1/*
2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * 2003-10-17 - Ported from altq
10 */
11/*
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
19 *
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33 * DAMAGE.
34 *
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
39 */
40/*
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45 *
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve.  the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
50 */
51
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/types.h>
55#include <linux/errno.h>
56#include <linux/compiler.h>
57#include <linux/spinlock.h>
58#include <linux/skbuff.h>
59#include <linux/string.h>
60#include <linux/slab.h>
61#include <linux/list.h>
62#include <linux/rbtree.h>
63#include <linux/init.h>
64#include <linux/rtnetlink.h>
65#include <linux/pkt_sched.h>
66#include <net/netlink.h>
67#include <net/pkt_sched.h>
68#include <net/pkt_cls.h>
69#include <asm/div64.h>
70
71/*
72 * kernel internal service curve representation:
73 *   coordinates are given by 64 bit unsigned integers.
74 *   x-axis: unit is clock count.
75 *   y-axis: unit is byte.
76 *
77 *   The service curve parameters are converted to the internal
78 *   representation. The slope values are scaled to avoid overflow.
79 *   the inverse slope values as well as the y-projection of the 1st
80 *   segment are kept in order to avoid 64-bit divide operations
81 *   that are expensive on 32-bit architectures.
82 */
83
84struct internal_sc {
85	u64	sm1;	/* scaled slope of the 1st segment */
86	u64	ism1;	/* scaled inverse-slope of the 1st segment */
87	u64	dx;	/* the x-projection of the 1st segment */
88	u64	dy;	/* the y-projection of the 1st segment */
89	u64	sm2;	/* scaled slope of the 2nd segment */
90	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
91};
92
93/* runtime service curve */
94struct runtime_sc {
95	u64	x;	/* current starting position on x-axis */
96	u64	y;	/* current starting position on y-axis */
97	u64	sm1;	/* scaled slope of the 1st segment */
98	u64	ism1;	/* scaled inverse-slope of the 1st segment */
99	u64	dx;	/* the x-projection of the 1st segment */
100	u64	dy;	/* the y-projection of the 1st segment */
101	u64	sm2;	/* scaled slope of the 2nd segment */
102	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
103};
104
105enum hfsc_class_flags {
106	HFSC_RSC = 0x1,
107	HFSC_FSC = 0x2,
108	HFSC_USC = 0x4
109};
110
111struct hfsc_class {
112	struct Qdisc_class_common cl_common;
113	unsigned int	refcnt;		/* usage count */
114
115	struct gnet_stats_basic_packed bstats;
116	struct gnet_stats_queue qstats;
117	struct gnet_stats_rate_est rate_est;
118	unsigned int	level;		/* class level in hierarchy */
119	struct tcf_proto *filter_list;	/* filter list */
120	unsigned int	filter_cnt;	/* filter count */
121
122	struct hfsc_sched *sched;	/* scheduler data */
123	struct hfsc_class *cl_parent;	/* parent class */
124	struct list_head siblings;	/* sibling classes */
125	struct list_head children;	/* child classes */
126	struct Qdisc	*qdisc;		/* leaf qdisc */
127
128	struct rb_node el_node;		/* qdisc's eligible tree member */
129	struct rb_root vt_tree;		/* active children sorted by cl_vt */
130	struct rb_node vt_node;		/* parent's vt_tree member */
131	struct rb_root cf_tree;		/* active children sorted by cl_f */
132	struct rb_node cf_node;		/* parent's cf_heap member */
133	struct list_head dlist;		/* drop list member */
134
135	u64	cl_total;		/* total work in bytes */
136	u64	cl_cumul;		/* cumulative work in bytes done by
137					   real-time criteria */
138
139	u64	cl_d;			/* deadline*/
140	u64	cl_e;			/* eligible time */
141	u64	cl_vt;			/* virtual time */
142	u64	cl_f;			/* time when this class will fit for
143					   link-sharing, max(myf, cfmin) */
144	u64	cl_myf;			/* my fit-time (calculated from this
145					   class's own upperlimit curve) */
146	u64	cl_myfadj;		/* my fit-time adjustment (to cancel
147					   history dependence) */
148	u64	cl_cfmin;		/* earliest children's fit-time (used
149					   with cl_myf to obtain cl_f) */
150	u64	cl_cvtmin;		/* minimal virtual time among the
151					   children fit for link-sharing
152					   (monotonic within a period) */
153	u64	cl_vtadj;		/* intra-period cumulative vt
154					   adjustment */
155	u64	cl_vtoff;		/* inter-period cumulative vt offset */
156	u64	cl_cvtmax;		/* max child's vt in the last period */
157	u64	cl_cvtoff;		/* cumulative cvtmax of all periods */
158	u64	cl_pcvtoff;		/* parent's cvtoff at initialization
159					   time */
160
161	struct internal_sc cl_rsc;	/* internal real-time service curve */
162	struct internal_sc cl_fsc;	/* internal fair service curve */
163	struct internal_sc cl_usc;	/* internal upperlimit service curve */
164	struct runtime_sc cl_deadline;	/* deadline curve */
165	struct runtime_sc cl_eligible;	/* eligible curve */
166	struct runtime_sc cl_virtual;	/* virtual curve */
167	struct runtime_sc cl_ulimit;	/* upperlimit curve */
168
169	unsigned long	cl_flags;	/* which curves are valid */
170	unsigned long	cl_vtperiod;	/* vt period sequence number */
171	unsigned long	cl_parentperiod;/* parent's vt period sequence number*/
172	unsigned long	cl_nactive;	/* number of active children */
173};
174
175struct hfsc_sched {
176	u16	defcls;				/* default class id */
177	struct hfsc_class root;			/* root class */
178	struct Qdisc_class_hash clhash;		/* class hash */
179	struct rb_root eligible;		/* eligible tree */
180	struct list_head droplist;		/* active leaf class list (for
181						   dropping) */
182	struct qdisc_watchdog watchdog;		/* watchdog timer */
183};
184
185#define	HT_INFINITY	0xffffffffffffffffULL	/* infinite time value */
186
187
188/*
189 * eligible tree holds backlogged classes being sorted by their eligible times.
190 * there is one eligible tree per hfsc instance.
191 */
192
193static void
194eltree_insert(struct hfsc_class *cl)
195{
196	struct rb_node **p = &cl->sched->eligible.rb_node;
197	struct rb_node *parent = NULL;
198	struct hfsc_class *cl1;
199
200	while (*p != NULL) {
201		parent = *p;
202		cl1 = rb_entry(parent, struct hfsc_class, el_node);
203		if (cl->cl_e >= cl1->cl_e)
204			p = &parent->rb_right;
205		else
206			p = &parent->rb_left;
207	}
208	rb_link_node(&cl->el_node, parent, p);
209	rb_insert_color(&cl->el_node, &cl->sched->eligible);
210}
211
212static inline void
213eltree_remove(struct hfsc_class *cl)
214{
215	rb_erase(&cl->el_node, &cl->sched->eligible);
216}
217
218static inline void
219eltree_update(struct hfsc_class *cl)
220{
221	eltree_remove(cl);
222	eltree_insert(cl);
223}
224
225/* find the class with the minimum deadline among the eligible classes */
226static inline struct hfsc_class *
227eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
228{
229	struct hfsc_class *p, *cl = NULL;
230	struct rb_node *n;
231
232	for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
233		p = rb_entry(n, struct hfsc_class, el_node);
234		if (p->cl_e > cur_time)
235			break;
236		if (cl == NULL || p->cl_d < cl->cl_d)
237			cl = p;
238	}
239	return cl;
240}
241
242/* find the class with minimum eligible time among the eligible classes */
243static inline struct hfsc_class *
244eltree_get_minel(struct hfsc_sched *q)
245{
246	struct rb_node *n;
247
248	n = rb_first(&q->eligible);
249	if (n == NULL)
250		return NULL;
251	return rb_entry(n, struct hfsc_class, el_node);
252}
253
254/*
255 * vttree holds holds backlogged child classes being sorted by their virtual
256 * time. each intermediate class has one vttree.
257 */
258static void
259vttree_insert(struct hfsc_class *cl)
260{
261	struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
262	struct rb_node *parent = NULL;
263	struct hfsc_class *cl1;
264
265	while (*p != NULL) {
266		parent = *p;
267		cl1 = rb_entry(parent, struct hfsc_class, vt_node);
268		if (cl->cl_vt >= cl1->cl_vt)
269			p = &parent->rb_right;
270		else
271			p = &parent->rb_left;
272	}
273	rb_link_node(&cl->vt_node, parent, p);
274	rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
275}
276
277static inline void
278vttree_remove(struct hfsc_class *cl)
279{
280	rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
281}
282
283static inline void
284vttree_update(struct hfsc_class *cl)
285{
286	vttree_remove(cl);
287	vttree_insert(cl);
288}
289
290static inline struct hfsc_class *
291vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
292{
293	struct hfsc_class *p;
294	struct rb_node *n;
295
296	for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
297		p = rb_entry(n, struct hfsc_class, vt_node);
298		if (p->cl_f <= cur_time)
299			return p;
300	}
301	return NULL;
302}
303
304/*
305 * get the leaf class with the minimum vt in the hierarchy
306 */
307static struct hfsc_class *
308vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
309{
310	/* if root-class's cfmin is bigger than cur_time nothing to do */
311	if (cl->cl_cfmin > cur_time)
312		return NULL;
313
314	while (cl->level > 0) {
315		cl = vttree_firstfit(cl, cur_time);
316		if (cl == NULL)
317			return NULL;
318		/*
319		 * update parent's cl_cvtmin.
320		 */
321		if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
322			cl->cl_parent->cl_cvtmin = cl->cl_vt;
323	}
324	return cl;
325}
326
327static void
328cftree_insert(struct hfsc_class *cl)
329{
330	struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
331	struct rb_node *parent = NULL;
332	struct hfsc_class *cl1;
333
334	while (*p != NULL) {
335		parent = *p;
336		cl1 = rb_entry(parent, struct hfsc_class, cf_node);
337		if (cl->cl_f >= cl1->cl_f)
338			p = &parent->rb_right;
339		else
340			p = &parent->rb_left;
341	}
342	rb_link_node(&cl->cf_node, parent, p);
343	rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
344}
345
346static inline void
347cftree_remove(struct hfsc_class *cl)
348{
349	rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
350}
351
352static inline void
353cftree_update(struct hfsc_class *cl)
354{
355	cftree_remove(cl);
356	cftree_insert(cl);
357}
358
359/*
360 * service curve support functions
361 *
362 *  external service curve parameters
363 *	m: bps
364 *	d: us
365 *  internal service curve parameters
366 *	sm: (bytes/psched_us) << SM_SHIFT
367 *	ism: (psched_us/byte) << ISM_SHIFT
368 *	dx: psched_us
369 *
370 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
371 *
372 * sm and ism are scaled in order to keep effective digits.
373 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
374 * digits in decimal using the following table.
375 *
376 *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
377 *  ------------+-------------------------------------------------------
378 *  bytes/1.024us 12.8e-3    128e-3     1280e-3    12800e-3   128000e-3
379 *
380 *  1.024us/byte  78.125     7.8125     0.78125    0.078125   0.0078125
381 *
382 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
383 */
384#define	SM_SHIFT	(30 - PSCHED_SHIFT)
385#define	ISM_SHIFT	(8 + PSCHED_SHIFT)
386
387#define	SM_MASK		((1ULL << SM_SHIFT) - 1)
388#define	ISM_MASK	((1ULL << ISM_SHIFT) - 1)
389
390static inline u64
391seg_x2y(u64 x, u64 sm)
392{
393	u64 y;
394
395	/*
396	 * compute
397	 *	y = x * sm >> SM_SHIFT
398	 * but divide it for the upper and lower bits to avoid overflow
399	 */
400	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
401	return y;
402}
403
404static inline u64
405seg_y2x(u64 y, u64 ism)
406{
407	u64 x;
408
409	if (y == 0)
410		x = 0;
411	else if (ism == HT_INFINITY)
412		x = HT_INFINITY;
413	else {
414		x = (y >> ISM_SHIFT) * ism
415		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
416	}
417	return x;
418}
419
420/* Convert m (bps) into sm (bytes/psched us) */
421static u64
422m2sm(u32 m)
423{
424	u64 sm;
425
426	sm = ((u64)m << SM_SHIFT);
427	sm += PSCHED_TICKS_PER_SEC - 1;
428	do_div(sm, PSCHED_TICKS_PER_SEC);
429	return sm;
430}
431
432/* convert m (bps) into ism (psched us/byte) */
433static u64
434m2ism(u32 m)
435{
436	u64 ism;
437
438	if (m == 0)
439		ism = HT_INFINITY;
440	else {
441		ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
442		ism += m - 1;
443		do_div(ism, m);
444	}
445	return ism;
446}
447
448/* convert d (us) into dx (psched us) */
449static u64
450d2dx(u32 d)
451{
452	u64 dx;
453
454	dx = ((u64)d * PSCHED_TICKS_PER_SEC);
455	dx += USEC_PER_SEC - 1;
456	do_div(dx, USEC_PER_SEC);
457	return dx;
458}
459
460/* convert sm (bytes/psched us) into m (bps) */
461static u32
462sm2m(u64 sm)
463{
464	u64 m;
465
466	m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
467	return (u32)m;
468}
469
470/* convert dx (psched us) into d (us) */
471static u32
472dx2d(u64 dx)
473{
474	u64 d;
475
476	d = dx * USEC_PER_SEC;
477	do_div(d, PSCHED_TICKS_PER_SEC);
478	return (u32)d;
479}
480
481static void
482sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
483{
484	isc->sm1  = m2sm(sc->m1);
485	isc->ism1 = m2ism(sc->m1);
486	isc->dx   = d2dx(sc->d);
487	isc->dy   = seg_x2y(isc->dx, isc->sm1);
488	isc->sm2  = m2sm(sc->m2);
489	isc->ism2 = m2ism(sc->m2);
490}
491
492/*
493 * initialize the runtime service curve with the given internal
494 * service curve starting at (x, y).
495 */
496static void
497rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
498{
499	rtsc->x	   = x;
500	rtsc->y    = y;
501	rtsc->sm1  = isc->sm1;
502	rtsc->ism1 = isc->ism1;
503	rtsc->dx   = isc->dx;
504	rtsc->dy   = isc->dy;
505	rtsc->sm2  = isc->sm2;
506	rtsc->ism2 = isc->ism2;
507}
508
509/*
510 * calculate the y-projection of the runtime service curve by the
511 * given x-projection value
512 */
513static u64
514rtsc_y2x(struct runtime_sc *rtsc, u64 y)
515{
516	u64 x;
517
518	if (y < rtsc->y)
519		x = rtsc->x;
520	else if (y <= rtsc->y + rtsc->dy) {
521		/* x belongs to the 1st segment */
522		if (rtsc->dy == 0)
523			x = rtsc->x + rtsc->dx;
524		else
525			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
526	} else {
527		/* x belongs to the 2nd segment */
528		x = rtsc->x + rtsc->dx
529		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
530	}
531	return x;
532}
533
534static u64
535rtsc_x2y(struct runtime_sc *rtsc, u64 x)
536{
537	u64 y;
538
539	if (x <= rtsc->x)
540		y = rtsc->y;
541	else if (x <= rtsc->x + rtsc->dx)
542		/* y belongs to the 1st segment */
543		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
544	else
545		/* y belongs to the 2nd segment */
546		y = rtsc->y + rtsc->dy
547		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
548	return y;
549}
550
551/*
552 * update the runtime service curve by taking the minimum of the current
553 * runtime service curve and the service curve starting at (x, y).
554 */
555static void
556rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
557{
558	u64 y1, y2, dx, dy;
559	u32 dsm;
560
561	if (isc->sm1 <= isc->sm2) {
562		/* service curve is convex */
563		y1 = rtsc_x2y(rtsc, x);
564		if (y1 < y)
565			/* the current rtsc is smaller */
566			return;
567		rtsc->x = x;
568		rtsc->y = y;
569		return;
570	}
571
572	/*
573	 * service curve is concave
574	 * compute the two y values of the current rtsc
575	 *	y1: at x
576	 *	y2: at (x + dx)
577	 */
578	y1 = rtsc_x2y(rtsc, x);
579	if (y1 <= y) {
580		/* rtsc is below isc, no change to rtsc */
581		return;
582	}
583
584	y2 = rtsc_x2y(rtsc, x + isc->dx);
585	if (y2 >= y + isc->dy) {
586		/* rtsc is above isc, replace rtsc by isc */
587		rtsc->x = x;
588		rtsc->y = y;
589		rtsc->dx = isc->dx;
590		rtsc->dy = isc->dy;
591		return;
592	}
593
594	/*
595	 * the two curves intersect
596	 * compute the offsets (dx, dy) using the reverse
597	 * function of seg_x2y()
598	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
599	 */
600	dx = (y1 - y) << SM_SHIFT;
601	dsm = isc->sm1 - isc->sm2;
602	do_div(dx, dsm);
603	/*
604	 * check if (x, y1) belongs to the 1st segment of rtsc.
605	 * if so, add the offset.
606	 */
607	if (rtsc->x + rtsc->dx > x)
608		dx += rtsc->x + rtsc->dx - x;
609	dy = seg_x2y(dx, isc->sm1);
610
611	rtsc->x = x;
612	rtsc->y = y;
613	rtsc->dx = dx;
614	rtsc->dy = dy;
615}
616
617static void
618init_ed(struct hfsc_class *cl, unsigned int next_len)
619{
620	u64 cur_time = psched_get_time();
621
622	/* update the deadline curve */
623	rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
624
625	/*
626	 * update the eligible curve.
627	 * for concave, it is equal to the deadline curve.
628	 * for convex, it is a linear curve with slope m2.
629	 */
630	cl->cl_eligible = cl->cl_deadline;
631	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
632		cl->cl_eligible.dx = 0;
633		cl->cl_eligible.dy = 0;
634	}
635
636	/* compute e and d */
637	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
638	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
639
640	eltree_insert(cl);
641}
642
643static void
644update_ed(struct hfsc_class *cl, unsigned int next_len)
645{
646	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
647	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
648
649	eltree_update(cl);
650}
651
652static inline void
653update_d(struct hfsc_class *cl, unsigned int next_len)
654{
655	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
656}
657
658static inline void
659update_cfmin(struct hfsc_class *cl)
660{
661	struct rb_node *n = rb_first(&cl->cf_tree);
662	struct hfsc_class *p;
663
664	if (n == NULL) {
665		cl->cl_cfmin = 0;
666		return;
667	}
668	p = rb_entry(n, struct hfsc_class, cf_node);
669	cl->cl_cfmin = p->cl_f;
670}
671
672static void
673init_vf(struct hfsc_class *cl, unsigned int len)
674{
675	struct hfsc_class *max_cl;
676	struct rb_node *n;
677	u64 vt, f, cur_time;
678	int go_active;
679
680	cur_time = 0;
681	go_active = 1;
682	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
683		if (go_active && cl->cl_nactive++ == 0)
684			go_active = 1;
685		else
686			go_active = 0;
687
688		if (go_active) {
689			n = rb_last(&cl->cl_parent->vt_tree);
690			if (n != NULL) {
691				max_cl = rb_entry(n, struct hfsc_class, vt_node);
692				/*
693				 * set vt to the average of the min and max
694				 * classes.  if the parent's period didn't
695				 * change, don't decrease vt of the class.
696				 */
697				vt = max_cl->cl_vt;
698				if (cl->cl_parent->cl_cvtmin != 0)
699					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
700
701				if (cl->cl_parent->cl_vtperiod !=
702				    cl->cl_parentperiod || vt > cl->cl_vt)
703					cl->cl_vt = vt;
704			} else {
705				/*
706				 * first child for a new parent backlog period.
707				 * add parent's cvtmax to cvtoff to make a new
708				 * vt (vtoff + vt) larger than the vt in the
709				 * last period for all children.
710				 */
711				vt = cl->cl_parent->cl_cvtmax;
712				cl->cl_parent->cl_cvtoff += vt;
713				cl->cl_parent->cl_cvtmax = 0;
714				cl->cl_parent->cl_cvtmin = 0;
715				cl->cl_vt = 0;
716			}
717
718			cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
719							cl->cl_pcvtoff;
720
721			/* update the virtual curve */
722			vt = cl->cl_vt + cl->cl_vtoff;
723			rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
724						      cl->cl_total);
725			if (cl->cl_virtual.x == vt) {
726				cl->cl_virtual.x -= cl->cl_vtoff;
727				cl->cl_vtoff = 0;
728			}
729			cl->cl_vtadj = 0;
730
731			cl->cl_vtperiod++;  /* increment vt period */
732			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
733			if (cl->cl_parent->cl_nactive == 0)
734				cl->cl_parentperiod++;
735			cl->cl_f = 0;
736
737			vttree_insert(cl);
738			cftree_insert(cl);
739
740			if (cl->cl_flags & HFSC_USC) {
741				/* class has upper limit curve */
742				if (cur_time == 0)
743					cur_time = psched_get_time();
744
745				/* update the ulimit curve */
746				rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
747					 cl->cl_total);
748				/* compute myf */
749				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
750						      cl->cl_total);
751				cl->cl_myfadj = 0;
752			}
753		}
754
755		f = max(cl->cl_myf, cl->cl_cfmin);
756		if (f != cl->cl_f) {
757			cl->cl_f = f;
758			cftree_update(cl);
759		}
760		update_cfmin(cl->cl_parent);
761	}
762}
763
764static void
765update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
766{
767	u64 f; /* , myf_bound, delta; */
768	int go_passive = 0;
769
770	if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
771		go_passive = 1;
772
773	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
774		cl->cl_total += len;
775
776		if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
777			continue;
778
779		if (go_passive && --cl->cl_nactive == 0)
780			go_passive = 1;
781		else
782			go_passive = 0;
783
784		if (go_passive) {
785			/* no more active child, going passive */
786
787			/* update cvtmax of the parent class */
788			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
789				cl->cl_parent->cl_cvtmax = cl->cl_vt;
790
791			/* remove this class from the vt tree */
792			vttree_remove(cl);
793
794			cftree_remove(cl);
795			update_cfmin(cl->cl_parent);
796
797			continue;
798		}
799
800		/*
801		 * update vt and f
802		 */
803		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
804			    - cl->cl_vtoff + cl->cl_vtadj;
805
806		/*
807		 * if vt of the class is smaller than cvtmin,
808		 * the class was skipped in the past due to non-fit.
809		 * if so, we need to adjust vtadj.
810		 */
811		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
812			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
813			cl->cl_vt = cl->cl_parent->cl_cvtmin;
814		}
815
816		/* update the vt tree */
817		vttree_update(cl);
818
819		if (cl->cl_flags & HFSC_USC) {
820			cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
821							      cl->cl_total);
822#if 0
823			/*
824			 * This code causes classes to stay way under their
825			 * limit when multiple classes are used at gigabit
826			 * speed. needs investigation. -kaber
827			 */
828			/*
829			 * if myf lags behind by more than one clock tick
830			 * from the current time, adjust myfadj to prevent
831			 * a rate-limited class from going greedy.
832			 * in a steady state under rate-limiting, myf
833			 * fluctuates within one clock tick.
834			 */
835			myf_bound = cur_time - PSCHED_JIFFIE2US(1);
836			if (cl->cl_myf < myf_bound) {
837				delta = cur_time - cl->cl_myf;
838				cl->cl_myfadj += delta;
839				cl->cl_myf += delta;
840			}
841#endif
842		}
843
844		f = max(cl->cl_myf, cl->cl_cfmin);
845		if (f != cl->cl_f) {
846			cl->cl_f = f;
847			cftree_update(cl);
848			update_cfmin(cl->cl_parent);
849		}
850	}
851}
852
853static void
854set_active(struct hfsc_class *cl, unsigned int len)
855{
856	if (cl->cl_flags & HFSC_RSC)
857		init_ed(cl, len);
858	if (cl->cl_flags & HFSC_FSC)
859		init_vf(cl, len);
860
861	list_add_tail(&cl->dlist, &cl->sched->droplist);
862}
863
864static void
865set_passive(struct hfsc_class *cl)
866{
867	if (cl->cl_flags & HFSC_RSC)
868		eltree_remove(cl);
869
870	list_del(&cl->dlist);
871
872	/*
873	 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
874	 * needs to be called explicitly to remove a class from vttree.
875	 */
876}
877
878static unsigned int
879qdisc_peek_len(struct Qdisc *sch)
880{
881	struct sk_buff *skb;
882	unsigned int len;
883
884	skb = sch->ops->peek(sch);
885	if (skb == NULL) {
886		qdisc_warn_nonwc("qdisc_peek_len", sch);
887		return 0;
888	}
889	len = qdisc_pkt_len(skb);
890
891	return len;
892}
893
894static void
895hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
896{
897	unsigned int len = cl->qdisc->q.qlen;
898
899	qdisc_reset(cl->qdisc);
900	qdisc_tree_decrease_qlen(cl->qdisc, len);
901}
902
903static void
904hfsc_adjust_levels(struct hfsc_class *cl)
905{
906	struct hfsc_class *p;
907	unsigned int level;
908
909	do {
910		level = 0;
911		list_for_each_entry(p, &cl->children, siblings) {
912			if (p->level >= level)
913				level = p->level + 1;
914		}
915		cl->level = level;
916	} while ((cl = cl->cl_parent) != NULL);
917}
918
919static inline struct hfsc_class *
920hfsc_find_class(u32 classid, struct Qdisc *sch)
921{
922	struct hfsc_sched *q = qdisc_priv(sch);
923	struct Qdisc_class_common *clc;
924
925	clc = qdisc_class_find(&q->clhash, classid);
926	if (clc == NULL)
927		return NULL;
928	return container_of(clc, struct hfsc_class, cl_common);
929}
930
931static void
932hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
933		u64 cur_time)
934{
935	sc2isc(rsc, &cl->cl_rsc);
936	rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
937	cl->cl_eligible = cl->cl_deadline;
938	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
939		cl->cl_eligible.dx = 0;
940		cl->cl_eligible.dy = 0;
941	}
942	cl->cl_flags |= HFSC_RSC;
943}
944
945static void
946hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
947{
948	sc2isc(fsc, &cl->cl_fsc);
949	rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
950	cl->cl_flags |= HFSC_FSC;
951}
952
953static void
954hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
955		u64 cur_time)
956{
957	sc2isc(usc, &cl->cl_usc);
958	rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
959	cl->cl_flags |= HFSC_USC;
960}
961
962static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
963	[TCA_HFSC_RSC]	= { .len = sizeof(struct tc_service_curve) },
964	[TCA_HFSC_FSC]	= { .len = sizeof(struct tc_service_curve) },
965	[TCA_HFSC_USC]	= { .len = sizeof(struct tc_service_curve) },
966};
967
968static int
969hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
970		  struct nlattr **tca, unsigned long *arg)
971{
972	struct hfsc_sched *q = qdisc_priv(sch);
973	struct hfsc_class *cl = (struct hfsc_class *)*arg;
974	struct hfsc_class *parent = NULL;
975	struct nlattr *opt = tca[TCA_OPTIONS];
976	struct nlattr *tb[TCA_HFSC_MAX + 1];
977	struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
978	u64 cur_time;
979	int err;
980
981	if (opt == NULL)
982		return -EINVAL;
983
984	err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
985	if (err < 0)
986		return err;
987
988	if (tb[TCA_HFSC_RSC]) {
989		rsc = nla_data(tb[TCA_HFSC_RSC]);
990		if (rsc->m1 == 0 && rsc->m2 == 0)
991			rsc = NULL;
992	}
993
994	if (tb[TCA_HFSC_FSC]) {
995		fsc = nla_data(tb[TCA_HFSC_FSC]);
996		if (fsc->m1 == 0 && fsc->m2 == 0)
997			fsc = NULL;
998	}
999
1000	if (tb[TCA_HFSC_USC]) {
1001		usc = nla_data(tb[TCA_HFSC_USC]);
1002		if (usc->m1 == 0 && usc->m2 == 0)
1003			usc = NULL;
1004	}
1005
1006	if (cl != NULL) {
1007		if (parentid) {
1008			if (cl->cl_parent &&
1009			    cl->cl_parent->cl_common.classid != parentid)
1010				return -EINVAL;
1011			if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1012				return -EINVAL;
1013		}
1014		cur_time = psched_get_time();
1015
1016		if (tca[TCA_RATE]) {
1017			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
1018					      qdisc_root_sleeping_lock(sch),
1019					      tca[TCA_RATE]);
1020			if (err)
1021				return err;
1022		}
1023
1024		sch_tree_lock(sch);
1025		if (rsc != NULL)
1026			hfsc_change_rsc(cl, rsc, cur_time);
1027		if (fsc != NULL)
1028			hfsc_change_fsc(cl, fsc);
1029		if (usc != NULL)
1030			hfsc_change_usc(cl, usc, cur_time);
1031
1032		if (cl->qdisc->q.qlen != 0) {
1033			if (cl->cl_flags & HFSC_RSC)
1034				update_ed(cl, qdisc_peek_len(cl->qdisc));
1035			if (cl->cl_flags & HFSC_FSC)
1036				update_vf(cl, 0, cur_time);
1037		}
1038		sch_tree_unlock(sch);
1039
1040		return 0;
1041	}
1042
1043	if (parentid == TC_H_ROOT)
1044		return -EEXIST;
1045
1046	parent = &q->root;
1047	if (parentid) {
1048		parent = hfsc_find_class(parentid, sch);
1049		if (parent == NULL)
1050			return -ENOENT;
1051	}
1052
1053	if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1054		return -EINVAL;
1055	if (hfsc_find_class(classid, sch))
1056		return -EEXIST;
1057
1058	if (rsc == NULL && fsc == NULL)
1059		return -EINVAL;
1060
1061	cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1062	if (cl == NULL)
1063		return -ENOBUFS;
1064
1065	if (tca[TCA_RATE]) {
1066		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
1067					qdisc_root_sleeping_lock(sch),
1068					tca[TCA_RATE]);
1069		if (err) {
1070			kfree(cl);
1071			return err;
1072		}
1073	}
1074
1075	if (rsc != NULL)
1076		hfsc_change_rsc(cl, rsc, 0);
1077	if (fsc != NULL)
1078		hfsc_change_fsc(cl, fsc);
1079	if (usc != NULL)
1080		hfsc_change_usc(cl, usc, 0);
1081
1082	cl->cl_common.classid = classid;
1083	cl->refcnt    = 1;
1084	cl->sched     = q;
1085	cl->cl_parent = parent;
1086	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
1087				      &pfifo_qdisc_ops, classid);
1088	if (cl->qdisc == NULL)
1089		cl->qdisc = &noop_qdisc;
1090	INIT_LIST_HEAD(&cl->children);
1091	cl->vt_tree = RB_ROOT;
1092	cl->cf_tree = RB_ROOT;
1093
1094	sch_tree_lock(sch);
1095	qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1096	list_add_tail(&cl->siblings, &parent->children);
1097	if (parent->level == 0)
1098		hfsc_purge_queue(sch, parent);
1099	hfsc_adjust_levels(parent);
1100	cl->cl_pcvtoff = parent->cl_cvtoff;
1101	sch_tree_unlock(sch);
1102
1103	qdisc_class_hash_grow(sch, &q->clhash);
1104
1105	*arg = (unsigned long)cl;
1106	return 0;
1107}
1108
1109static void
1110hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1111{
1112	struct hfsc_sched *q = qdisc_priv(sch);
1113
1114	tcf_destroy_chain(&cl->filter_list);
1115	qdisc_destroy(cl->qdisc);
1116	gen_kill_estimator(&cl->bstats, &cl->rate_est);
1117	if (cl != &q->root)
1118		kfree(cl);
1119}
1120
1121static int
1122hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1123{
1124	struct hfsc_sched *q = qdisc_priv(sch);
1125	struct hfsc_class *cl = (struct hfsc_class *)arg;
1126
1127	if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1128		return -EBUSY;
1129
1130	sch_tree_lock(sch);
1131
1132	list_del(&cl->siblings);
1133	hfsc_adjust_levels(cl->cl_parent);
1134
1135	hfsc_purge_queue(sch, cl);
1136	qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
1137
1138	BUG_ON(--cl->refcnt == 0);
1139	/*
1140	 * This shouldn't happen: we "hold" one cops->get() when called
1141	 * from tc_ctl_tclass; the destroy method is done from cops->put().
1142	 */
1143
1144	sch_tree_unlock(sch);
1145	return 0;
1146}
1147
1148static struct hfsc_class *
1149hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1150{
1151	struct hfsc_sched *q = qdisc_priv(sch);
1152	struct hfsc_class *head, *cl;
1153	struct tcf_result res;
1154	struct tcf_proto *tcf;
1155	int result;
1156
1157	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1158	    (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1159		if (cl->level == 0)
1160			return cl;
1161
1162	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1163	head = &q->root;
1164	tcf = q->root.filter_list;
1165	while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1166#ifdef CONFIG_NET_CLS_ACT
1167		switch (result) {
1168		case TC_ACT_QUEUED:
1169		case TC_ACT_STOLEN:
1170			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1171		case TC_ACT_SHOT:
1172			return NULL;
1173		}
1174#endif
1175		cl = (struct hfsc_class *)res.class;
1176		if (!cl) {
1177			cl = hfsc_find_class(res.classid, sch);
1178			if (!cl)
1179				break; /* filter selected invalid classid */
1180			if (cl->level >= head->level)
1181				break; /* filter may only point downwards */
1182		}
1183
1184		if (cl->level == 0)
1185			return cl; /* hit leaf class */
1186
1187		/* apply inner filter chain */
1188		tcf = cl->filter_list;
1189		head = cl;
1190	}
1191
1192	/* classification failed, try default class */
1193	cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1194	if (cl == NULL || cl->level > 0)
1195		return NULL;
1196
1197	return cl;
1198}
1199
1200static int
1201hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1202		 struct Qdisc **old)
1203{
1204	struct hfsc_class *cl = (struct hfsc_class *)arg;
1205
1206	if (cl->level > 0)
1207		return -EINVAL;
1208	if (new == NULL) {
1209		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1210					cl->cl_common.classid);
1211		if (new == NULL)
1212			new = &noop_qdisc;
1213	}
1214
1215	sch_tree_lock(sch);
1216	hfsc_purge_queue(sch, cl);
1217	*old = cl->qdisc;
1218	cl->qdisc = new;
1219	sch_tree_unlock(sch);
1220	return 0;
1221}
1222
1223static struct Qdisc *
1224hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1225{
1226	struct hfsc_class *cl = (struct hfsc_class *)arg;
1227
1228	if (cl->level == 0)
1229		return cl->qdisc;
1230
1231	return NULL;
1232}
1233
1234static void
1235hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1236{
1237	struct hfsc_class *cl = (struct hfsc_class *)arg;
1238
1239	if (cl->qdisc->q.qlen == 0) {
1240		update_vf(cl, 0, 0);
1241		set_passive(cl);
1242	}
1243}
1244
1245static unsigned long
1246hfsc_get_class(struct Qdisc *sch, u32 classid)
1247{
1248	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1249
1250	if (cl != NULL)
1251		cl->refcnt++;
1252
1253	return (unsigned long)cl;
1254}
1255
1256static void
1257hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1258{
1259	struct hfsc_class *cl = (struct hfsc_class *)arg;
1260
1261	if (--cl->refcnt == 0)
1262		hfsc_destroy_class(sch, cl);
1263}
1264
1265static unsigned long
1266hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1267{
1268	struct hfsc_class *p = (struct hfsc_class *)parent;
1269	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1270
1271	if (cl != NULL) {
1272		if (p != NULL && p->level <= cl->level)
1273			return 0;
1274		cl->filter_cnt++;
1275	}
1276
1277	return (unsigned long)cl;
1278}
1279
1280static void
1281hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1282{
1283	struct hfsc_class *cl = (struct hfsc_class *)arg;
1284
1285	cl->filter_cnt--;
1286}
1287
1288static struct tcf_proto **
1289hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1290{
1291	struct hfsc_sched *q = qdisc_priv(sch);
1292	struct hfsc_class *cl = (struct hfsc_class *)arg;
1293
1294	if (cl == NULL)
1295		cl = &q->root;
1296
1297	return &cl->filter_list;
1298}
1299
1300static int
1301hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1302{
1303	struct tc_service_curve tsc;
1304
1305	tsc.m1 = sm2m(sc->sm1);
1306	tsc.d  = dx2d(sc->dx);
1307	tsc.m2 = sm2m(sc->sm2);
1308	if (nla_put(skb, attr, sizeof(tsc), &tsc))
1309		goto nla_put_failure;
1310
1311	return skb->len;
1312
1313 nla_put_failure:
1314	return -1;
1315}
1316
1317static int
1318hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1319{
1320	if ((cl->cl_flags & HFSC_RSC) &&
1321	    (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1322		goto nla_put_failure;
1323
1324	if ((cl->cl_flags & HFSC_FSC) &&
1325	    (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1326		goto nla_put_failure;
1327
1328	if ((cl->cl_flags & HFSC_USC) &&
1329	    (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1330		goto nla_put_failure;
1331
1332	return skb->len;
1333
1334 nla_put_failure:
1335	return -1;
1336}
1337
1338static int
1339hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1340		struct tcmsg *tcm)
1341{
1342	struct hfsc_class *cl = (struct hfsc_class *)arg;
1343	struct nlattr *nest;
1344
1345	tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1346					  TC_H_ROOT;
1347	tcm->tcm_handle = cl->cl_common.classid;
1348	if (cl->level == 0)
1349		tcm->tcm_info = cl->qdisc->handle;
1350
1351	nest = nla_nest_start(skb, TCA_OPTIONS);
1352	if (nest == NULL)
1353		goto nla_put_failure;
1354	if (hfsc_dump_curves(skb, cl) < 0)
1355		goto nla_put_failure;
1356	nla_nest_end(skb, nest);
1357	return skb->len;
1358
1359 nla_put_failure:
1360	nla_nest_cancel(skb, nest);
1361	return -EMSGSIZE;
1362}
1363
1364static int
1365hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1366	struct gnet_dump *d)
1367{
1368	struct hfsc_class *cl = (struct hfsc_class *)arg;
1369	struct tc_hfsc_stats xstats;
1370
1371	cl->qstats.qlen = cl->qdisc->q.qlen;
1372	cl->qstats.backlog = cl->qdisc->qstats.backlog;
1373	xstats.level   = cl->level;
1374	xstats.period  = cl->cl_vtperiod;
1375	xstats.work    = cl->cl_total;
1376	xstats.rtwork  = cl->cl_cumul;
1377
1378	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1379	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
1380	    gnet_stats_copy_queue(d, &cl->qstats) < 0)
1381		return -1;
1382
1383	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1384}
1385
1386
1387
1388static void
1389hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1390{
1391	struct hfsc_sched *q = qdisc_priv(sch);
1392	struct hfsc_class *cl;
1393	unsigned int i;
1394
1395	if (arg->stop)
1396		return;
1397
1398	for (i = 0; i < q->clhash.hashsize; i++) {
1399		hlist_for_each_entry(cl, &q->clhash.hash[i],
1400				     cl_common.hnode) {
1401			if (arg->count < arg->skip) {
1402				arg->count++;
1403				continue;
1404			}
1405			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1406				arg->stop = 1;
1407				return;
1408			}
1409			arg->count++;
1410		}
1411	}
1412}
1413
1414static void
1415hfsc_schedule_watchdog(struct Qdisc *sch)
1416{
1417	struct hfsc_sched *q = qdisc_priv(sch);
1418	struct hfsc_class *cl;
1419	u64 next_time = 0;
1420
1421	cl = eltree_get_minel(q);
1422	if (cl)
1423		next_time = cl->cl_e;
1424	if (q->root.cl_cfmin != 0) {
1425		if (next_time == 0 || next_time > q->root.cl_cfmin)
1426			next_time = q->root.cl_cfmin;
1427	}
1428	WARN_ON(next_time == 0);
1429	qdisc_watchdog_schedule(&q->watchdog, next_time);
1430}
1431
1432static int
1433hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1434{
1435	struct hfsc_sched *q = qdisc_priv(sch);
1436	struct tc_hfsc_qopt *qopt;
1437	int err;
1438
1439	if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1440		return -EINVAL;
1441	qopt = nla_data(opt);
1442
1443	q->defcls = qopt->defcls;
1444	err = qdisc_class_hash_init(&q->clhash);
1445	if (err < 0)
1446		return err;
1447	q->eligible = RB_ROOT;
1448	INIT_LIST_HEAD(&q->droplist);
1449
1450	q->root.cl_common.classid = sch->handle;
1451	q->root.refcnt  = 1;
1452	q->root.sched   = q;
1453	q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1454					  sch->handle);
1455	if (q->root.qdisc == NULL)
1456		q->root.qdisc = &noop_qdisc;
1457	INIT_LIST_HEAD(&q->root.children);
1458	q->root.vt_tree = RB_ROOT;
1459	q->root.cf_tree = RB_ROOT;
1460
1461	qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1462	qdisc_class_hash_grow(sch, &q->clhash);
1463
1464	qdisc_watchdog_init(&q->watchdog, sch);
1465
1466	return 0;
1467}
1468
1469static int
1470hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
1471{
1472	struct hfsc_sched *q = qdisc_priv(sch);
1473	struct tc_hfsc_qopt *qopt;
1474
1475	if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1476		return -EINVAL;
1477	qopt = nla_data(opt);
1478
1479	sch_tree_lock(sch);
1480	q->defcls = qopt->defcls;
1481	sch_tree_unlock(sch);
1482
1483	return 0;
1484}
1485
1486static void
1487hfsc_reset_class(struct hfsc_class *cl)
1488{
1489	cl->cl_total        = 0;
1490	cl->cl_cumul        = 0;
1491	cl->cl_d            = 0;
1492	cl->cl_e            = 0;
1493	cl->cl_vt           = 0;
1494	cl->cl_vtadj        = 0;
1495	cl->cl_vtoff        = 0;
1496	cl->cl_cvtmin       = 0;
1497	cl->cl_cvtmax       = 0;
1498	cl->cl_cvtoff       = 0;
1499	cl->cl_pcvtoff      = 0;
1500	cl->cl_vtperiod     = 0;
1501	cl->cl_parentperiod = 0;
1502	cl->cl_f            = 0;
1503	cl->cl_myf          = 0;
1504	cl->cl_myfadj       = 0;
1505	cl->cl_cfmin        = 0;
1506	cl->cl_nactive      = 0;
1507
1508	cl->vt_tree = RB_ROOT;
1509	cl->cf_tree = RB_ROOT;
1510	qdisc_reset(cl->qdisc);
1511
1512	if (cl->cl_flags & HFSC_RSC)
1513		rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1514	if (cl->cl_flags & HFSC_FSC)
1515		rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1516	if (cl->cl_flags & HFSC_USC)
1517		rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1518}
1519
1520static void
1521hfsc_reset_qdisc(struct Qdisc *sch)
1522{
1523	struct hfsc_sched *q = qdisc_priv(sch);
1524	struct hfsc_class *cl;
1525	unsigned int i;
1526
1527	for (i = 0; i < q->clhash.hashsize; i++) {
1528		hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1529			hfsc_reset_class(cl);
1530	}
1531	q->eligible = RB_ROOT;
1532	INIT_LIST_HEAD(&q->droplist);
1533	qdisc_watchdog_cancel(&q->watchdog);
1534	sch->q.qlen = 0;
1535}
1536
1537static void
1538hfsc_destroy_qdisc(struct Qdisc *sch)
1539{
1540	struct hfsc_sched *q = qdisc_priv(sch);
1541	struct hlist_node *next;
1542	struct hfsc_class *cl;
1543	unsigned int i;
1544
1545	for (i = 0; i < q->clhash.hashsize; i++) {
1546		hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1547			tcf_destroy_chain(&cl->filter_list);
1548	}
1549	for (i = 0; i < q->clhash.hashsize; i++) {
1550		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1551					  cl_common.hnode)
1552			hfsc_destroy_class(sch, cl);
1553	}
1554	qdisc_class_hash_destroy(&q->clhash);
1555	qdisc_watchdog_cancel(&q->watchdog);
1556}
1557
1558static int
1559hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1560{
1561	struct hfsc_sched *q = qdisc_priv(sch);
1562	unsigned char *b = skb_tail_pointer(skb);
1563	struct tc_hfsc_qopt qopt;
1564	struct hfsc_class *cl;
1565	unsigned int i;
1566
1567	sch->qstats.backlog = 0;
1568	for (i = 0; i < q->clhash.hashsize; i++) {
1569		hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1570			sch->qstats.backlog += cl->qdisc->qstats.backlog;
1571	}
1572
1573	qopt.defcls = q->defcls;
1574	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1575		goto nla_put_failure;
1576	return skb->len;
1577
1578 nla_put_failure:
1579	nlmsg_trim(skb, b);
1580	return -1;
1581}
1582
1583static int
1584hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1585{
1586	struct hfsc_class *cl;
1587	int uninitialized_var(err);
1588
1589	cl = hfsc_classify(skb, sch, &err);
1590	if (cl == NULL) {
1591		if (err & __NET_XMIT_BYPASS)
1592			sch->qstats.drops++;
1593		kfree_skb(skb);
1594		return err;
1595	}
1596
1597	err = qdisc_enqueue(skb, cl->qdisc);
1598	if (unlikely(err != NET_XMIT_SUCCESS)) {
1599		if (net_xmit_drop_count(err)) {
1600			cl->qstats.drops++;
1601			sch->qstats.drops++;
1602		}
1603		return err;
1604	}
1605
1606	if (cl->qdisc->q.qlen == 1)
1607		set_active(cl, qdisc_pkt_len(skb));
1608
1609	sch->q.qlen++;
1610
1611	return NET_XMIT_SUCCESS;
1612}
1613
1614static struct sk_buff *
1615hfsc_dequeue(struct Qdisc *sch)
1616{
1617	struct hfsc_sched *q = qdisc_priv(sch);
1618	struct hfsc_class *cl;
1619	struct sk_buff *skb;
1620	u64 cur_time;
1621	unsigned int next_len;
1622	int realtime = 0;
1623
1624	if (sch->q.qlen == 0)
1625		return NULL;
1626
1627	cur_time = psched_get_time();
1628
1629	/*
1630	 * if there are eligible classes, use real-time criteria.
1631	 * find the class with the minimum deadline among
1632	 * the eligible classes.
1633	 */
1634	cl = eltree_get_mindl(q, cur_time);
1635	if (cl) {
1636		realtime = 1;
1637	} else {
1638		/*
1639		 * use link-sharing criteria
1640		 * get the class with the minimum vt in the hierarchy
1641		 */
1642		cl = vttree_get_minvt(&q->root, cur_time);
1643		if (cl == NULL) {
1644			sch->qstats.overlimits++;
1645			hfsc_schedule_watchdog(sch);
1646			return NULL;
1647		}
1648	}
1649
1650	skb = qdisc_dequeue_peeked(cl->qdisc);
1651	if (skb == NULL) {
1652		qdisc_warn_nonwc("HFSC", cl->qdisc);
1653		return NULL;
1654	}
1655
1656	bstats_update(&cl->bstats, skb);
1657	update_vf(cl, qdisc_pkt_len(skb), cur_time);
1658	if (realtime)
1659		cl->cl_cumul += qdisc_pkt_len(skb);
1660
1661	if (cl->qdisc->q.qlen != 0) {
1662		if (cl->cl_flags & HFSC_RSC) {
1663			/* update ed */
1664			next_len = qdisc_peek_len(cl->qdisc);
1665			if (realtime)
1666				update_ed(cl, next_len);
1667			else
1668				update_d(cl, next_len);
1669		}
1670	} else {
1671		/* the class becomes passive */
1672		set_passive(cl);
1673	}
1674
1675	qdisc_unthrottled(sch);
1676	qdisc_bstats_update(sch, skb);
1677	sch->q.qlen--;
1678
1679	return skb;
1680}
1681
1682static unsigned int
1683hfsc_drop(struct Qdisc *sch)
1684{
1685	struct hfsc_sched *q = qdisc_priv(sch);
1686	struct hfsc_class *cl;
1687	unsigned int len;
1688
1689	list_for_each_entry(cl, &q->droplist, dlist) {
1690		if (cl->qdisc->ops->drop != NULL &&
1691		    (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1692			if (cl->qdisc->q.qlen == 0) {
1693				update_vf(cl, 0, 0);
1694				set_passive(cl);
1695			} else {
1696				list_move_tail(&cl->dlist, &q->droplist);
1697			}
1698			cl->qstats.drops++;
1699			sch->qstats.drops++;
1700			sch->q.qlen--;
1701			return len;
1702		}
1703	}
1704	return 0;
1705}
1706
1707static const struct Qdisc_class_ops hfsc_class_ops = {
1708	.change		= hfsc_change_class,
1709	.delete		= hfsc_delete_class,
1710	.graft		= hfsc_graft_class,
1711	.leaf		= hfsc_class_leaf,
1712	.qlen_notify	= hfsc_qlen_notify,
1713	.get		= hfsc_get_class,
1714	.put		= hfsc_put_class,
1715	.bind_tcf	= hfsc_bind_tcf,
1716	.unbind_tcf	= hfsc_unbind_tcf,
1717	.tcf_chain	= hfsc_tcf_chain,
1718	.dump		= hfsc_dump_class,
1719	.dump_stats	= hfsc_dump_class_stats,
1720	.walk		= hfsc_walk
1721};
1722
1723static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1724	.id		= "hfsc",
1725	.init		= hfsc_init_qdisc,
1726	.change		= hfsc_change_qdisc,
1727	.reset		= hfsc_reset_qdisc,
1728	.destroy	= hfsc_destroy_qdisc,
1729	.dump		= hfsc_dump_qdisc,
1730	.enqueue	= hfsc_enqueue,
1731	.dequeue	= hfsc_dequeue,
1732	.peek		= qdisc_peek_dequeued,
1733	.drop		= hfsc_drop,
1734	.cl_ops		= &hfsc_class_ops,
1735	.priv_size	= sizeof(struct hfsc_sched),
1736	.owner		= THIS_MODULE
1737};
1738
1739static int __init
1740hfsc_init(void)
1741{
1742	return register_qdisc(&hfsc_qdisc_ops);
1743}
1744
1745static void __exit
1746hfsc_cleanup(void)
1747{
1748	unregister_qdisc(&hfsc_qdisc_ops);
1749}
1750
1751MODULE_LICENSE("GPL");
1752module_init(hfsc_init);
1753module_exit(hfsc_cleanup);
1754