDSPM_TCO2_set_pull_up;
3919		break;
3920	case 2:
3921		tc[2] |= HDSPM_TCO2_set_pull_down;
3922		break;
3923	case 3:
3924		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
3925		break;
3926	case 4:
3927		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
3928		break;
3929	default:
3930		break;
3931	}
3932
3933	if (1 == hdspm->tco->term) {
3934		tc[2] |= HDSPM_TCO2_set_term_75R;
3935	}
3936
3937	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
3938	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
3939	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
3940	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
3941}
3942
3943
3944#define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
3945{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3946	.name = xname, \
3947	.index = xindex, \
3948	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3949		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3950	.info = snd_hdspm_info_tco_sample_rate, \
3951	.get = snd_hdspm_get_tco_sample_rate, \
3952	.put = snd_hdspm_put_tco_sample_rate \
3953}
3954
3955static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
3956					  struct snd_ctl_elem_info *uinfo)
3957{
3958	static char *texts[] = { "44.1 kHz", "48 kHz" };
3959	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3960	uinfo->count = 1;
3961	uinfo->value.enumerated.items = 2;
3962
3963	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3964		uinfo->value.enumerated.item =
3965			uinfo->value.enumerated.items - 1;
3966
3967	strcpy(uinfo->value.enumerated.name,
3968			texts[uinfo->value.enumerated.item]);
3969
3970	return 0;
3971}
3972
3973static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
3974				      struct snd_ctl_elem_value *ucontrol)
3975{
3976	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3977
3978	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
3979
3980	return 0;
3981}
3982
3983static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
3984					 struct snd_ctl_elem_value *ucontrol)
3985{
3986	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3987
3988	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
3989		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
3990
3991		hdspm_tco_write(hdspm);
3992
3993		return 1;
3994	}
3995
3996	return 0;
3997}
3998
3999
4000#define HDSPM_TCO_PULL(xname, xindex) \
4001{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4002	.name = xname, \
4003	.index = xindex, \
4004	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4005		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4006	.info = snd_hdspm_info_tco_pull, \
4007	.get = snd_hdspm_get_tco_pull, \
4008	.put = snd_hdspm_put_tco_pull \
4009}
4010
4011static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4012				   struct snd_ctl_elem_info *uinfo)
4013{
4014	static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" };
4015	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4016	uinfo->count = 1;
4017	uinfo->value.enumerated.items = 5;
4018
4019	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4020		uinfo->value.enumerated.item =
4021			uinfo->value.enumerated.items - 1;
4022
4023	strcpy(uinfo->value.enumerated.name,
4024			texts[uinfo->value.enumerated.item]);
4025
4026	return 0;
4027}
4028
4029static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4030				  struct snd_ctl_elem_value *ucontrol)
4031{
4032	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4033
4034	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4035
4036	return 0;
4037}
4038
4039static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4040				  struct snd_ctl_elem_value *ucontrol)
4041{
4042	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4043
4044	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4045		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4046
4047		hdspm_tco_write(hdspm);
4048
4049		return 1;
4050	}
4051
4052	return 0;
4053}
4054
4055#define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4056{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4057	.name = xname, \
4058	.index = xindex, \
4059	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4060			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4061	.info = snd_hdspm_info_tco_wck_conversion, \
4062	.get = snd_hdspm_get_tco_wck_conversion, \
4063	.put = snd_hdspm_put_tco_wck_conversion \
4064}
4065
4066static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4067					     struct snd_ctl_elem_info *uinfo)
4068{
4069	static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4070	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4071	uinfo->count = 1;
4072	uinfo->value.enumerated.items = 3;
4073
4074	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4075		uinfo->value.enumerated.item =
4076			uinfo->value.enumerated.items - 1;
4077
4078	strcpy(uinfo->value.enumerated.name,
4079			texts[uinfo->value.enumerated.item]);
4080
4081	return 0;
4082}
4083
4084static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4085					    struct snd_ctl_elem_value *ucontrol)
4086{
4087	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4088
4089	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4090
4091	return 0;
4092}
4093
4094static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4095					    struct snd_ctl_elem_value *ucontrol)
4096{
4097	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4098
4099	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4100		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4101
4102		hdspm_tco_write(hdspm);
4103
4104		return 1;
4105	}
4106
4107	return 0;
4108}
4109
4110
4111#define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4112{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4113	.name = xname, \
4114	.index = xindex, \
4115	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4116			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4117	.info = snd_hdspm_info_tco_frame_rate, \
4118	.get = snd_hdspm_get_tco_frame_rate, \
4119	.put = snd_hdspm_put_tco_frame_rate \
4120}
4121
4122static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4123					  struct snd_ctl_elem_info *uinfo)
4124{
4125	static char *texts[] = { "24 fps", "25 fps", "29.97fps",
4126		"29.97 dfps", "30 fps", "30 dfps" };
4127	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4128	uinfo->count = 1;
4129	uinfo->value.enumerated.items = 6;
4130
4131	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4132		uinfo->value.enumerated.item =
4133			uinfo->value.enumerated.items - 1;
4134
4135	strcpy(uinfo->value.enumerated.name,
4136			texts[uinfo->value.enumerated.item]);
4137
4138	return 0;
4139}
4140
4141static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4142					struct snd_ctl_elem_value *ucontrol)
4143{
4144	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4145
4146	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4147
4148	return 0;
4149}
4150
4151static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4152					struct snd_ctl_elem_value *ucontrol)
4153{
4154	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4155
4156	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4157		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4158
4159		hdspm_tco_write(hdspm);
4160
4161		return 1;
4162	}
4163
4164	return 0;
4165}
4166
4167
4168#define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4169{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4170	.name = xname, \
4171	.index = xindex, \
4172	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4173			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4174	.info = snd_hdspm_info_tco_sync_source, \
4175	.get = snd_hdspm_get_tco_sync_source, \
4176	.put = snd_hdspm_put_tco_sync_source \
4177}
4178
4179static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4180					  struct snd_ctl_elem_info *uinfo)
4181{
4182	static char *texts[] = { "LTC", "Video", "WCK" };
4183	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4184	uinfo->count = 1;
4185	uinfo->value.enumerated.items = 3;
4186
4187	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4188		uinfo->value.enumerated.item =
4189			uinfo->value.enumerated.items - 1;
4190
4191	strcpy(uinfo->value.enumerated.name,
4192			texts[uinfo->value.enumerated.item]);
4193
4194	return 0;
4195}
4196
4197static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4198					 struct snd_ctl_elem_value *ucontrol)
4199{
4200	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4201
4202	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4203
4204	return 0;
4205}
4206
4207static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4208					 struct snd_ctl_elem_value *ucontrol)
4209{
4210	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4211
4212	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4213		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4214
4215		hdspm_tco_write(hdspm);
4216
4217		return 1;
4218	}
4219
4220	return 0;
4221}
4222
4223
4224#define HDSPM_TCO_WORD_TERM(xname, xindex) \
4225{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4226	.name = xname, \
4227	.index = xindex, \
4228	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4229			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4230	.info = snd_hdspm_info_tco_word_term, \
4231	.get = snd_hdspm_get_tco_word_term, \
4232	.put = snd_hdspm_put_tco_word_term \
4233}
4234
4235static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4236					struct snd_ctl_elem_info *uinfo)
4237{
4238	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4239	uinfo->count = 1;
4240	uinfo->value.integer.min = 0;
4241	uinfo->value.integer.max = 1;
4242
4243	return 0;
4244}
4245
4246
4247static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4248				       struct snd_ctl_elem_value *ucontrol)
4249{
4250	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4251
4252	ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4253
4254	return 0;
4255}
4256
4257
4258static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4259				       struct snd_ctl_elem_value *ucontrol)
4260{
4261	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4262
4263	if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4264		hdspm->tco->term = ucontrol->value.enumerated.item[0];
4265
4266		hdspm_tco_write(hdspm);
4267
4268		return 1;
4269	}
4270
4271	return 0;
4272}
4273
4274
4275
4276
4277static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4278	HDSPM_MIXER("Mixer", 0),
4279	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4280	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4281	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4282	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4283	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4284	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4285	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4286	HDSPM_SYNC_CHECK("TCO SyncCHeck", 2),
4287	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4288	HDSPM_LINE_OUT("Line Out", 0),
4289	HDSPM_TX_64("TX 64 channels mode", 0),
4290	HDSPM_C_TMS("Clear Track Marker", 0),
4291	HDSPM_SAFE_MODE("Safe Mode", 0),
4292	HDSPM_INPUT_SELECT("Input Select", 0)
4293};
4294
4295
4296static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4297	HDSPM_MIXER("Mixer", 0),
4298	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4299	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4300	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4301	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4302	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4303	HDSPM_TX_64("TX 64 channels mode", 0),
4304	HDSPM_C_TMS("Clear Track Marker", 0),
4305	HDSPM_SAFE_MODE("Safe Mode", 0)
4306};
4307
4308static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4309	HDSPM_MIXER("Mixer", 0),
4310	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4311	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4312	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4313	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4314	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4315	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4316	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4317	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4318	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4319	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4320	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4321	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4322	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4323	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4324	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4325	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4326	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4327	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5)
4328
4329		/*
4330		   HDSPM_INPUT_SELECT("Input Select", 0),
4331		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4332		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4333		   HDSPM_SPDIF_IN("SPDIF In", 0);
4334		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4335		   HDSPM_INPUT_LEVEL("Input Level", 0);
4336		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4337		   HDSPM_PHONES("Phones", 0);
4338		   */
4339};
4340
4341static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4342	HDSPM_MIXER("Mixer", 0),
4343	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4344	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4345	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4346	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4347	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4348	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4349	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4350	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4351	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4352	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4353	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4354	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4355	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4356	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4357	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4358	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4359	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4360	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4361	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4362	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4363	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4364	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8)
4365};
4366
4367static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4368	HDSPM_MIXER("Mixer", 0),
4369	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4370	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4371	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4372	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4373	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4374	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4375	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4376	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4377	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4378	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4379	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4380	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4381	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4382	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4383	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4384	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4385	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4386	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4387	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4388	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4389	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4390	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4391	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4392	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4393	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4394	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4395	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4396	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4397	HDSPM_LINE_OUT("Line Out", 0),
4398	HDSPM_EMPHASIS("Emphasis", 0),
4399	HDSPM_DOLBY("Non Audio", 0),
4400	HDSPM_PROFESSIONAL("Professional", 0),
4401	HDSPM_C_TMS("Clear Track Marker", 0),
4402	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4403	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4404};
4405
4406
4407
4408/* Control elements for the optional TCO module */
4409static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4410	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4411	HDSPM_TCO_PULL("TCO Pull", 0),
4412	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4413	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4414	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4415	HDSPM_TCO_WORD_TERM("TCO Word Term", 0)
4416};
4417
4418
4419static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4420
4421
4422static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4423{
4424	int i;
4425
4426	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4427		if (hdspm->system_sample_rate > 48000) {
4428			hdspm->playback_mixer_ctls[i]->vd[0].access =
4429				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4430				SNDRV_CTL_ELEM_ACCESS_READ |
4431				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4432		} else {
4433			hdspm->playback_mixer_ctls[i]->vd[0].access =
4434				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4435				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4436		}
4437		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4438				SNDRV_CTL_EVENT_MASK_INFO,
4439				&hdspm->playback_mixer_ctls[i]->id);
4440	}
4441
4442	return 0;
4443}
4444
4445
4446static int snd_hdspm_create_controls(struct snd_card *card,
4447					struct hdspm *hdspm)
4448{
4449	unsigned int idx, limit;
4450	int err;
4451	struct snd_kcontrol *kctl;
4452	struct snd_kcontrol_new *list = NULL;
4453
4454	switch (hdspm->io_type) {
4455	case MADI:
4456		list = snd_hdspm_controls_madi;
4457		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4458		break;
4459	case MADIface:
4460		list = snd_hdspm_controls_madiface;
4461		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4462		break;
4463	case AIO:
4464		list = snd_hdspm_controls_aio;
4465		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4466		break;
4467	case RayDAT:
4468		list = snd_hdspm_controls_raydat;
4469		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4470		break;
4471	case AES32:
4472		list = snd_hdspm_controls_aes32;
4473		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4474		break;
4475	}
4476
4477	if (NULL != list) {
4478		for (idx = 0; idx < limit; idx++) {
4479			err = snd_ctl_add(card,
4480					snd_ctl_new1(&list[idx], hdspm));
4481			if (err < 0)
4482				return err;
4483		}
4484	}
4485
4486
4487	/* create simple 1:1 playback mixer controls */
4488	snd_hdspm_playback_mixer.name = "Chn";
4489	if (hdspm->system_sample_rate >= 128000) {
4490		limit = hdspm->qs_out_channels;
4491	} else if (hdspm->system_sample_rate >= 64000) {
4492		limit = hdspm->ds_out_channels;
4493	} else {
4494		limit = hdspm->ss_out_channels;
4495	}
4496	for (idx = 0; idx < limit; ++idx) {
4497		snd_hdspm_playback_mixer.index = idx + 1;
4498		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4499		err = snd_ctl_add(card, kctl);
4500		if (err < 0)
4501			return err;
4502		hdspm->playback_mixer_ctls[idx] = kctl;
4503	}
4504
4505
4506	if (hdspm->tco) {
4507		/* add tco control elements */
4508		list = snd_hdspm_controls_tco;
4509		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4510		for (idx = 0; idx < limit; idx++) {
4511			err = snd_ctl_add(card,
4512					snd_ctl_new1(&list[idx], hdspm));
4513			if (err < 0)
4514				return err;
4515		}
4516	}
4517
4518	return 0;
4519}
4520
4521/*------------------------------------------------------------
4522   /proc interface
4523 ------------------------------------------------------------*/
4524
4525static void
4526snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
4527			 struct snd_info_buffer *buffer)
4528{
4529	struct hdspm *hdspm = entry->private_data;
4530	unsigned int status, status2, control, freq;
4531
4532	char *pref_sync_ref;
4533	char *autosync_ref;
4534	char *system_clock_mode;
4535	char *insel;
4536	int x, x2;
4537
4538	/* TCO stuff */
4539	int a, ltc, frames, seconds, minutes, hours;
4540	unsigned int period;
4541	u64 freq_const = 0;
4542	u32 rate;
4543
4544	status = hdspm_read(hdspm, HDSPM_statusRegister);
4545	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4546	control = hdspm->control_register;
4547	freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
4548
4549	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4550			hdspm->card_name, hdspm->card->number + 1,
4551			hdspm->firmware_rev,
4552			(status2 & HDSPM_version0) |
4553			(status2 & HDSPM_version1) | (status2 &
4554				HDSPM_version2));
4555
4556	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4557			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4558			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);
4559
4560	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4561			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4562
4563	snd_iprintf(buffer, "--- System ---\n");
4564
4565	snd_iprintf(buffer,
4566		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4567		status & HDSPM_audioIRQPending,
4568		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4569		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4570		hdspm->irq_count);
4571	snd_iprintf(buffer,
4572		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4573		"estimated= %ld (bytes)\n",
4574		((status & HDSPM_BufferID) ? 1 : 0),
4575		(status & HDSPM_BufferPositionMask),
4576		(status & HDSPM_BufferPositionMask) %
4577		(2 * (int)hdspm->period_bytes),
4578		((status & HDSPM_BufferPositionMask) - 64) %
4579		(2 * (int)hdspm->period_bytes),
4580		(long) hdspm_hw_pointer(hdspm) * 4);
4581
4582	snd_iprintf(buffer,
4583		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4584		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4585		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4586		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4587		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4588	snd_iprintf(buffer,
4589		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4590		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4591		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4592	snd_iprintf(buffer,
4593		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4594		"status2=0x%x\n",
4595		hdspm->control_register, hdspm->control2_register,
4596		status, status2);
4597	if (status & HDSPM_tco_detect) {
4598		snd_iprintf(buffer, "TCO module detected.\n");
4599		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4600		if (a & HDSPM_TCO1_LTC_Input_valid) {
4601			snd_iprintf(buffer, "  LTC valid, ");
4602			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4603						HDSPM_TCO1_LTC_Format_MSB)) {
4604			case 0:
4605				snd_iprintf(buffer, "24 fps, ");
4606				break;
4607			case HDSPM_TCO1_LTC_Format_LSB:
4608				snd_iprintf(buffer, "25 fps, ");
4609				break;
4610			case HDSPM_TCO1_LTC_Format_MSB:
4611				snd_iprintf(buffer, "29.97 fps, ");
4612				break;
4613			default:
4614				snd_iprintf(buffer, "30 fps, ");
4615				break;
4616			}
4617			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4618				snd_iprintf(buffer, "drop frame\n");
4619			} else {
4620				snd_iprintf(buffer, "full frame\n");
4621			}
4622		} else {
4623			snd_iprintf(buffer, "  no LTC\n");
4624		}
4625		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4626			snd_iprintf(buffer, "  Video: NTSC\n");
4627		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4628			snd_iprintf(buffer, "  Video: PAL\n");
4629		} else {
4630			snd_iprintf(buffer, "  No video\n");
4631		}
4632		if (a & HDSPM_TCO1_TCO_lock) {
4633			snd_iprintf(buffer, "  Sync: lock\n");
4634		} else {
4635			snd_iprintf(buffer, "  Sync: no lock\n");
4636		}
4637
4638		switch (hdspm->io_type) {
4639		case MADI:
4640		case AES32:
4641			freq_const = 110069313433624ULL;
4642			break;
4643		case RayDAT:
4644		case AIO:
4645			freq_const = 104857600000000ULL;
4646			break;
4647		case MADIface:
4648			break; /* no TCO possible */
4649		}
4650
4651		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4652		snd_iprintf(buffer, "    period: %u\n", period);
4653
4654
4655		/* rate = freq_const/period; */
4656		rate = div_u64(freq_const, period);
4657
4658		if (control & HDSPM_QuadSpeed) {
4659			rate *= 4;
4660		} else if (control & HDSPM_DoubleSpeed) {
4661			rate *= 2;
4662		}
4663
4664		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4665				(unsigned int) rate);
4666
4667		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4668		frames = ltc & 0xF;
4669		ltc >>= 4;
4670		frames += (ltc & 0x3) * 10;
4671		ltc >>= 4;
4672		seconds = ltc & 0xF;
4673		ltc >>= 4;
4674		seconds += (ltc & 0x7) * 10;
4675		ltc >>= 4;
4676		minutes = ltc & 0xF;
4677		ltc >>= 4;
4678		minutes += (ltc & 0x7) * 10;
4679		ltc >>= 4;
4680		hours = ltc & 0xF;
4681		ltc >>= 4;
4682		hours += (ltc & 0x3) * 10;
4683		snd_iprintf(buffer,
4684			"  LTC In: %02d:%02d:%02d:%02d\n",
4685			hours, minutes, seconds, frames);
4686
4687	} else {
4688		snd_iprintf(buffer, "No TCO module detected.\n");
4689	}
4690
4691	snd_iprintf(buffer, "--- Settings ---\n");
4692
4693	x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
4694							HDSPM_LatencyMask));
4695
4696	snd_iprintf(buffer,
4697		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4698		x, (unsigned long) hdspm->period_bytes);
4699
4700	snd_iprintf(buffer, "Line out: %s\n",
4701		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4702
4703	switch (hdspm->control_register & HDSPM_InputMask) {
4704	case HDSPM_InputOptical:
4705		insel = "Optical";
4706		break;
4707	case HDSPM_InputCoaxial:
4708		insel = "Coaxial";
4709		break;
4710	default:
4711		insel = "Unkown";
4712	}
4713
4714	snd_iprintf(buffer,
4715		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4716		"Auto Input %s\n",
4717		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4718		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4719		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4720
4721
4722	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4723		system_clock_mode = "AutoSync";
4724	else
4725		system_clock_mode = "Master";
4726	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4727
4728	switch (hdspm_pref_sync_ref(hdspm)) {
4729	case HDSPM_SYNC_FROM_WORD:
4730		pref_sync_ref = "Word Clock";
4731		break;
4732	case HDSPM_SYNC_FROM_MADI:
4733		pref_sync_ref = "MADI Sync";
4734		break;
4735	case HDSPM_SYNC_FROM_TCO:
4736		pref_sync_ref = "TCO";
4737		break;
4738	case HDSPM_SYNC_FROM_SYNC_IN:
4739		pref_sync_ref = "Sync In";
4740		break;
4741	default:
4742		pref_sync_ref = "XXXX Clock";
4743		break;
4744	}
4745	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4746			pref_sync_ref);
4747
4748	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4749			hdspm->system_sample_rate);
4750
4751
4752	snd_iprintf(buffer, "--- Status:\n");
4753
4754	x = status & HDSPM_madiSync;
4755	x2 = status2 & HDSPM_wcSync;
4756
4757	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4758			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4759			"NoLock",
4760			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4761			"NoLock");
4762
4763	switch (hdspm_autosync_ref(hdspm)) {
4764	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4765		autosync_ref = "Sync In";
4766		break;
4767	case HDSPM_AUTOSYNC_FROM_TCO:
4768		autosync_ref = "TCO";
4769		break;
4770	case HDSPM_AUTOSYNC_FROM_WORD:
4771		autosync_ref = "Word Clock";
4772		break;
4773	case HDSPM_AUTOSYNC_FROM_MADI:
4774		autosync_ref = "MADI Sync";
4775		break;
4776	case HDSPM_AUTOSYNC_FROM_NONE:
4777		autosync_ref = "Input not valid";
4778		break;
4779	default:
4780		autosync_ref = "---";
4781		break;
4782	}
4783	snd_iprintf(buffer,
4784		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
4785		autosync_ref, hdspm_external_sample_rate(hdspm),
4786		(status & HDSPM_madiFreqMask) >> 22,
4787		(status2 & HDSPM_wcFreqMask) >> 5);
4788
4789	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
4790		(status & HDSPM_AB_int) ? "Coax" : "Optical",
4791		(status & HDSPM_RX_64ch) ? "64 channels" :
4792		"56 channels");
4793
4794	snd_iprintf(buffer, "\n");
4795}
4796
4797static void
4798snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
4799			  struct snd_info_buffer *buffer)
4800{
4801	struct hdspm *hdspm = entry->private_data;
4802	unsigned int status;
4803	unsigned int status2;
4804	unsigned int timecode;
4805	int pref_syncref;
4806	char *autosync_ref;
4807	int x;
4808
4809	status = hdspm_read(hdspm, HDSPM_statusRegister);
4810	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4811	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
4812
4813	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
4814		    hdspm->card_name, hdspm->card->number + 1,
4815		    hdspm->firmware_rev);
4816
4817	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4818		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4819
4820	snd_iprintf(buffer, "--- System ---\n");
4821
4822	snd_iprintf(buffer,
4823		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4824		    status & HDSPM_audioIRQPending,
4825		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
4826		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
4827		    hdspm->irq_count);
4828	snd_iprintf(buffer,
4829		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
4830		    "estimated= %ld (bytes)\n",
4831		    ((status & HDSPM_BufferID) ? 1 : 0),
4832		    (status & HDSPM_BufferPositionMask),
4833		    (status & HDSPM_BufferPositionMask) %
4834		    (2 * (int)hdspm->period_bytes),
4835		    ((status & HDSPM_BufferPositionMask) - 64) %
4836		    (2 * (int)hdspm->period_bytes),
4837		    (long) hdspm_hw_pointer(hdspm) * 4);
4838
4839	snd_iprintf(buffer,
4840		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4841		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4842		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4843		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4844		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4845	snd_iprintf(buffer,
4846		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4847		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4848		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4849	snd_iprintf(buffer,
4850		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4851		    "status2=0x%x\n",
4852		    hdspm->control_register, hdspm->control2_register,
4853		    status, status2);
4854
4855	snd_iprintf(buffer, "--- Settings ---\n");
4856
4857	x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
4858				HDSPM_LatencyMask));
4859
4860	snd_iprintf(buffer,
4861		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4862		    x, (unsigned long) hdspm->period_bytes);
4863
4864	snd_iprintf(buffer, "Line out: %s\n",
4865		    (hdspm->
4866		     control_register & HDSPM_LineOut) ? "on " : "off");
4867
4868	snd_iprintf(buffer,
4869		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
4870		    (hdspm->
4871		     control_register & HDSPM_clr_tms) ? "on" : "off",
4872		    (hdspm->
4873		     control_register & HDSPM_Emphasis) ? "on" : "off",
4874		    (hdspm->
4875		     control_register & HDSPM_Dolby) ? "on" : "off");
4876
4877
4878	pref_syncref = hdspm_pref_sync_ref(hdspm);
4879	if (pref_syncref == 0)
4880		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
4881	else
4882		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
4883				pref_syncref);
4884
4885	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4886		    hdspm->system_sample_rate);
4887
4888	snd_iprintf(buffer, "Double speed: %s\n",
4889			hdspm->control_register & HDSPM_DS_DoubleWire?
4890			"Double wire" : "Single wire");
4891	snd_iprintf(buffer, "Quad speed: %s\n",
4892			hdspm->control_register & HDSPM_QS_DoubleWire?
4893			"Double wire" :
4894			hdspm->control_register & HDSPM_QS_QuadWire?
4895			"Quad wire" : "Single wire");
4896
4897	snd_iprintf(buffer, "--- Status:\n");
4898
4899	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
4900		    (status & HDSPM_AES32_wcLock) ? "Sync   " : "No Lock",
4901		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
4902
4903	for (x = 0; x < 8; x++) {
4904		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
4905			    x+1,
4906			    (status2 & (HDSPM_LockAES >> x)) ?
4907			    "Sync   " : "No Lock",
4908			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
4909	}
4910
4911	switch (hdspm_autosync_ref(hdspm)) {
4912	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
4913		autosync_ref = "None"; break;
4914	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
4915		autosync_ref = "Word Clock"; break;
4916	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
4917		autosync_ref = "AES1"; break;
4918	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
4919		autosync_ref = "AES2"; break;
4920	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
4921		autosync_ref = "AES3"; break;
4922	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
4923		autosync_ref = "AES4"; break;
4924	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
4925		autosync_ref = "AES5"; break;
4926	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
4927		autosync_ref = "AES6"; break;
4928	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
4929		autosync_ref = "AES7"; break;
4930	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
4931		autosync_ref = "AES8"; break;
4932	default:
4933		autosync_ref = "---"; break;
4934	}
4935	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
4936
4937	snd_iprintf(buffer, "\n");
4938}
4939
4940static void
4941snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
4942			 struct snd_info_buffer *buffer)
4943{
4944	struct hdspm *hdspm = entry->private_data;
4945	unsigned int status1, status2, status3, control, i;
4946	unsigned int lock, sync;
4947
4948	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
4949	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
4950	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
4951
4952	control = hdspm->control_register;
4953
4954	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
4955	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
4956	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
4957
4958
4959	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
4960
4961	snd_iprintf(buffer, "Clock mode      : %s\n",
4962		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
4963	snd_iprintf(buffer, "System frequency: %d Hz\n",
4964		hdspm_get_system_sample_rate(hdspm));
4965
4966	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
4967
4968	lock = 0x1;
4969	sync = 0x100;
4970
4971	for (i = 0; i < 8; i++) {
4972		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
4973				i,
4974				(status1 & lock) ? 1 : 0,
4975				(status1 & sync) ? 1 : 0,
4976				texts_freq[(status2 >> (i * 4)) & 0xF]);
4977
4978		lock = lock<<1;
4979		sync = sync<<1;
4980	}
4981
4982	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
4983			(status1 & 0x1000000) ? 1 : 0,
4984			(status1 & 0x2000000) ? 1 : 0,
4985			texts_freq[(status1 >> 16) & 0xF]);
4986
4987	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
4988			(status1 & 0x4000000) ? 1 : 0,
4989			(status1 & 0x8000000) ? 1 : 0,
4990			texts_freq[(status1 >> 20) & 0xF]);
4991
4992	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
4993			(status3 & 0x400) ? 1 : 0,
4994			(status3 & 0x800) ? 1 : 0,
4995			texts_freq[(status2 >> 12) & 0xF]);
4996
4997}
4998
4999#ifdef CONFIG_SND_DEBUG
5000static void
5001snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5002			  struct snd_info_buffer *buffer)
5003{
5004	struct hdspm *hdspm = entry->private_data;
5005
5006	int j,i;
5007
5008	for (i = 0; i < 256 /* 1024*64 */; i += j) {
5009		snd_iprintf(buffer, "0x%08X: ", i);
5010		for (j = 0; j < 16; j += 4)
5011			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5012		snd_iprintf(buffer, "\n");
5013	}
5014}
5015#endif
5016
5017
5018static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5019			  struct snd_info_buffer *buffer)
5020{
5021	struct hdspm *hdspm = entry->private_data;
5022	int i;
5023
5024	snd_iprintf(buffer, "# generated by hdspm\n");
5025
5026	for (i = 0; i < hdspm->max_channels_in; i++) {
5027		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5028	}
5029}
5030
5031static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5032			  struct snd_info_buffer *buffer)
5033{
5034	struct hdspm *hdspm = entry->private_data;
5035	int i;
5036
5037	snd_iprintf(buffer, "# generated by hdspm\n");
5038
5039	for (i = 0; i < hdspm->max_channels_out; i++) {
5040		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5041	}
5042}
5043
5044
5045static void __devinit snd_hdspm_proc_init(struct hdspm *hdspm)
5046{
5047	struct snd_info_entry *entry;
5048
5049	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5050		switch (hdspm->io_type) {
5051		case AES32:
5052			snd_info_set_text_ops(entry, hdspm,
5053					snd_hdspm_proc_read_aes32);
5054			break;
5055		case MADI:
5056			snd_info_set_text_ops(entry, hdspm,
5057					snd_hdspm_proc_read_madi);
5058			break;
5059		case MADIface:
5060			/* snd_info_set_text_ops(entry, hdspm,
5061			 snd_hdspm_proc_read_madiface); */
5062			break;
5063		case RayDAT:
5064			snd_info_set_text_ops(entry, hdspm,
5065					snd_hdspm_proc_read_raydat);
5066			break;
5067		case AIO:
5068			break;
5069		}
5070	}
5071
5072	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5073		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5074	}
5075
5076	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5077		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5078	}
5079
5080#ifdef CONFIG_SND_DEBUG
5081	/* debug file to read all hdspm registers */
5082	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5083		snd_info_set_text_ops(entry, hdspm,
5084				snd_hdspm_proc_read_debug);
5085#endif
5086}
5087
5088/*------------------------------------------------------------
5089   hdspm intitialize
5090 ------------------------------------------------------------*/
5091
5092static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5093{
5094	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
5095	   hold it (e.g. during module initialization).
5096	   */
5097
5098	/* set defaults:       */
5099
5100	hdspm->settings_register = 0;
5101
5102	switch (hdspm->io_type) {
5103	case MADI:
5104	case MADIface:
5105		hdspm->control_register =
5106			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5107		break;
5108
5109	case RayDAT:
5110	case AIO:
5111		hdspm->settings_register = 0x1 + 0x1000;
5112		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5113		 * line_out */
5114		hdspm->control_register =
5115			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5116		break;
5117
5118	case AES32:
5119		hdspm->control_register =
5120			HDSPM_ClockModeMaster |	/* Master Cloack Mode on */
5121			hdspm_encode_latency(7) | /* latency max=8192samples */
5122			HDSPM_SyncRef0 |	/* AES1 is syncclock */
5123			HDSPM_LineOut |	/* Analog output in */
5124			HDSPM_Professional;  /* Professional mode */
5125		break;
5126	}
5127
5128	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5129
5130	if (AES32 == hdspm->io_type) {
5131		/* No control2 register for AES32 */
5132#ifdef SNDRV_BIG_ENDIAN
5133		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5134#else
5135		hdspm->control2_register = 0;
5136#endif
5137
5138		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5139	}
5140	hdspm_compute_period_size(hdspm);
5141
5142	/* silence everything */
5143
5144	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5145
5146	if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) {
5147		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5148	}
5149
5150	/* set a default rate so that the channel map is set up. */
5151	hdspm_set_rate(hdspm, 48000, 1);
5152
5153	return 0;
5154}
5155
5156
5157/*------------------------------------------------------------
5158   interrupt
5159 ------------------------------------------------------------*/
5160
5161static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5162{
5163	struct hdspm *hdspm = (struct hdspm *) dev_id;
5164	unsigned int status;
5165	int i, audio, midi, schedule = 0;
5166	/* cycles_t now; */
5167
5168	status = hdspm_read(hdspm, HDSPM_statusRegister);
5169
5170	audio = status & HDSPM_audioIRQPending;
5171	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5172			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5173
5174	/* now = get_cycles(); */
5175	/**
5176	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5177	 *          6       4096   ~256053425     ~514672358
5178	 *          5       2048   ~128024983     ~257373821
5179	 *          4       1024    ~64023706     ~128718089
5180	 *          3        512    ~32005945      ~64385999
5181	 *          2        256    ~16003039      ~32260176
5182	 *          1        128     ~7998738      ~16194507
5183	 *          0         64     ~3998231       ~8191558
5184	 **/
5185	/*
5186	   snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
5187	   now-hdspm->last_interrupt, status & 0xFFC0);
5188	   hdspm->last_interrupt = now;
5189	*/
5190
5191	if (!audio && !midi)
5192		return IRQ_NONE;
5193
5194	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5195	hdspm->irq_count++;
5196
5197
5198	if (audio) {
5199		if (hdspm->capture_substream)
5200			snd_pcm_period_elapsed(hdspm->capture_substream);
5201
5202		if (hdspm->playback_substream)
5203			snd_pcm_period_elapsed(hdspm->playback_substream);
5204	}
5205
5206	if (midi) {
5207		i = 0;
5208		while (i < hdspm->midiPorts) {
5209			if ((hdspm_read(hdspm,
5210				hdspm->midi[i].statusIn) & 0xff) &&
5211					(status & hdspm->midi[i].irq)) {
5212				/* we disable interrupts for this input until
5213				 * processing is done
5214				 */
5215				hdspm->control_register &= ~hdspm->midi[i].ie;
5216				hdspm_write(hdspm, HDSPM_controlRegister,
5217						hdspm->control_register);
5218				hdspm->midi[i].pending = 1;
5219				schedule = 1;
5220			}
5221
5222			i++;
5223		}
5224
5225		if (schedule)
5226			tasklet_hi_schedule(&hdspm->midi_tasklet);
5227	}
5228
5229	return IRQ_HANDLED;
5230}
5231
5232/*------------------------------------------------------------
5233   pcm interface
5234  ------------------------------------------------------------*/
5235
5236
5237static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5238					      *substream)
5239{
5240	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5241	return hdspm_hw_pointer(hdspm);
5242}
5243
5244
5245static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5246{
5247	struct snd_pcm_runtime *runtime = substream->runtime;
5248	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5249	struct snd_pcm_substream *other;
5250
5251	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5252		other = hdspm->capture_substream;
5253	else
5254		other = hdspm->playback_substream;
5255
5256	if (hdspm->running)
5257		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5258	else
5259		runtime->status->hw_ptr = 0;
5260	if (other) {
5261		struct snd_pcm_substream *s;
5262		struct snd_pcm_runtime *oruntime = other->runtime;
5263		snd_pcm_group_for_each_entry(s, substream) {
5264			if (s == other) {
5265				oruntime->status->hw_ptr =
5266					runtime->status->hw_ptr;
5267				break;
5268			}
5269		}
5270	}
5271	return 0;
5272}
5273
5274static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5275			       struct snd_pcm_hw_params *params)
5276{
5277	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5278	int err;
5279	int i;
5280	pid_t this_pid;
5281	pid_t other_pid;
5282
5283	spin_lock_irq(&hdspm->lock);
5284
5285	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5286		this_pid = hdspm->playback_pid;
5287		other_pid = hdspm->capture_pid;
5288	} else {
5289		this_pid = hdspm->capture_pid;
5290		other_pid = hdspm->playback_pid;
5291	}
5292
5293	if (other_pid > 0 && this_pid != other_pid) {
5294
5295		/* The other stream is open, and not by the same
5296		   task as this one. Make sure that the parameters
5297		   that matter are the same.
5298		   */
5299
5300		if (params_rate(params) != hdspm->system_sample_rate) {
5301			spin_unlock_irq(&hdspm->lock);
5302			_snd_pcm_hw_param_setempty(params,
5303					SNDRV_PCM_HW_PARAM_RATE);
5304			return -EBUSY;
5305		}
5306
5307		if (params_period_size(params) != hdspm->period_bytes / 4) {
5308			spin_unlock_irq(&hdspm->lock);
5309			_snd_pcm_hw_param_setempty(params,
5310					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5311			return -EBUSY;
5312		}
5313
5314	}
5315	/* We're fine. */
5316	spin_unlock_irq(&hdspm->lock);
5317
5318	/* how to make sure that the rate matches an externally-set one ?   */
5319
5320	spin_lock_irq(&hdspm->lock);
5321	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5322	if (err < 0) {
5323		snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
5324		spin_unlock_irq(&hdspm->lock);
5325		_snd_pcm_hw_param_setempty(params,
5326				SNDRV_PCM_HW_PARAM_RATE);
5327		return err;
5328	}
5329	spin_unlock_irq(&hdspm->lock);
5330
5331	err = hdspm_set_interrupt_interval(hdspm,
5332			params_period_size(params));
5333	if (err < 0) {
5334		snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
5335		_snd_pcm_hw_param_setempty(params,
5336				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5337		return err;
5338	}
5339
5340	/* Memory allocation, takashi's method, dont know if we should
5341	 * spinlock
5342	 */
5343	/* malloc all buffer even if not enabled to get sure */
5344	/* Update for MADI rev 204: we need to allocate for all channels,
5345	 * otherwise it doesn't work at 96kHz */
5346
5347	err =
5348		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5349	if (err < 0) {
5350		snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
5351		return err;
5352	}
5353
5354	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5355
5356		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5357				params_channels(params));
5358
5359		for (i = 0; i < params_channels(params); ++i)
5360			snd_hdspm_enable_out(hdspm, i, 1);
5361
5362		hdspm->playback_buffer =
5363			(unsigned char *) substream->runtime->dma_area;
5364		snd_printdd("Allocated sample buffer for playback at %p\n",
5365				hdspm->playback_buffer);
5366	} else {
5367		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5368				params_channels(params));
5369
5370		for (i = 0; i < params_channels(params); ++i)
5371			snd_hdspm_enable_in(hdspm, i, 1);
5372
5373		hdspm->capture_buffer =
5374			(unsigned char *) substream->runtime->dma_area;
5375		snd_printdd("Allocated sample buffer for capture at %p\n",
5376				hdspm->capture_buffer);
5377	}
5378
5379	/*
5380	   snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
5381	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5382	   "playback" : "capture",
5383	   snd_pcm_sgbuf_get_addr(substream, 0));
5384	   */
5385	/*
5386	   snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5387	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5388	   "playback" : "capture",
5389	   params_rate(params), params_channels(params),
5390	   params_buffer_size(params));
5391	   */
5392
5393
5394	/* Switch to native float format if requested */
5395	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5396		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5397			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");
5398
5399		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5400	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5401		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5402			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");
5403
5404		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5405	}
5406	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5407
5408	return 0;
5409}
5410
5411static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5412{
5413	int i;
5414	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5415
5416	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5417
5418		/* params_channels(params) should be enough,
5419		   but to get sure in case of error */
5420		for (i = 0; i < hdspm->max_channels_out; ++i)
5421			snd_hdspm_enable_out(hdspm, i, 0);
5422
5423		hdspm->playback_buffer = NULL;
5424	} else {
5425		for (i = 0; i < hdspm->max_channels_in; ++i)
5426			snd_hdspm_enable_in(hdspm, i, 0);
5427
5428		hdspm->capture_buffer = NULL;
5429
5430	}
5431
5432	snd_pcm_lib_free_pages(substream);
5433
5434	return 0;
5435}
5436
5437
5438static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5439		struct snd_pcm_channel_info *info)
5440{
5441	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5442
5443	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5444		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5445			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
5446			return -EINVAL;
5447		}
5448
5449		if (hdspm->channel_map_out[info->channel] < 0) {
5450			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
5451			return -EINVAL;
5452		}
5453
5454		info->offset = hdspm->channel_map_out[info->channel] *
5455			HDSPM_CHANNEL_BUFFER_BYTES;
5456	} else {
5457		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5458			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
5459			return -EINVAL;
5460		}
5461
5462		if (hdspm->channel_map_in[info->channel] < 0) {
5463			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
5464			return -EINVAL;
5465		}
5466
5467		info->offset = hdspm->channel_map_in[info->channel] *
5468			HDSPM_CHANNEL_BUFFER_BYTES;
5469	}
5470
5471	info->first = 0;
5472	info->step = 32;
5473	return 0;
5474}
5475
5476
5477static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5478		unsigned int cmd, void *arg)
5479{
5480	switch (cmd) {
5481	case SNDRV_PCM_IOCTL1_RESET:
5482		return snd_hdspm_reset(substream);
5483
5484	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5485		{
5486			struct snd_pcm_channel_info *info = arg;
5487			return snd_hdspm_channel_info(substream, info);
5488		}
5489	default:
5490		break;
5491	}
5492
5493	return snd_pcm_lib_ioctl(substream, cmd, arg);
5494}
5495
5496static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5497{
5498	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5499	struct snd_pcm_substream *other;
5500	int running;
5501
5502	spin_lock(&hdspm->lock);
5503	running = hdspm->running;
5504	switch (cmd) {
5505	case SNDRV_PCM_TRIGGER_START:
5506		running |= 1 << substream->stream;
5507		break;
5508	case SNDRV_PCM_TRIGGER_STOP:
5509		running &= ~(1 << substream->stream);
5510		break;
5511	default:
5512		snd_BUG();
5513		spin_unlock(&hdspm->lock);
5514		return -EINVAL;
5515	}
5516	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5517		other = hdspm->capture_substream;
5518	else
5519		other = hdspm->playback_substream;
5520
5521	if (other) {
5522		struct snd_pcm_substream *s;
5523		snd_pcm_group_for_each_entry(s, substream) {
5524			if (s == other) {
5525				snd_pcm_trigger_done(s, substream);
5526				if (cmd == SNDRV_PCM_TRIGGER_START)
5527					running |= 1 << s->stream;
5528				else
5529					running &= ~(1 << s->stream);
5530				goto _ok;
5531			}
5532		}
5533		if (cmd == SNDRV_PCM_TRIGGER_START) {
5534			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5535					&& substream->stream ==
5536					SNDRV_PCM_STREAM_CAPTURE)
5537				hdspm_silence_playback(hdspm);
5538		} else {
5539			if (running &&
5540				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5541				hdspm_silence_playback(hdspm);
5542		}
5543	} else {
5544		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5545			hdspm_silence_playback(hdspm);
5546	}
5547_ok:
5548	snd_pcm_trigger_done(substream, substream);
5549	if (!hdspm->running && running)
5550		hdspm_start_audio(hdspm);
5551	else if (hdspm->running && !running)
5552		hdspm_stop_audio(hdspm);
5553	hdspm->running = running;
5554	spin_unlock(&hdspm->lock);
5555
5556	return 0;
5557}
5558
5559static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5560{
5561	return 0;
5562}
5563
5564static unsigned int period_sizes_old[] = {
5565	64, 128, 256, 512, 1024, 2048, 4096
5566};
5567
5568static unsigned int period_sizes_new[] = {
5569	32, 64, 128, 256, 512, 1024, 2048, 4096
5570};
5571
5572/* RayDAT and AIO always have a buffer of 16384 samples per channel */
5573static unsigned int raydat_aio_buffer_sizes[] = {
5574	16384
5575};
5576
5577static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5578	.info = (SNDRV_PCM_INFO_MMAP |
5579		 SNDRV_PCM_INFO_MMAP_VALID |
5580		 SNDRV_PCM_INFO_NONINTERLEAVED |
5581		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5582	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5583	.rates = (SNDRV_PCM_RATE_32000 |
5584		  SNDRV_PCM_RATE_44100 |
5585		  SNDRV_PCM_RATE_48000 |
5586		  SNDRV_PCM_RATE_64000 |
5587		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5588		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5589	.rate_min = 32000,
5590	.rate_max = 192000,
5591	.channels_min = 1,
5592	.channels_max = HDSPM_MAX_CHANNELS,
5593	.buffer_bytes_max =
5594	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5595	.period_bytes_min = (64 * 4),
5596	.period_bytes_max = (4096 * 4) * HDSPM_MAX_CHANNELS,
5597	.periods_min = 2,
5598	.periods_max = 512,
5599	.fifo_size = 0
5600};
5601
5602static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5603	.info = (SNDRV_PCM_INFO_MMAP |
5604		 SNDRV_PCM_INFO_MMAP_VALID |
5605		 SNDRV_PCM_INFO_NONINTERLEAVED |
5606		 SNDRV_PCM_INFO_SYNC_START),
5607	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5608	.rates = (SNDRV_PCM_RATE_32000 |
5609		  SNDRV_PCM_RATE_44100 |
5610		  SNDRV_PCM_RATE_48000 |
5611		  SNDRV_PCM_RATE_64000 |
5612		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5613		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5614	.rate_min = 32000,
5615	.rate_max = 192000,
5616	.channels_min = 1,
5617	.channels_max = HDSPM_MAX_CHANNELS,
5618	.buffer_bytes_max =
5619	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5620	.period_bytes_min = (64 * 4),
5621	.period_bytes_max = (4096 * 4) * HDSPM_MAX_CHANNELS,
5622	.periods_min = 2,
5623	.periods_max = 512,
5624	.fifo_size = 0
5625};
5626
5627static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes_old = {
5628	.count = ARRAY_SIZE(period_sizes_old),
5629	.list = period_sizes_old,
5630	.mask = 0
5631};
5632
5633static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes_new = {
5634	.count = ARRAY_SIZE(period_sizes_new),
5635	.list = period_sizes_new,
5636	.mask = 0
5637};
5638
5639static struct snd_pcm_hw_constraint_list hw_constraints_raydat_io_buffer = {
5640	.count = ARRAY_SIZE(raydat_aio_buffer_sizes),
5641	.list = raydat_aio_buffer_sizes,
5642	.mask = 0
5643};
5644
5645static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5646					   struct snd_pcm_hw_rule *rule)
5647{
5648	struct hdspm *hdspm = rule->private;
5649	struct snd_interval *c =
5650	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5651	struct snd_interval *r =
5652	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5653
5654	if (r->min > 96000 && r->max <= 192000) {
5655		struct snd_interval t = {
5656			.min = hdspm->qs_in_channels,
5657			.max = hdspm->qs_in_channels,
5658			.integer = 1,
5659		};
5660		return snd_interval_refine(c, &t);
5661	} else if (r->min > 48000 && r->max <= 96000) {
5662		struct snd_interval t = {
5663			.min = hdspm->ds_in_channels,
5664			.max = hdspm->ds_in_channels,
5665			.integer = 1,
5666		};
5667		return snd_interval_refine(c, &t);
5668	} else if (r->max < 64000) {
5669		struct snd_interval t = {
5670			.min = hdspm->ss_in_channels,
5671			.max = hdspm->ss_in_channels,
5672			.integer = 1,
5673		};
5674		return snd_interval_refine(c, &t);
5675	}
5676
5677	return 0;
5678}
5679
5680static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5681					   struct snd_pcm_hw_rule * rule)
5682{
5683	struct hdspm *hdspm = rule->private;
5684	struct snd_interval *c =
5685	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5686	struct snd_interval *r =
5687	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5688
5689	if (r->min > 96000 && r->max <= 192000) {
5690		struct snd_interval t = {
5691			.min = hdspm->qs_out_channels,
5692			.max = hdspm->qs_out_channels,
5693			.integer = 1,
5694		};
5695		return snd_interval_refine(c, &t);
5696	} else if (r->min > 48000 && r->max <= 96000) {
5697		struct snd_interval t = {
5698			.min = hdspm->ds_out_channels,
5699			.max = hdspm->ds_out_channels,
5700			.integer = 1,
5701		};
5702		return snd_interval_refine(c, &t);
5703	} else if (r->max < 64000) {
5704		struct snd_interval t = {
5705			.min = hdspm->ss_out_channels,
5706			.max = hdspm->ss_out_channels,
5707			.integer = 1,
5708		};
5709		return snd_interval_refine(c, &t);
5710	} else {
5711	}
5712	return 0;
5713}
5714
5715static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5716					   struct snd_pcm_hw_rule * rule)
5717{
5718	struct hdspm *hdspm = rule->private;
5719	struct snd_interval *c =
5720	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5721	struct snd_interval *r =
5722	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5723
5724	if (c->min >= hdspm->ss_in_channels) {
5725		struct snd_interval t = {
5726			.min = 32000,
5727			.max = 48000,
5728			.integer = 1,
5729		};
5730		return snd_interval_refine(r, &t);
5731	} else if (c->max <= hdspm->qs_in_channels) {
5732		struct snd_interval t = {
5733			.min = 128000,
5734			.max = 192000,
5735			.integer = 1,
5736		};
5737		return snd_interval_refine(r, &t);
5738	} else if (c->max <= hdspm->ds_in_channels) {
5739		struct snd_interval t = {
5740			.min = 64000,
5741			.max = 96000,
5742			.integer = 1,
5743		};
5744		return snd_interval_refine(r, &t);
5745	}
5746
5747	return 0;
5748}
5749static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5750					   struct snd_pcm_hw_rule *rule)
5751{
5752	struct hdspm *hdspm = rule->private;
5753	struct snd_interval *c =
5754	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5755	struct snd_interval *r =
5756	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5757
5758	if (c->min >= hdspm->ss_out_channels) {
5759		struct snd_interval t = {
5760			.min = 32000,
5761			.max = 48000,
5762			.integer = 1,
5763		};
5764		return snd_interval_refine(r, &t);
5765	} else if (c->max <= hdspm->qs_out_channels) {
5766		struct snd_interval t = {
5767			.min = 128000,
5768			.max = 192000,
5769			.integer = 1,
5770		};
5771		return snd_interval_refine(r, &t);
5772	} else if (c->max <= hdspm->ds_out_channels) {
5773		struct snd_interval t = {
5774			.min = 64000,
5775			.max = 96000,
5776			.integer = 1,
5777		};
5778		return snd_interval_refine(r, &t);
5779	}
5780
5781	return 0;
5782}
5783
5784static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
5785				      struct snd_pcm_hw_rule *rule)
5786{
5787	unsigned int list[3];
5788	struct hdspm *hdspm = rule->private;
5789	struct snd_interval *c = hw_param_interval(params,
5790			SNDRV_PCM_HW_PARAM_CHANNELS);
5791
5792	list[0] = hdspm->qs_in_channels;
5793	list[1] = hdspm->ds_in_channels;
5794	list[2] = hdspm->ss_in_channels;
5795	return snd_interval_list(c, 3, list, 0);
5796}
5797
5798static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
5799				      struct snd_pcm_hw_rule *rule)
5800{
5801	unsigned int list[3];
5802	struct hdspm *hdspm = rule->private;
5803	struct snd_interval *c = hw_param_interval(params,
5804			SNDRV_PCM_HW_PARAM_CHANNELS);
5805
5806	list[0] = hdspm->qs_out_channels;
5807	list[1] = hdspm->ds_out_channels;
5808	list[2] = hdspm->ss_out_channels;
5809	return snd_interval_list(c, 3, list, 0);
5810}
5811
5812
5813static unsigned int hdspm_aes32_sample_rates[] = {
5814	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
5815};
5816
5817static struct snd_pcm_hw_constraint_list
5818hdspm_hw_constraints_aes32_sample_rates = {
5819	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
5820	.list = hdspm_aes32_sample_rates,
5821	.mask = 0
5822};
5823
5824static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
5825{
5826	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5827	struct snd_pcm_runtime *runtime = substream->runtime;
5828
5829	spin_lock_irq(&hdspm->lock);
5830
5831	snd_pcm_set_sync(substream);
5832
5833
5834	runtime->hw = snd_hdspm_playback_subinfo;
5835
5836	if (hdspm->capture_substream == NULL)
5837		hdspm_stop_audio(hdspm);
5838
5839	hdspm->playback_pid = current->pid;
5840	hdspm->playback_substream = substream;
5841
5842	spin_unlock_irq(&hdspm->lock);
5843
5844	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5845
5846	switch (hdspm->io_type) {
5847	case AIO:
5848	case RayDAT:
5849		snd_pcm_hw_constraint_list(runtime, 0,
5850				SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5851				&hw_constraints_period_sizes_new);
5852		snd_pcm_hw_constraint_list(runtime, 0,
5853				SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5854				&hw_constraints_raydat_io_buffer);
5855
5856		break;
5857
5858	default:
5859		snd_pcm_hw_constraint_list(runtime, 0,
5860				SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5861				&hw_constraints_period_sizes_old);
5862	}
5863
5864	if (AES32 == hdspm->io_type) {
5865		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5866				&hdspm_hw_constraints_aes32_sample_rates);
5867	} else {
5868		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5869				snd_hdspm_hw_rule_rate_out_channels, hdspm,
5870				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5871	}
5872
5873	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5874			snd_hdspm_hw_rule_out_channels, hdspm,
5875			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5876
5877	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5878			snd_hdspm_hw_rule_out_channels_rate, hdspm,
5879			SNDRV_PCM_HW_PARAM_RATE, -1);
5880
5881	return 0;
5882}
5883
5884static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
5885{
5886	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5887
5888	spin_lock_irq(&hdspm->lock);
5889
5890	hdspm->playback_pid = -1;
5891	hdspm->playback_substream = NULL;
5892
5893	spin_unlock_irq(&hdspm->lock);
5894
5895	return 0;
5896}
5897
5898
5899static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
5900{
5901	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5902	struct snd_pcm_runtime *runtime = substream->runtime;
5903
5904	spin_lock_irq(&hdspm->lock);
5905	snd_pcm_set_sync(substream);
5906	runtime->hw = snd_hdspm_capture_subinfo;
5907
5908	if (hdspm->playback_substream == NULL)
5909		hdspm_stop_audio(hdspm);
5910
5911	hdspm->capture_pid = current->pid;
5912	hdspm->capture_substream = substream;
5913
5914	spin_unlock_irq(&hdspm->lock);
5915
5916	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5917	switch (hdspm->io_type) {
5918	case AIO:
5919	case RayDAT:
5920	  snd_pcm_hw_constraint_list(runtime, 0,
5921				     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5922				     &hw_constraints_period_sizes_new);
5923	  snd_pcm_hw_constraint_list(runtime, 0,
5924				     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5925				     &hw_constraints_raydat_io_buffer);
5926	  break;
5927
5928	default:
5929	  snd_pcm_hw_constraint_list(runtime, 0,
5930				     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5931				     &hw_constraints_period_sizes_old);
5932	}
5933
5934	if (AES32 == hdspm->io_type) {
5935		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5936				&hdspm_hw_constraints_aes32_sample_rates);
5937	} else {
5938		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5939				snd_hdspm_hw_rule_rate_in_channels, hdspm,
5940				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5941	}
5942
5943	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5944			snd_hdspm_hw_rule_in_channels, hdspm,
5945			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5946
5947	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5948			snd_hdspm_hw_rule_in_channels_rate, hdspm,
5949			SNDRV_PCM_HW_PARAM_RATE, -1);
5950
5951	return 0;
5952}
5953
5954static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
5955{
5956	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5957
5958	spin_lock_irq(&hdspm->lock);
5959
5960	hdspm->capture_pid = -1;
5961	hdspm->capture_substream = NULL;
5962
5963	spin_unlock_irq(&hdspm->lock);
5964	return 0;
5965}
5966
5967static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
5968{
5969	/* we have nothing to initialize but the call is required */
5970	return 0;
5971}
5972
5973static inline int copy_u32_le(void __user *dest, void __iomem *src)
5974{
5975	u32 val = readl(src);
5976	return copy_to_user(dest, &val, 4);
5977}
5978
5979static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
5980		unsigned int cmd, unsigned long __user arg)
5981{
5982	void __user *argp = (void __user *)arg;
5983	struct hdspm *hdspm = hw->private_data;
5984	struct hdspm_mixer_ioctl mixer;
5985	struct hdspm_config info;
5986	struct hdspm_status status;
5987	struct hdspm_version hdspm_version;
5988	struct hdspm_peak_rms *levels;
5989	struct hdspm_ltc ltc;
5990	unsigned int statusregister;
5991	long unsigned int s;
5992	int i = 0;
5993
5994	switch (cmd) {
5995
5996	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
5997		levels = &hdspm->peak_rms;
5998		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
5999			levels->input_peaks[i] =
6000				readl(hdspm->iobase +
6001						HDSPM_MADI_INPUT_PEAK + i*4);
6002			levels->playback_peaks[i] =
6003				readl(hdspm->iobase +
6004						HDSPM_MADI_PLAYBACK_PEAK + i*4);
6005			levels->output_peaks[i] =
6006				readl(hdspm->iobase +
6007						HDSPM_MADI_OUTPUT_PEAK + i*4);
6008
6009			levels->input_rms[i] =
6010				((uint64_t) readl(hdspm->iobase +
6011					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6012				(uint64_t) readl(hdspm->iobase +
6013						HDSPM_MADI_INPUT_RMS_L + i*4);
6014			levels->playback_rms[i] =
6015				((uint64_t)readl(hdspm->iobase +
6016					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6017				(uint64_t)readl(hdspm->iobase +
6018					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6019			levels->output_rms[i] =
6020				((uint64_t)readl(hdspm->iobase +
6021					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6022				(uint64_t)readl(hdspm->iobase +
6023						HDSPM_MADI_OUTPUT_RMS_L + i*4);
6024		}
6025
6026		if (hdspm->system_sample_rate > 96000) {
6027			levels->speed = qs;
6028		} else if (hdspm->system_sample_rate > 48000) {
6029			levels->speed = ds;
6030		} else {
6031			levels->speed = ss;
6032		}
6033		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6034
6035		s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
6036		if (0 != s) {
6037			/* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
6038			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6039			 */
6040			return -EFAULT;
6041		}
6042		break;
6043
6044	case SNDRV_HDSPM_IOCTL_GET_LTC:
6045		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6046		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6047		if (i & HDSPM_TCO1_LTC_Input_valid) {
6048			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6049				HDSPM_TCO1_LTC_Format_MSB)) {
6050			case 0:
6051				ltc.format = fps_24;
6052				break;
6053			case HDSPM_TCO1_LTC_Format_LSB:
6054				ltc.format = fps_25;
6055				break;
6056			case HDSPM_TCO1_LTC_Format_MSB:
6057				ltc.format = fps_2997;
6058				break;
6059			default:
6060				ltc.format = 30;
6061				break;
6062			}
6063			if (i & HDSPM_TCO1_set_drop_frame_flag) {
6064				ltc.frame = drop_frame;
6065			} else {
6066				ltc.frame = full_frame;
6067			}
6068		} else {
6069			ltc.format = format_invalid;
6070			ltc.frame = frame_invalid;
6071		}
6072		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6073			ltc.input_format = ntsc;
6074		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6075			ltc.input_format = pal;
6076		} else {
6077			ltc.input_format = no_video;
6078		}
6079
6080		s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6081		if (0 != s) {
6082			/*
6083			 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6084			return -EFAULT;
6085		}
6086
6087		break;
6088
6089	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6090
6091		memset(&info, 0, sizeof(info));
6092		spin_lock_irq(&hdspm->lock);
6093		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6094		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6095
6096		info.system_sample_rate = hdspm->system_sample_rate;
6097		info.autosync_sample_rate =
6098			hdspm_external_sample_rate(hdspm);
6099		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6100		info.clock_source = hdspm_clock_source(hdspm);
6101		info.autosync_ref = hdspm_autosync_ref(hdspm);
6102		info.line_out = hdspm_line_out(hdspm);
6103		info.passthru = 0;
6104		spin_unlock_irq(&hdspm->lock);
6105		if (copy_to_user((void __user *) arg, &info, sizeof(info)))
6106			return -EFAULT;
6107		break;
6108
6109	case SNDRV_HDSPM_IOCTL_GET_STATUS:
6110		status.card_type = hdspm->io_type;
6111
6112		status.autosync_source = hdspm_autosync_ref(hdspm);
6113
6114		status.card_clock = 110069313433624ULL;
6115		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6116
6117		switch (hdspm->io_type) {
6118		case MADI:
6119		case MADIface:
6120			status.card_specific.madi.sync_wc =
6121				hdspm_wc_sync_check(hdspm);
6122			status.card_specific.madi.sync_madi =
6123				hdspm_madi_sync_check(hdspm);
6124			status.card_specific.madi.sync_tco =
6125				hdspm_tco_sync_check(hdspm);
6126			status.card_specific.madi.sync_in =
6127				hdspm_sync_in_sync_check(hdspm);
6128
6129			statusregister =
6130				hdspm_read(hdspm, HDSPM_statusRegister);
6131			status.card_specific.madi.madi_input =
6132				(statusregister & HDSPM_AB_int) ? 1 : 0;
6133			status.card_specific.madi.channel_format =
6134				(statusregister & HDSPM_TX_64ch) ? 1 : 0;
6135			/* TODO: Mac driver sets it when f_s>48kHz */
6136			status.card_specific.madi.frame_format = 0;
6137
6138		default:
6139			break;
6140		}
6141
6142		if (copy_to_user((void __user *) arg, &status, sizeof(status)))
6143			return -EFAULT;
6144
6145
6146		break;
6147
6148	case SNDRV_HDSPM_IOCTL_GET_VERSION:
6149		hdspm_version.card_type = hdspm->io_type;
6150		strncpy(hdspm_version.cardname, hdspm->card_name,
6151				sizeof(hdspm_version.cardname));
6152		hdspm_version.serial = (hdspm_read(hdspm,
6153					HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6154		hdspm_version.firmware_rev = hdspm->firmware_rev;
6155		hdspm_version.addons = 0;
6156		if (hdspm->tco)
6157			hdspm_version.addons |= HDSPM_ADDON_TCO;
6158
6159		if (copy_to_user((void __user *) arg, &hdspm_version,
6160					sizeof(hdspm_version)))
6161			return -EFAULT;
6162		break;
6163
6164	case SNDRV_HDSPM_IOCTL_GET_MIXER:
6165		if (copy_from_user(&mixer, (void __user *)arg, sizeof(mixer)))
6166			return -EFAULT;
6167		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6168					sizeof(struct hdspm_mixer)))
6169			return -EFAULT;
6170		break;
6171
6172	default:
6173		return -EINVAL;
6174	}
6175	return 0;
6176}
6177
6178static struct snd_pcm_ops snd_hdspm_playback_ops = {
6179	.open = snd_hdspm_playback_open,
6180	.close = snd_hdspm_playback_release,
6181	.ioctl = snd_hdspm_ioctl,
6182	.hw_params = snd_hdspm_hw_params,
6183	.hw_free = snd_hdspm_hw_free,
6184	.prepare = snd_hdspm_prepare,
6185	.trigger = snd_hdspm_trigger,
6186	.pointer = snd_hdspm_hw_pointer,
6187	.page = snd_pcm_sgbuf_ops_page,
6188};
6189
6190static struct snd_pcm_ops snd_hdspm_capture_ops = {
6191	.open = snd_hdspm_capture_open,
6192	.close = snd_hdspm_capture_release,
6193	.ioctl = snd_hdspm_ioctl,
6194	.hw_params = snd_hdspm_hw_params,
6195	.hw_free = snd_hdspm_hw_free,
6196	.prepare = snd_hdspm_prepare,
6197	.trigger = snd_hdspm_trigger,
6198	.pointer = snd_hdspm_hw_pointer,
6199	.page = snd_pcm_sgbuf_ops_page,
6200};
6201
6202static int __devinit snd_hdspm_create_hwdep(struct snd_card *card,
6203					    struct hdspm * hdspm)
6204{
6205	struct snd_hwdep *hw;
6206	int err;
6207
6208	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6209	if (err < 0)
6210		return err;
6211
6212	hdspm->hwdep = hw;
6213	hw->private_data = hdspm;
6214	strcpy(hw->name, "HDSPM hwdep interface");
6215
6216	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6217	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6218	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6219
6220	return 0;
6221}
6222
6223
6224/*------------------------------------------------------------
6225   memory interface
6226 ------------------------------------------------------------*/
6227static int __devinit snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6228{
6229	int err;
6230	struct snd_pcm *pcm;
6231	size_t wanted;
6232
6233	pcm = hdspm->pcm;
6234
6235	wanted = HDSPM_DMA_AREA_BYTES;
6236
6237	err =
6238	     snd_pcm_lib_preallocate_pages_for_all(pcm,
6239						   SNDRV_DMA_TYPE_DEV_SG,
6240						   snd_dma_pci_data(hdspm->pci),
6241						   wanted,
6242						   wanted);
6243	if (err < 0) {
6244		snd_printdd("Could not preallocate %zd Bytes\n", wanted);
6245
6246		return err;
6247	} else
6248		snd_printdd(" Preallocated %zd Bytes\n", wanted);
6249
6250	return 0;
6251}
6252
6253
6254static void hdspm_set_sgbuf(struct hdspm *hdspm,
6255			    struct snd_pcm_substream *substream,
6256			     unsigned int reg, int channels)
6257{
6258	int i;
6259
6260	/* continuous memory segment */
6261	for (i = 0; i < (channels * 16); i++)
6262		hdspm_write(hdspm, reg + 4 * i,
6263				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6264}
6265
6266
6267/* ------------- ALSA Devices ---------------------------- */
6268static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
6269					  struct hdspm *hdspm)
6270{
6271	struct snd_pcm *pcm;
6272	int err;
6273
6274	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6275	if (err < 0)
6276		return err;
6277
6278	hdspm->pcm = pcm;
6279	pcm->private_data = hdspm;
6280	strcpy(pcm->name, hdspm->card_name);
6281
6282	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6283			&snd_hdspm_playback_ops);
6284	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6285			&snd_hdspm_capture_ops);
6286
6287	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6288
6289	err = snd_hdspm_preallocate_memory(hdspm);
6290	if (err < 0)
6291		return err;
6292
6293	return 0;
6294}
6295
6296static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6297{
6298	int i;
6299
6300	for (i = 0; i < hdspm->midiPorts; i++)
6301		snd_hdspm_flush_midi_input(hdspm, i);
6302}
6303
6304static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
6305						   struct hdspm * hdspm)
6306{
6307	int err, i;
6308
6309	snd_printdd("Create card...\n");
6310	err = snd_hdspm_create_pcm(card, hdspm);
6311	if (err < 0)
6312		return err;
6313
6314	i = 0;
6315	while (i < hdspm->midiPorts) {
6316		err = snd_hdspm_create_midi(card, hdspm, i);
6317		if (err < 0) {
6318			return err;
6319		}
6320		i++;
6321	}
6322
6323	err = snd_hdspm_create_controls(card, hdspm);
6324	if (err < 0)
6325		return err;
6326
6327	err = snd_hdspm_create_hwdep(card, hdspm);
6328	if (err < 0)
6329		return err;
6330
6331	snd_printdd("proc init...\n");
6332	snd_hdspm_proc_init(hdspm);
6333
6334	hdspm->system_sample_rate = -1;
6335	hdspm->last_external_sample_rate = -1;
6336	hdspm->last_internal_sample_rate = -1;
6337	hdspm->playback_pid = -1;
6338	hdspm->capture_pid = -1;
6339	hdspm->capture_substream = NULL;
6340	hdspm->playback_substream = NULL;
6341
6342	snd_printdd("Set defaults...\n");
6343	err = snd_hdspm_set_defaults(hdspm);
6344	if (err < 0)
6345		return err;
6346
6347	snd_printdd("Update mixer controls...\n");
6348	hdspm_update_simple_mixer_controls(hdspm);
6349
6350	snd_printdd("Initializeing complete ???\n");
6351
6352	err = snd_card_register(card);
6353	if (err < 0) {
6354		snd_printk(KERN_ERR "HDSPM: error registering card\n");
6355		return err;
6356	}
6357
6358	snd_printdd("... yes now\n");
6359
6360	return 0;
6361}
6362
6363static int __devinit snd_hdspm_create(struct snd_card *card,
6364		struct hdspm *hdspm) {
6365
6366	struct pci_dev *pci = hdspm->pci;
6367	int err;
6368	unsigned long io_extent;
6369
6370	hdspm->irq = -1;
6371	hdspm->card = card;
6372
6373	spin_lock_init(&hdspm->lock);
6374
6375	pci_read_config_word(hdspm->pci,
6376			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6377
6378	strcpy(card->mixername, "Xilinx FPGA");
6379	strcpy(card->driver, "HDSPM");
6380
6381	switch (hdspm->firmware_rev) {
6382	case HDSPM_MADI_REV:
6383	case HDSPM_MADI_OLD_REV:
6384		hdspm->io_type = MADI;
6385		hdspm->card_name = "RME MADI";
6386		hdspm->midiPorts = 3;
6387		break;
6388	case HDSPM_RAYDAT_REV:
6389		hdspm->io_type = RayDAT;
6390		hdspm->card_name = "RME RayDAT";
6391		hdspm->midiPorts = 2;
6392		break;
6393	case HDSPM_AIO_REV:
6394		hdspm->io_type = AIO;
6395		hdspm->card_name = "RME AIO";
6396		hdspm->midiPorts = 1;
6397		break;
6398	case HDSPM_MADIFACE_REV:
6399		hdspm->io_type = MADIface;
6400		hdspm->card_name = "RME MADIface";
6401		hdspm->midiPorts = 1;
6402		break;
6403	case HDSPM_AES_REV:
6404	case HDSPM_AES32_REV:
6405	case HDSPM_AES32_OLD_REV:
6406		hdspm->io_type = AES32;
6407		hdspm->card_name = "RME AES32";
6408		hdspm->midiPorts = 2;
6409		break;
6410	default:
6411		snd_printk(KERN_ERR "HDSPM: unknown firmware revision %x\n",
6412				hdspm->firmware_rev);
6413		return -ENODEV;
6414	}
6415
6416	err = pci_enable_device(pci);
6417	if (err < 0)
6418		return err;
6419
6420	pci_set_master(hdspm->pci);
6421
6422	err = pci_request_regions(pci, "hdspm");
6423	if (err < 0)
6424		return err;
6425
6426	hdspm->port = pci_resource_start(pci, 0);
6427	io_extent = pci_resource_len(pci, 0);
6428
6429	snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
6430			hdspm->port, hdspm->port + io_extent - 1);
6431
6432	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6433	if (!hdspm->iobase) {
6434		snd_printk(KERN_ERR "HDSPM: "
6435				"unable to remap region 0x%lx-0x%lx\n",
6436				hdspm->port, hdspm->port + io_extent - 1);
6437		return -EBUSY;
6438	}
6439	snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
6440			(unsigned long)hdspm->iobase, hdspm->port,
6441			hdspm->port + io_extent - 1);
6442
6443	if (request_irq(pci->irq, snd_hdspm_interrupt,
6444				IRQF_SHARED, "hdspm", hdspm)) {
6445		snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
6446		return -EBUSY;
6447	}
6448
6449	snd_printdd("use IRQ %d\n", pci->irq);
6450
6451	hdspm->irq = pci->irq;
6452
6453	snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
6454			sizeof(struct hdspm_mixer));
6455	hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6456	if (!hdspm->mixer) {
6457		snd_printk(KERN_ERR "HDSPM: "
6458				"unable to kmalloc Mixer memory of %d Bytes\n",
6459				(int)sizeof(struct hdspm_mixer));
6460		return err;
6461	}
6462
6463	hdspm->port_names_in = NULL;
6464	hdspm->port_names_out = NULL;
6465
6466	switch (hdspm->io_type) {
6467	case AES32:
6468		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6469		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6470		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6471
6472		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6473			channel_map_aes32;
6474		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6475			channel_map_aes32;
6476		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6477			channel_map_aes32;
6478		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6479			texts_ports_aes32;
6480		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6481			texts_ports_aes32;
6482		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6483			texts_ports_aes32;
6484
6485		hdspm->max_channels_out = hdspm->max_channels_in =
6486			AES32_CHANNELS;
6487		hdspm->port_names_in = hdspm->port_names_out =
6488			texts_ports_aes32;
6489		hdspm->channel_map_in = hdspm->channel_map_out =
6490			channel_map_aes32;
6491
6492		break;
6493
6494	case MADI:
6495	case MADIface:
6496		hdspm->ss_in_channels = hdspm->ss_out_channels =
6497			MADI_SS_CHANNELS;
6498		hdspm->ds_in_channels = hdspm->ds_out_channels =
6499			MADI_DS_CHANNELS;
6500		hdspm->qs_in_channels = hdspm->qs_out_channels =
6501			MADI_QS_CHANNELS;
6502
6503		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6504			channel_map_unity_ss;
6505		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6506			channel_map_unity_ss;
6507		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6508			channel_map_unity_ss;
6509
6510		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6511			texts_ports_madi;
6512		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6513			texts_ports_madi;
6514		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6515			texts_ports_madi;
6516		break;
6517
6518	case AIO:
6519		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6520			snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n");
6521		}
6522
6523		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6524		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6525		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6526		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6527		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6528		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6529
6530		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6531		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6532		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6533
6534		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6535		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6536		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6537
6538		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6539		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6540		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6541		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6542		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6543		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6544
6545		break;
6546
6547	case RayDAT:
6548		hdspm->ss_in_channels = hdspm->ss_out_channels =
6549			RAYDAT_SS_CHANNELS;
6550		hdspm->ds_in_channels = hdspm->ds_out_channels =
6551			RAYDAT_DS_CHANNELS;
6552		hdspm->qs_in_channels = hdspm->qs_out_channels =
6553			RAYDAT_QS_CHANNELS;
6554
6555		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6556		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6557
6558		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6559			channel_map_raydat_ss;
6560		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6561			channel_map_raydat_ds;
6562		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6563			channel_map_raydat_qs;
6564		hdspm->channel_map_in = hdspm->channel_map_out =
6565			channel_map_raydat_ss;
6566
6567		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6568			texts_ports_raydat_ss;
6569		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6570			texts_ports_raydat_ds;
6571		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6572			texts_ports_raydat_qs;
6573
6574
6575		break;
6576
6577	}
6578
6579	/* TCO detection */
6580	switch (hdspm->io_type) {
6581	case AIO:
6582	case RayDAT:
6583		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6584				HDSPM_s2_tco_detect) {
6585			hdspm->midiPorts++;
6586			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6587					GFP_KERNEL);
6588			if (NULL != hdspm->tco) {
6589				hdspm_tco_write(hdspm);
6590			}
6591			snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
6592		} else {
6593			hdspm->tco = NULL;
6594		}
6595		break;
6596
6597	case MADI:
6598		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6599			hdspm->midiPorts++;
6600			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6601					GFP_KERNEL);
6602			if (NULL != hdspm->tco) {
6603				hdspm_tco_write(hdspm);
6604			}
6605			snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n");
6606		} else {
6607			hdspm->tco = NULL;
6608		}
6609		break;
6610
6611	default:
6612		hdspm->tco = NULL;
6613	}
6614
6615	/* texts */
6616	switch (hdspm->io_type) {
6617	case AES32:
6618		if (hdspm->tco) {
6619			hdspm->texts_autosync = texts_autosync_aes_tco;
6620			hdspm->texts_autosync_items = 10;
6621		} else {
6622			hdspm->texts_autosync = texts_autosync_aes;
6623			hdspm->texts_autosync_items = 9;
6624		}
6625		break;
6626
6627	case MADI:
6628		if (hdspm->tco) {
6629			hdspm->texts_autosync = texts_autosync_madi_tco;
6630			hdspm->texts_autosync_items = 4;
6631		} else {
6632			hdspm->texts_autosync = texts_autosync_madi;
6633			hdspm->texts_autosync_items = 3;
6634		}
6635		break;
6636
6637	case MADIface:
6638
6639		break;
6640
6641	case RayDAT:
6642		if (hdspm->tco) {
6643			hdspm->texts_autosync = texts_autosync_raydat_tco;
6644			hdspm->texts_autosync_items = 9;
6645		} else {
6646			hdspm->texts_autosync = texts_autosync_raydat;
6647			hdspm->texts_autosync_items = 8;
6648		}
6649		break;
6650
6651	case AIO:
6652		if (hdspm->tco) {
6653			hdspm->texts_autosync = texts_autosync_aio_tco;
6654			hdspm->texts_autosync_items = 6;
6655		} else {
6656			hdspm->texts_autosync = texts_autosync_aio;
6657			hdspm->texts_autosync_items = 5;
6658		}
6659		break;
6660
6661	}
6662
6663	tasklet_init(&hdspm->midi_tasklet,
6664			hdspm_midi_tasklet, (unsigned long) hdspm);
6665
6666	snd_printdd("create alsa devices.\n");
6667	err = snd_hdspm_create_alsa_devices(card, hdspm);
6668	if (err < 0)
6669		return err;
6670
6671	snd_hdspm_initialize_midi_flush(hdspm);
6672
6673	return 0;
6674}
6675
6676
6677static int snd_hdspm_free(struct hdspm * hdspm)
6678{
6679
6680	if (hdspm->port) {
6681
6682		/* stop th audio, and cancel all interrupts */
6683		hdspm->control_register &=
6684		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6685		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6686		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6687		hdspm_write(hdspm, HDSPM_controlRegister,
6688			    hdspm->control_register);
6689	}
6690
6691	if (hdspm->irq >= 0)
6692		free_irq(hdspm->irq, (void *) hdspm);
6693
6694	kfree(hdspm->mixer);
6695
6696	if (hdspm->iobase)
6697		iounmap(hdspm->iobase);
6698
6699	if (hdspm->port)
6700		pci_release_regions(hdspm->pci);
6701
6702	pci_disable_device(hdspm->pci);
6703	return 0;
6704}
6705
6706
6707static void snd_hdspm_card_free(struct snd_card *card)
6708{
6709	struct hdspm *hdspm = card->private_data;
6710
6711	if (hdspm)
6712		snd_hdspm_free(hdspm);
6713}
6714
6715
6716static int __devinit snd_hdspm_probe(struct pci_dev *pci,
6717				     const struct pci_device_id *pci_id)
6718{
6719	static int dev;
6720	struct hdspm *hdspm;
6721	struct snd_card *card;
6722	int err;
6723
6724	if (dev >= SNDRV_CARDS)
6725		return -ENODEV;
6726	if (!enable[dev]) {
6727		dev++;
6728		return -ENOENT;
6729	}
6730
6731	err = snd_card_create(index[dev], id[dev],
6732			THIS_MODULE, sizeof(struct hdspm), &card);
6733	if (err < 0)
6734		return err;
6735
6736	hdspm = card->private_data;
6737	card->private_free = snd_hdspm_card_free;
6738	hdspm->dev = dev;
6739	hdspm->pci = pci;
6740
6741	snd_card_set_dev(card, &pci->dev);
6742
6743	err = snd_hdspm_create(card, hdspm);
6744	if (err < 0) {
6745		snd_card_free(card);
6746		return err;
6747	}
6748
6749	if (hdspm->io_type != MADIface) {
6750		sprintf(card->shortname, "%s_%x",
6751			hdspm->card_name,
6752			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);
6753		sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
6754			hdspm->card_name,
6755			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF,
6756			hdspm->port, hdspm->irq);
6757	} else {
6758		sprintf(card->shortname, "%s", hdspm->card_name);
6759		sprintf(card->longname, "%s at 0x%lx, irq %d",
6760				hdspm->card_name, hdspm->port, hdspm->irq);
6761	}
6762
6763	err = snd_card_register(card);
6764	if (err < 0) {
6765		snd_card_free(card);
6766		return err;
6767	}
6768
6769	pci_set_drvdata(pci, card);
6770
6771	dev++;
6772	return 0;
6773}
6774
6775static void __devexit snd_hdspm_remove(struct pci_dev *pci)
6776{
6777	snd_card_free(pci_get_drvdata(pci));
6778	pci_set_drvdata(pci, NULL);
6779}
6780
6781static struct pci_driver driver = {
6782	.name = "RME Hammerfall DSP MADI",
6783	.id_table = snd_hdspm_ids,
6784	.probe = snd_hdspm_probe,
6785	.remove = __devexit_p(snd_hdspm_remove),
6786};
6787
6788
6789static int __init alsa_card_hdspm_init(void)
6790{
6791	return pci_register_driver(&driver);
6792}
6793
6794static void __exit alsa_card_hdspm_exit(void)
6795{
6796	pci_unregister_driver(&driver);
6797}
6798
6799module_init(alsa_card_hdspm_init)
6800module_exit(alsa_card_hdspm_exit)
6801