1/*
2 * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/bitops.h>
15#include <linux/errno.h>
16#include <linux/netdevice.h>
17#include <linux/pkt_sched.h>
18#include <net/sch_generic.h>
19#include <net/pkt_sched.h>
20#include <net/pkt_cls.h>
21
22
23/*  Quick Fair Queueing Plus
24    ========================
25
26    Sources:
27
28    [1] Paolo Valente,
29    "Reducing the Execution Time of Fair-Queueing Schedulers."
30    http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32    Sources for QFQ:
33
34    [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35    Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37    See also:
38    http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41/*
42
43  QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44  classes. Each aggregate is timestamped with a virtual start time S
45  and a virtual finish time F, and scheduled according to its
46  timestamps. S and F are computed as a function of a system virtual
47  time function V. The classes within each aggregate are instead
48  scheduled with DRR.
49
50  To speed up operations, QFQ+ divides also aggregates into a limited
51  number of groups. Which group a class belongs to depends on the
52  ratio between the maximum packet length for the class and the weight
53  of the class. Groups have their own S and F. In the end, QFQ+
54  schedules groups, then aggregates within groups, then classes within
55  aggregates. See [1] and [2] for a full description.
56
57  Virtual time computations.
58
59  S, F and V are all computed in fixed point arithmetic with
60  FRAC_BITS decimal bits.
61
62  QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63	one bit per index.
64  QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66  The layout of the bits is as below:
67
68                   [ MTU_SHIFT ][      FRAC_BITS    ]
69                   [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70				 ^.__grp->index = 0
71				 *.__grp->slot_shift
72
73  where MIN_SLOT_SHIFT is derived by difference from the others.
74
75  The max group index corresponds to Lmax/w_min, where
76  Lmax=1<<MTU_SHIFT, w_min = 1 .
77  From this, and knowing how many groups (MAX_INDEX) we want,
78  we can derive the shift corresponding to each group.
79
80  Because we often need to compute
81	F = S + len/w_i  and V = V + len/wsum
82  instead of storing w_i store the value
83	inv_w = (1<<FRAC_BITS)/w_i
84  so we can do F = S + len * inv_w * wsum.
85  We use W_TOT in the formulas so we can easily move between
86  static and adaptive weight sum.
87
88  The per-scheduler-instance data contain all the data structures
89  for the scheduler: bitmaps and bucket lists.
90
91 */
92
93/*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97#define QFQ_MAX_SLOTS	32
98
99/*
100 * Shifts used for aggregate<->group mapping.  We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108#define QFQ_MAX_INDEX		24
109#define QFQ_MAX_WSHIFT		10
110
111#define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112#define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113
114#define FRAC_BITS		30	/* fixed point arithmetic */
115#define ONE_FP			(1UL << FRAC_BITS)
116#define IWSUM			(ONE_FP/QFQ_MAX_WSUM)
117
118#define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
119#define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
120
121#define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
122
123/*
124 * Possible group states.  These values are used as indexes for the bitmaps
125 * array of struct qfq_queue.
126 */
127enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128
129struct qfq_group;
130
131struct qfq_aggregate;
132
133struct qfq_class {
134	struct Qdisc_class_common common;
135
136	unsigned int refcnt;
137	unsigned int filter_cnt;
138
139	struct gnet_stats_basic_packed bstats;
140	struct gnet_stats_queue qstats;
141	struct gnet_stats_rate_est rate_est;
142	struct Qdisc *qdisc;
143	struct list_head alist;		/* Link for active-classes list. */
144	struct qfq_aggregate *agg;	/* Parent aggregate. */
145	int deficit;			/* DRR deficit counter. */
146};
147
148struct qfq_aggregate {
149	struct hlist_node next;	/* Link for the slot list. */
150	u64 S, F;		/* flow timestamps (exact) */
151
152	/* group we belong to. In principle we would need the index,
153	 * which is log_2(lmax/weight), but we never reference it
154	 * directly, only the group.
155	 */
156	struct qfq_group *grp;
157
158	/* these are copied from the flowset. */
159	u32	class_weight; /* Weight of each class in this aggregate. */
160	/* Max pkt size for the classes in this aggregate, DRR quantum. */
161	int	lmax;
162
163	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
164	u32	budgetmax;  /* Max budget for this aggregate. */
165	u32	initial_budget, budget;     /* Initial and current budget. */
166
167	int		  num_classes;	/* Number of classes in this aggr. */
168	struct list_head  active;	/* DRR queue of active classes. */
169
170	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
171};
172
173struct qfq_group {
174	u64 S, F;			/* group timestamps (approx). */
175	unsigned int slot_shift;	/* Slot shift. */
176	unsigned int index;		/* Group index. */
177	unsigned int front;		/* Index of the front slot. */
178	unsigned long full_slots;	/* non-empty slots */
179
180	/* Array of RR lists of active aggregates. */
181	struct hlist_head slots[QFQ_MAX_SLOTS];
182};
183
184struct qfq_sched {
185	struct tcf_proto *filter_list;
186	struct Qdisc_class_hash clhash;
187
188	u64			oldV, V;	/* Precise virtual times. */
189	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
190	u32			num_active_agg; /* Num. of active aggregates */
191	u32			wsum;		/* weight sum */
192
193	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196
197	u32 max_agg_classes;		/* Max number of classes per aggr. */
198	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199};
200
201/*
202 * Possible reasons why the timestamps of an aggregate are updated
203 * enqueue: the aggregate switches from idle to active and must scheduled
204 *	    for service
205 * requeue: the aggregate finishes its budget, so it stops being served and
206 *	    must be rescheduled for service
207 */
208enum update_reason {enqueue, requeue};
209
210static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211{
212	struct qfq_sched *q = qdisc_priv(sch);
213	struct Qdisc_class_common *clc;
214
215	clc = qdisc_class_find(&q->clhash, classid);
216	if (clc == NULL)
217		return NULL;
218	return container_of(clc, struct qfq_class, common);
219}
220
221static void qfq_purge_queue(struct qfq_class *cl)
222{
223	unsigned int len = cl->qdisc->q.qlen;
224
225	qdisc_reset(cl->qdisc);
226	qdisc_tree_decrease_qlen(cl->qdisc, len);
227}
228
229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232};
233
234/*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240{
241	u64 slot_size = (u64)maxlen * inv_w;
242	unsigned long size_map;
243	int index = 0;
244
245	size_map = slot_size >> min_slot_shift;
246	if (!size_map)
247		goto out;
248
249	index = __fls(size_map) + 1;	/* basically a log_2 */
250	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251
252	if (index < 0)
253		index = 0;
254out:
255	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258	return index;
259}
260
261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263			     enum update_reason);
264
265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266			 u32 lmax, u32 weight)
267{
268	INIT_LIST_HEAD(&agg->active);
269	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271	agg->lmax = lmax;
272	agg->class_weight = weight;
273}
274
275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276					  u32 lmax, u32 weight)
277{
278	struct qfq_aggregate *agg;
279
280	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281		if (agg->lmax == lmax && agg->class_weight == weight)
282			return agg;
283
284	return NULL;
285}
286
287
288/* Update aggregate as a function of the new number of classes. */
289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290			   int new_num_classes)
291{
292	u32 new_agg_weight;
293
294	if (new_num_classes == q->max_agg_classes)
295		hlist_del_init(&agg->nonfull_next);
296
297	if (agg->num_classes > new_num_classes &&
298	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
301	/* The next assignment may let
302	 * agg->initial_budget > agg->budgetmax
303	 * hold, we will take it into account in charge_actual_service().
304	 */
305	agg->budgetmax = new_num_classes * agg->lmax;
306	new_agg_weight = agg->class_weight * new_num_classes;
307	agg->inv_w = ONE_FP/new_agg_weight;
308
309	if (agg->grp == NULL) {
310		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311				       q->min_slot_shift);
312		agg->grp = &q->groups[i];
313	}
314
315	q->wsum +=
316		(int) agg->class_weight * (new_num_classes - agg->num_classes);
317
318	agg->num_classes = new_num_classes;
319}
320
321/* Add class to aggregate. */
322static void qfq_add_to_agg(struct qfq_sched *q,
323			   struct qfq_aggregate *agg,
324			   struct qfq_class *cl)
325{
326	cl->agg = agg;
327
328	qfq_update_agg(q, agg, agg->num_classes+1);
329	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
330		list_add_tail(&cl->alist, &agg->active);
331		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
332		    cl && q->in_serv_agg != agg) /* agg was inactive */
333			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
334	}
335}
336
337static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
338
339static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
340{
341	if (!hlist_unhashed(&agg->nonfull_next))
342		hlist_del_init(&agg->nonfull_next);
343	if (q->in_serv_agg == agg)
344		q->in_serv_agg = qfq_choose_next_agg(q);
345	kfree(agg);
346}
347
348/* Deschedule class from within its parent aggregate. */
349static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
350{
351	struct qfq_aggregate *agg = cl->agg;
352
353
354	list_del(&cl->alist); /* remove from RR queue of the aggregate */
355	if (list_empty(&agg->active)) /* agg is now inactive */
356		qfq_deactivate_agg(q, agg);
357}
358
359/* Remove class from its parent aggregate. */
360static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
361{
362	struct qfq_aggregate *agg = cl->agg;
363
364	cl->agg = NULL;
365	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
366		qfq_destroy_agg(q, agg);
367		return;
368	}
369	qfq_update_agg(q, agg, agg->num_classes-1);
370}
371
372/* Deschedule class and remove it from its parent aggregate. */
373static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
374{
375	if (cl->qdisc->q.qlen > 0) /* class is active */
376		qfq_deactivate_class(q, cl);
377
378	qfq_rm_from_agg(q, cl);
379}
380
381/* Move class to a new aggregate, matching the new class weight and/or lmax */
382static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
383			   u32 lmax)
384{
385	struct qfq_sched *q = qdisc_priv(sch);
386	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
387
388	if (new_agg == NULL) { /* create new aggregate */
389		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
390		if (new_agg == NULL)
391			return -ENOBUFS;
392		qfq_init_agg(q, new_agg, lmax, weight);
393	}
394	qfq_deact_rm_from_agg(q, cl);
395	qfq_add_to_agg(q, new_agg, cl);
396
397	return 0;
398}
399
400static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
401			    struct nlattr **tca, unsigned long *arg)
402{
403	struct qfq_sched *q = qdisc_priv(sch);
404	struct qfq_class *cl = (struct qfq_class *)*arg;
405	bool existing = false;
406	struct nlattr *tb[TCA_QFQ_MAX + 1];
407	struct qfq_aggregate *new_agg = NULL;
408	u32 weight, lmax, inv_w;
409	int err;
410	int delta_w;
411
412	if (tca[TCA_OPTIONS] == NULL) {
413		pr_notice("qfq: no options\n");
414		return -EINVAL;
415	}
416
417	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
418	if (err < 0)
419		return err;
420
421	if (tb[TCA_QFQ_WEIGHT]) {
422		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
423		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
424			pr_notice("qfq: invalid weight %u\n", weight);
425			return -EINVAL;
426		}
427	} else
428		weight = 1;
429
430	if (tb[TCA_QFQ_LMAX]) {
431		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
432		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
433			pr_notice("qfq: invalid max length %u\n", lmax);
434			return -EINVAL;
435		}
436	} else
437		lmax = psched_mtu(qdisc_dev(sch));
438
439	inv_w = ONE_FP / weight;
440	weight = ONE_FP / inv_w;
441
442	if (cl != NULL &&
443	    lmax == cl->agg->lmax &&
444	    weight == cl->agg->class_weight)
445		return 0; /* nothing to change */
446
447	delta_w = weight - (cl ? cl->agg->class_weight : 0);
448
449	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
450		pr_notice("qfq: total weight out of range (%d + %u)\n",
451			  delta_w, q->wsum);
452		return -EINVAL;
453	}
454
455	if (cl != NULL) { /* modify existing class */
456		if (tca[TCA_RATE]) {
457			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
458						    qdisc_root_sleeping_lock(sch),
459						    tca[TCA_RATE]);
460			if (err)
461				return err;
462		}
463		existing = true;
464		goto set_change_agg;
465	}
466
467	/* create and init new class */
468	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
469	if (cl == NULL)
470		return -ENOBUFS;
471
472	cl->refcnt = 1;
473	cl->common.classid = classid;
474	cl->deficit = lmax;
475
476	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
477				      &pfifo_qdisc_ops, classid);
478	if (cl->qdisc == NULL)
479		cl->qdisc = &noop_qdisc;
480
481	if (tca[TCA_RATE]) {
482		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
483					qdisc_root_sleeping_lock(sch),
484					tca[TCA_RATE]);
485		if (err)
486			goto destroy_class;
487	}
488
489	sch_tree_lock(sch);
490	qdisc_class_hash_insert(&q->clhash, &cl->common);
491	sch_tree_unlock(sch);
492
493	qdisc_class_hash_grow(sch, &q->clhash);
494
495set_change_agg:
496	sch_tree_lock(sch);
497	new_agg = qfq_find_agg(q, lmax, weight);
498	if (new_agg == NULL) { /* create new aggregate */
499		sch_tree_unlock(sch);
500		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
501		if (new_agg == NULL) {
502			err = -ENOBUFS;
503			gen_kill_estimator(&cl->bstats, &cl->rate_est);
504			goto destroy_class;
505		}
506		sch_tree_lock(sch);
507		qfq_init_agg(q, new_agg, lmax, weight);
508	}
509	if (existing)
510		qfq_deact_rm_from_agg(q, cl);
511	qfq_add_to_agg(q, new_agg, cl);
512	sch_tree_unlock(sch);
513
514	*arg = (unsigned long)cl;
515	return 0;
516
517destroy_class:
518	qdisc_destroy(cl->qdisc);
519	kfree(cl);
520	return err;
521}
522
523static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
524{
525	struct qfq_sched *q = qdisc_priv(sch);
526
527	qfq_rm_from_agg(q, cl);
528	gen_kill_estimator(&cl->bstats, &cl->rate_est);
529	qdisc_destroy(cl->qdisc);
530	kfree(cl);
531}
532
533static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
534{
535	struct qfq_sched *q = qdisc_priv(sch);
536	struct qfq_class *cl = (struct qfq_class *)arg;
537
538	if (cl->filter_cnt > 0)
539		return -EBUSY;
540
541	sch_tree_lock(sch);
542
543	qfq_purge_queue(cl);
544	qdisc_class_hash_remove(&q->clhash, &cl->common);
545
546	BUG_ON(--cl->refcnt == 0);
547	/*
548	 * This shouldn't happen: we "hold" one cops->get() when called
549	 * from tc_ctl_tclass; the destroy method is done from cops->put().
550	 */
551
552	sch_tree_unlock(sch);
553	return 0;
554}
555
556static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
557{
558	struct qfq_class *cl = qfq_find_class(sch, classid);
559
560	if (cl != NULL)
561		cl->refcnt++;
562
563	return (unsigned long)cl;
564}
565
566static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
567{
568	struct qfq_class *cl = (struct qfq_class *)arg;
569
570	if (--cl->refcnt == 0)
571		qfq_destroy_class(sch, cl);
572}
573
574static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
575{
576	struct qfq_sched *q = qdisc_priv(sch);
577
578	if (cl)
579		return NULL;
580
581	return &q->filter_list;
582}
583
584static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
585				  u32 classid)
586{
587	struct qfq_class *cl = qfq_find_class(sch, classid);
588
589	if (cl != NULL)
590		cl->filter_cnt++;
591
592	return (unsigned long)cl;
593}
594
595static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
596{
597	struct qfq_class *cl = (struct qfq_class *)arg;
598
599	cl->filter_cnt--;
600}
601
602static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
603			   struct Qdisc *new, struct Qdisc **old)
604{
605	struct qfq_class *cl = (struct qfq_class *)arg;
606
607	if (new == NULL) {
608		new = qdisc_create_dflt(sch->dev_queue,
609					&pfifo_qdisc_ops, cl->common.classid);
610		if (new == NULL)
611			new = &noop_qdisc;
612	}
613
614	sch_tree_lock(sch);
615	qfq_purge_queue(cl);
616	*old = cl->qdisc;
617	cl->qdisc = new;
618	sch_tree_unlock(sch);
619	return 0;
620}
621
622static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
623{
624	struct qfq_class *cl = (struct qfq_class *)arg;
625
626	return cl->qdisc;
627}
628
629static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
630			  struct sk_buff *skb, struct tcmsg *tcm)
631{
632	struct qfq_class *cl = (struct qfq_class *)arg;
633	struct nlattr *nest;
634
635	tcm->tcm_parent	= TC_H_ROOT;
636	tcm->tcm_handle	= cl->common.classid;
637	tcm->tcm_info	= cl->qdisc->handle;
638
639	nest = nla_nest_start(skb, TCA_OPTIONS);
640	if (nest == NULL)
641		goto nla_put_failure;
642	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
643	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
644		goto nla_put_failure;
645	return nla_nest_end(skb, nest);
646
647nla_put_failure:
648	nla_nest_cancel(skb, nest);
649	return -EMSGSIZE;
650}
651
652static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
653				struct gnet_dump *d)
654{
655	struct qfq_class *cl = (struct qfq_class *)arg;
656	struct tc_qfq_stats xstats;
657
658	memset(&xstats, 0, sizeof(xstats));
659	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
660
661	xstats.weight = cl->agg->class_weight;
662	xstats.lmax = cl->agg->lmax;
663
664	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
665	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
666	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
667		return -1;
668
669	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
670}
671
672static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
673{
674	struct qfq_sched *q = qdisc_priv(sch);
675	struct qfq_class *cl;
676	unsigned int i;
677
678	if (arg->stop)
679		return;
680
681	for (i = 0; i < q->clhash.hashsize; i++) {
682		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
683			if (arg->count < arg->skip) {
684				arg->count++;
685				continue;
686			}
687			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
688				arg->stop = 1;
689				return;
690			}
691			arg->count++;
692		}
693	}
694}
695
696static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
697				      int *qerr)
698{
699	struct qfq_sched *q = qdisc_priv(sch);
700	struct qfq_class *cl;
701	struct tcf_result res;
702	int result;
703
704	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
705		pr_debug("qfq_classify: found %d\n", skb->priority);
706		cl = qfq_find_class(sch, skb->priority);
707		if (cl != NULL)
708			return cl;
709	}
710
711	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
712	result = tc_classify(skb, q->filter_list, &res);
713	if (result >= 0) {
714#ifdef CONFIG_NET_CLS_ACT
715		switch (result) {
716		case TC_ACT_QUEUED:
717		case TC_ACT_STOLEN:
718			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
719		case TC_ACT_SHOT:
720			return NULL;
721		}
722#endif
723		cl = (struct qfq_class *)res.class;
724		if (cl == NULL)
725			cl = qfq_find_class(sch, res.classid);
726		return cl;
727	}
728
729	return NULL;
730}
731
732/* Generic comparison function, handling wraparound. */
733static inline int qfq_gt(u64 a, u64 b)
734{
735	return (s64)(a - b) > 0;
736}
737
738/* Round a precise timestamp to its slotted value. */
739static inline u64 qfq_round_down(u64 ts, unsigned int shift)
740{
741	return ts & ~((1ULL << shift) - 1);
742}
743
744/* return the pointer to the group with lowest index in the bitmap */
745static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
746					unsigned long bitmap)
747{
748	int index = __ffs(bitmap);
749	return &q->groups[index];
750}
751/* Calculate a mask to mimic what would be ffs_from(). */
752static inline unsigned long mask_from(unsigned long bitmap, int from)
753{
754	return bitmap & ~((1UL << from) - 1);
755}
756
757/*
758 * The state computation relies on ER=0, IR=1, EB=2, IB=3
759 * First compute eligibility comparing grp->S, q->V,
760 * then check if someone is blocking us and possibly add EB
761 */
762static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
763{
764	/* if S > V we are not eligible */
765	unsigned int state = qfq_gt(grp->S, q->V);
766	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
767	struct qfq_group *next;
768
769	if (mask) {
770		next = qfq_ffs(q, mask);
771		if (qfq_gt(grp->F, next->F))
772			state |= EB;
773	}
774
775	return state;
776}
777
778
779/*
780 * In principle
781 *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
782 *	q->bitmaps[src] &= ~mask;
783 * but we should make sure that src != dst
784 */
785static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
786				   int src, int dst)
787{
788	q->bitmaps[dst] |= q->bitmaps[src] & mask;
789	q->bitmaps[src] &= ~mask;
790}
791
792static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
793{
794	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
795	struct qfq_group *next;
796
797	if (mask) {
798		next = qfq_ffs(q, mask);
799		if (!qfq_gt(next->F, old_F))
800			return;
801	}
802
803	mask = (1UL << index) - 1;
804	qfq_move_groups(q, mask, EB, ER);
805	qfq_move_groups(q, mask, IB, IR);
806}
807
808/*
809 * perhaps
810 *
811	old_V ^= q->V;
812	old_V >>= q->min_slot_shift;
813	if (old_V) {
814		...
815	}
816 *
817 */
818static void qfq_make_eligible(struct qfq_sched *q)
819{
820	unsigned long vslot = q->V >> q->min_slot_shift;
821	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
822
823	if (vslot != old_vslot) {
824		unsigned long mask = (1ULL << fls(vslot ^ old_vslot)) - 1;
825		qfq_move_groups(q, mask, IR, ER);
826		qfq_move_groups(q, mask, IB, EB);
827	}
828}
829
830
831/*
832 * The index of the slot in which the aggregate is to be inserted must
833 * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
834 * because the start time of the group may be moved backward by one
835 * slot after the aggregate has been inserted, and this would cause
836 * non-empty slots to be right-shifted by one position.
837 *
838 * If the weight and lmax (max_pkt_size) of the classes do not change,
839 * then QFQ+ does meet the above contraint according to the current
840 * values of its parameters. In fact, if the weight and lmax of the
841 * classes do not change, then, from the theory, QFQ+ guarantees that
842 * the slot index is never higher than
843 * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
844 * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
845 *
846 * When the weight of a class is increased or the lmax of the class is
847 * decreased, a new aggregate with smaller slot size than the original
848 * parent aggregate of the class may happen to be activated. The
849 * activation of this aggregate should be properly delayed to when the
850 * service of the class has finished in the ideal system tracked by
851 * QFQ+. If the activation of the aggregate is not delayed to this
852 * reference time instant, then this aggregate may be unjustly served
853 * before other aggregates waiting for service. This may cause the
854 * above bound to the slot index to be violated for some of these
855 * unlucky aggregates.
856 *
857 * Instead of delaying the activation of the new aggregate, which is
858 * quite complex, the following inaccurate but simple solution is used:
859 * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
860 * timestamps of the aggregate are shifted backward so as to let the
861 * slot index become equal to QFQ_MAX_SLOTS-2.
862 */
863static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
864			    u64 roundedS)
865{
866	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
867	unsigned int i; /* slot index in the bucket list */
868
869	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
870		u64 deltaS = roundedS - grp->S -
871			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
872		agg->S -= deltaS;
873		agg->F -= deltaS;
874		slot = QFQ_MAX_SLOTS - 2;
875	}
876
877	i = (grp->front + slot) % QFQ_MAX_SLOTS;
878
879	hlist_add_head(&agg->next, &grp->slots[i]);
880	__set_bit(slot, &grp->full_slots);
881}
882
883/* Maybe introduce hlist_first_entry?? */
884static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
885{
886	return hlist_entry(grp->slots[grp->front].first,
887			   struct qfq_aggregate, next);
888}
889
890/*
891 * remove the entry from the slot
892 */
893static void qfq_front_slot_remove(struct qfq_group *grp)
894{
895	struct qfq_aggregate *agg = qfq_slot_head(grp);
896
897	BUG_ON(!agg);
898	hlist_del(&agg->next);
899	if (hlist_empty(&grp->slots[grp->front]))
900		__clear_bit(0, &grp->full_slots);
901}
902
903/*
904 * Returns the first aggregate in the first non-empty bucket of the
905 * group. As a side effect, adjusts the bucket list so the first
906 * non-empty bucket is at position 0 in full_slots.
907 */
908static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
909{
910	unsigned int i;
911
912	pr_debug("qfq slot_scan: grp %u full %#lx\n",
913		 grp->index, grp->full_slots);
914
915	if (grp->full_slots == 0)
916		return NULL;
917
918	i = __ffs(grp->full_slots);  /* zero based */
919	if (i > 0) {
920		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
921		grp->full_slots >>= i;
922	}
923
924	return qfq_slot_head(grp);
925}
926
927/*
928 * adjust the bucket list. When the start time of a group decreases,
929 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
930 * move the objects. The mask of occupied slots must be shifted
931 * because we use ffs() to find the first non-empty slot.
932 * This covers decreases in the group's start time, but what about
933 * increases of the start time ?
934 * Here too we should make sure that i is less than 32
935 */
936static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
937{
938	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
939
940	grp->full_slots <<= i;
941	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
942}
943
944static void qfq_update_eligible(struct qfq_sched *q)
945{
946	struct qfq_group *grp;
947	unsigned long ineligible;
948
949	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
950	if (ineligible) {
951		if (!q->bitmaps[ER]) {
952			grp = qfq_ffs(q, ineligible);
953			if (qfq_gt(grp->S, q->V))
954				q->V = grp->S;
955		}
956		qfq_make_eligible(q);
957	}
958}
959
960/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
961static void agg_dequeue(struct qfq_aggregate *agg,
962			struct qfq_class *cl, unsigned int len)
963{
964	qdisc_dequeue_peeked(cl->qdisc);
965
966	cl->deficit -= (int) len;
967
968	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
969		list_del(&cl->alist);
970	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
971		cl->deficit += agg->lmax;
972		list_move_tail(&cl->alist, &agg->active);
973	}
974}
975
976static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
977					   struct qfq_class **cl,
978					   unsigned int *len)
979{
980	struct sk_buff *skb;
981
982	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
983	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
984	if (skb == NULL)
985		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
986	else
987		*len = qdisc_pkt_len(skb);
988
989	return skb;
990}
991
992/* Update F according to the actual service received by the aggregate. */
993static inline void charge_actual_service(struct qfq_aggregate *agg)
994{
995	/* Compute the service received by the aggregate, taking into
996	 * account that, after decreasing the number of classes in
997	 * agg, it may happen that
998	 * agg->initial_budget - agg->budget > agg->bugdetmax
999	 */
1000	u32 service_received = min(agg->budgetmax,
1001				   agg->initial_budget - agg->budget);
1002
1003	agg->F = agg->S + (u64)service_received * agg->inv_w;
1004}
1005
1006static inline void qfq_update_agg_ts(struct qfq_sched *q,
1007				     struct qfq_aggregate *agg,
1008				     enum update_reason reason);
1009
1010static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1011
1012static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1013{
1014	struct qfq_sched *q = qdisc_priv(sch);
1015	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1016	struct qfq_class *cl;
1017	struct sk_buff *skb = NULL;
1018	/* next-packet len, 0 means no more active classes in in-service agg */
1019	unsigned int len = 0;
1020
1021	if (in_serv_agg == NULL)
1022		return NULL;
1023
1024	if (!list_empty(&in_serv_agg->active))
1025		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1026
1027	/*
1028	 * If there are no active classes in the in-service aggregate,
1029	 * or if the aggregate has not enough budget to serve its next
1030	 * class, then choose the next aggregate to serve.
1031	 */
1032	if (len == 0 || in_serv_agg->budget < len) {
1033		charge_actual_service(in_serv_agg);
1034
1035		/* recharge the budget of the aggregate */
1036		in_serv_agg->initial_budget = in_serv_agg->budget =
1037			in_serv_agg->budgetmax;
1038
1039		if (!list_empty(&in_serv_agg->active)) {
1040			/*
1041			 * Still active: reschedule for
1042			 * service. Possible optimization: if no other
1043			 * aggregate is active, then there is no point
1044			 * in rescheduling this aggregate, and we can
1045			 * just keep it as the in-service one. This
1046			 * should be however a corner case, and to
1047			 * handle it, we would need to maintain an
1048			 * extra num_active_aggs field.
1049			*/
1050			qfq_update_agg_ts(q, in_serv_agg, requeue);
1051			qfq_schedule_agg(q, in_serv_agg);
1052		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1053			q->in_serv_agg = NULL;
1054			return NULL;
1055		}
1056
1057		/*
1058		 * If we get here, there are other aggregates queued:
1059		 * choose the new aggregate to serve.
1060		 */
1061		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1062		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1063	}
1064	if (!skb)
1065		return NULL;
1066
1067	sch->q.qlen--;
1068	qdisc_bstats_update(sch, skb);
1069
1070	agg_dequeue(in_serv_agg, cl, len);
1071	/* If lmax is lowered, through qfq_change_class, for a class
1072	 * owning pending packets with larger size than the new value
1073	 * of lmax, then the following condition may hold.
1074	 */
1075	if (unlikely(in_serv_agg->budget < len))
1076		in_serv_agg->budget = 0;
1077	else
1078		in_serv_agg->budget -= len;
1079
1080	q->V += (u64)len * IWSUM;
1081	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1082		 len, (unsigned long long) in_serv_agg->F,
1083		 (unsigned long long) q->V);
1084
1085	return skb;
1086}
1087
1088static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1089{
1090	struct qfq_group *grp;
1091	struct qfq_aggregate *agg, *new_front_agg;
1092	u64 old_F;
1093
1094	qfq_update_eligible(q);
1095	q->oldV = q->V;
1096
1097	if (!q->bitmaps[ER])
1098		return NULL;
1099
1100	grp = qfq_ffs(q, q->bitmaps[ER]);
1101	old_F = grp->F;
1102
1103	agg = qfq_slot_head(grp);
1104
1105	/* agg starts to be served, remove it from schedule */
1106	qfq_front_slot_remove(grp);
1107
1108	new_front_agg = qfq_slot_scan(grp);
1109
1110	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1111		__clear_bit(grp->index, &q->bitmaps[ER]);
1112	else {
1113		u64 roundedS = qfq_round_down(new_front_agg->S,
1114					      grp->slot_shift);
1115		unsigned int s;
1116
1117		if (grp->S == roundedS)
1118			return agg;
1119		grp->S = roundedS;
1120		grp->F = roundedS + (2ULL << grp->slot_shift);
1121		__clear_bit(grp->index, &q->bitmaps[ER]);
1122		s = qfq_calc_state(q, grp);
1123		__set_bit(grp->index, &q->bitmaps[s]);
1124	}
1125
1126	qfq_unblock_groups(q, grp->index, old_F);
1127
1128	return agg;
1129}
1130
1131/*
1132 * Assign a reasonable start time for a new aggregate in group i.
1133 * Admissible values for \hat(F) are multiples of \sigma_i
1134 * no greater than V+\sigma_i . Larger values mean that
1135 * we had a wraparound so we consider the timestamp to be stale.
1136 *
1137 * If F is not stale and F >= V then we set S = F.
1138 * Otherwise we should assign S = V, but this may violate
1139 * the ordering in EB (see [2]). So, if we have groups in ER,
1140 * set S to the F_j of the first group j which would be blocking us.
1141 * We are guaranteed not to move S backward because
1142 * otherwise our group i would still be blocked.
1143 */
1144static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1145{
1146	unsigned long mask;
1147	u64 limit, roundedF;
1148	int slot_shift = agg->grp->slot_shift;
1149
1150	roundedF = qfq_round_down(agg->F, slot_shift);
1151	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1152
1153	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1154		/* timestamp was stale */
1155		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1156		if (mask) {
1157			struct qfq_group *next = qfq_ffs(q, mask);
1158			if (qfq_gt(roundedF, next->F)) {
1159				if (qfq_gt(limit, next->F))
1160					agg->S = next->F;
1161				else /* preserve timestamp correctness */
1162					agg->S = limit;
1163				return;
1164			}
1165		}
1166		agg->S = q->V;
1167	} else  /* timestamp is not stale */
1168		agg->S = agg->F;
1169}
1170
1171/*
1172 * Update the timestamps of agg before scheduling/rescheduling it for
1173 * service.  In particular, assign to agg->F its maximum possible
1174 * value, i.e., the virtual finish time with which the aggregate
1175 * should be labeled if it used all its budget once in service.
1176 */
1177static inline void
1178qfq_update_agg_ts(struct qfq_sched *q,
1179		    struct qfq_aggregate *agg, enum update_reason reason)
1180{
1181	if (reason != requeue)
1182		qfq_update_start(q, agg);
1183	else /* just charge agg for the service received */
1184		agg->S = agg->F;
1185
1186	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1187}
1188
1189static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *);
1190
1191static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1192{
1193	struct qfq_sched *q = qdisc_priv(sch);
1194	struct qfq_class *cl;
1195	struct qfq_aggregate *agg;
1196	int err = 0;
1197
1198	cl = qfq_classify(skb, sch, &err);
1199	if (cl == NULL) {
1200		if (err & __NET_XMIT_BYPASS)
1201			sch->qstats.drops++;
1202		kfree_skb(skb);
1203		return err;
1204	}
1205	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1206
1207	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1208		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1209			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1210		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1211				     qdisc_pkt_len(skb));
1212		if (err)
1213			return err;
1214	}
1215
1216	err = qdisc_enqueue(skb, cl->qdisc);
1217	if (unlikely(err != NET_XMIT_SUCCESS)) {
1218		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1219		if (net_xmit_drop_count(err)) {
1220			cl->qstats.drops++;
1221			sch->qstats.drops++;
1222		}
1223		return err;
1224	}
1225
1226	bstats_update(&cl->bstats, skb);
1227	++sch->q.qlen;
1228
1229	agg = cl->agg;
1230	/* if the queue was not empty, then done here */
1231	if (cl->qdisc->q.qlen != 1) {
1232		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1233		    list_first_entry(&agg->active, struct qfq_class, alist)
1234		    == cl && cl->deficit < qdisc_pkt_len(skb))
1235			list_move_tail(&cl->alist, &agg->active);
1236
1237		return err;
1238	}
1239
1240	/* schedule class for service within the aggregate */
1241	cl->deficit = agg->lmax;
1242	list_add_tail(&cl->alist, &agg->active);
1243
1244	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1245	    q->in_serv_agg == agg)
1246		return err; /* non-empty or in service, nothing else to do */
1247
1248	qfq_activate_agg(q, agg, enqueue);
1249
1250	return err;
1251}
1252
1253/*
1254 * Schedule aggregate according to its timestamps.
1255 */
1256static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1257{
1258	struct qfq_group *grp = agg->grp;
1259	u64 roundedS;
1260	int s;
1261
1262	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1263
1264	/*
1265	 * Insert agg in the correct bucket.
1266	 * If agg->S >= grp->S we don't need to adjust the
1267	 * bucket list and simply go to the insertion phase.
1268	 * Otherwise grp->S is decreasing, we must make room
1269	 * in the bucket list, and also recompute the group state.
1270	 * Finally, if there were no flows in this group and nobody
1271	 * was in ER make sure to adjust V.
1272	 */
1273	if (grp->full_slots) {
1274		if (!qfq_gt(grp->S, agg->S))
1275			goto skip_update;
1276
1277		/* create a slot for this agg->S */
1278		qfq_slot_rotate(grp, roundedS);
1279		/* group was surely ineligible, remove */
1280		__clear_bit(grp->index, &q->bitmaps[IR]);
1281		__clear_bit(grp->index, &q->bitmaps[IB]);
1282	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1283		   q->in_serv_agg == NULL)
1284		q->V = roundedS;
1285
1286	grp->S = roundedS;
1287	grp->F = roundedS + (2ULL << grp->slot_shift);
1288	s = qfq_calc_state(q, grp);
1289	__set_bit(grp->index, &q->bitmaps[s]);
1290
1291	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1292		 s, q->bitmaps[s],
1293		 (unsigned long long) agg->S,
1294		 (unsigned long long) agg->F,
1295		 (unsigned long long) q->V);
1296
1297skip_update:
1298	qfq_slot_insert(grp, agg, roundedS);
1299}
1300
1301
1302/* Update agg ts and schedule agg for service */
1303static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1304			     enum update_reason reason)
1305{
1306	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1307
1308	qfq_update_agg_ts(q, agg, reason);
1309	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1310		q->in_serv_agg = agg; /* start serving this aggregate */
1311		 /* update V: to be in service, agg must be eligible */
1312		q->oldV = q->V = agg->S;
1313	} else if (agg != q->in_serv_agg)
1314		qfq_schedule_agg(q, agg);
1315}
1316
1317static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1318			    struct qfq_aggregate *agg)
1319{
1320	unsigned int i, offset;
1321	u64 roundedS;
1322
1323	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1324	offset = (roundedS - grp->S) >> grp->slot_shift;
1325
1326	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1327
1328	hlist_del(&agg->next);
1329	if (hlist_empty(&grp->slots[i]))
1330		__clear_bit(offset, &grp->full_slots);
1331}
1332
1333/*
1334 * Called to forcibly deschedule an aggregate.  If the aggregate is
1335 * not in the front bucket, or if the latter has other aggregates in
1336 * the front bucket, we can simply remove the aggregate with no other
1337 * side effects.
1338 * Otherwise we must propagate the event up.
1339 */
1340static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1341{
1342	struct qfq_group *grp = agg->grp;
1343	unsigned long mask;
1344	u64 roundedS;
1345	int s;
1346
1347	if (agg == q->in_serv_agg) {
1348		charge_actual_service(agg);
1349		q->in_serv_agg = qfq_choose_next_agg(q);
1350		return;
1351	}
1352
1353	agg->F = agg->S;
1354	qfq_slot_remove(q, grp, agg);
1355
1356	if (!grp->full_slots) {
1357		__clear_bit(grp->index, &q->bitmaps[IR]);
1358		__clear_bit(grp->index, &q->bitmaps[EB]);
1359		__clear_bit(grp->index, &q->bitmaps[IB]);
1360
1361		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1362		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1363			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1364			if (mask)
1365				mask = ~((1UL << __fls(mask)) - 1);
1366			else
1367				mask = ~0UL;
1368			qfq_move_groups(q, mask, EB, ER);
1369			qfq_move_groups(q, mask, IB, IR);
1370		}
1371		__clear_bit(grp->index, &q->bitmaps[ER]);
1372	} else if (hlist_empty(&grp->slots[grp->front])) {
1373		agg = qfq_slot_scan(grp);
1374		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1375		if (grp->S != roundedS) {
1376			__clear_bit(grp->index, &q->bitmaps[ER]);
1377			__clear_bit(grp->index, &q->bitmaps[IR]);
1378			__clear_bit(grp->index, &q->bitmaps[EB]);
1379			__clear_bit(grp->index, &q->bitmaps[IB]);
1380			grp->S = roundedS;
1381			grp->F = roundedS + (2ULL << grp->slot_shift);
1382			s = qfq_calc_state(q, grp);
1383			__set_bit(grp->index, &q->bitmaps[s]);
1384		}
1385	}
1386}
1387
1388static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1389{
1390	struct qfq_sched *q = qdisc_priv(sch);
1391	struct qfq_class *cl = (struct qfq_class *)arg;
1392
1393	if (cl->qdisc->q.qlen == 0)
1394		qfq_deactivate_class(q, cl);
1395}
1396
1397static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1398				       struct hlist_head *slot)
1399{
1400	struct qfq_aggregate *agg;
1401	struct qfq_class *cl;
1402	unsigned int len;
1403
1404	hlist_for_each_entry(agg, slot, next) {
1405		list_for_each_entry(cl, &agg->active, alist) {
1406
1407			if (!cl->qdisc->ops->drop)
1408				continue;
1409
1410			len = cl->qdisc->ops->drop(cl->qdisc);
1411			if (len > 0) {
1412				if (cl->qdisc->q.qlen == 0)
1413					qfq_deactivate_class(q, cl);
1414
1415				return len;
1416			}
1417		}
1418	}
1419	return 0;
1420}
1421
1422static unsigned int qfq_drop(struct Qdisc *sch)
1423{
1424	struct qfq_sched *q = qdisc_priv(sch);
1425	struct qfq_group *grp;
1426	unsigned int i, j, len;
1427
1428	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1429		grp = &q->groups[i];
1430		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1431			len = qfq_drop_from_slot(q, &grp->slots[j]);
1432			if (len > 0) {
1433				sch->q.qlen--;
1434				return len;
1435			}
1436		}
1437
1438	}
1439
1440	return 0;
1441}
1442
1443static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1444{
1445	struct qfq_sched *q = qdisc_priv(sch);
1446	struct qfq_group *grp;
1447	int i, j, err;
1448	u32 max_cl_shift, maxbudg_shift, max_classes;
1449
1450	err = qdisc_class_hash_init(&q->clhash);
1451	if (err < 0)
1452		return err;
1453
1454	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1455		max_classes = QFQ_MAX_AGG_CLASSES;
1456	else
1457		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1458	/* max_cl_shift = floor(log_2(max_classes)) */
1459	max_cl_shift = __fls(max_classes);
1460	q->max_agg_classes = 1<<max_cl_shift;
1461
1462	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1463	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1464	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1465
1466	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1467		grp = &q->groups[i];
1468		grp->index = i;
1469		grp->slot_shift = q->min_slot_shift + i;
1470		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1471			INIT_HLIST_HEAD(&grp->slots[j]);
1472	}
1473
1474	INIT_HLIST_HEAD(&q->nonfull_aggs);
1475
1476	return 0;
1477}
1478
1479static void qfq_reset_qdisc(struct Qdisc *sch)
1480{
1481	struct qfq_sched *q = qdisc_priv(sch);
1482	struct qfq_class *cl;
1483	unsigned int i;
1484
1485	for (i = 0; i < q->clhash.hashsize; i++) {
1486		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1487			if (cl->qdisc->q.qlen > 0)
1488				qfq_deactivate_class(q, cl);
1489
1490			qdisc_reset(cl->qdisc);
1491		}
1492	}
1493	sch->q.qlen = 0;
1494}
1495
1496static void qfq_destroy_qdisc(struct Qdisc *sch)
1497{
1498	struct qfq_sched *q = qdisc_priv(sch);
1499	struct qfq_class *cl;
1500	struct hlist_node *next;
1501	unsigned int i;
1502
1503	tcf_destroy_chain(&q->filter_list);
1504
1505	for (i = 0; i < q->clhash.hashsize; i++) {
1506		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1507					  common.hnode) {
1508			qfq_destroy_class(sch, cl);
1509		}
1510	}
1511	qdisc_class_hash_destroy(&q->clhash);
1512}
1513
1514static const struct Qdisc_class_ops qfq_class_ops = {
1515	.change		= qfq_change_class,
1516	.delete		= qfq_delete_class,
1517	.get		= qfq_get_class,
1518	.put		= qfq_put_class,
1519	.tcf_chain	= qfq_tcf_chain,
1520	.bind_tcf	= qfq_bind_tcf,
1521	.unbind_tcf	= qfq_unbind_tcf,
1522	.graft		= qfq_graft_class,
1523	.leaf		= qfq_class_leaf,
1524	.qlen_notify	= qfq_qlen_notify,
1525	.dump		= qfq_dump_class,
1526	.dump_stats	= qfq_dump_class_stats,
1527	.walk		= qfq_walk,
1528};
1529
1530static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1531	.cl_ops		= &qfq_class_ops,
1532	.id		= "qfq",
1533	.priv_size	= sizeof(struct qfq_sched),
1534	.enqueue	= qfq_enqueue,
1535	.dequeue	= qfq_dequeue,
1536	.peek		= qdisc_peek_dequeued,
1537	.drop		= qfq_drop,
1538	.init		= qfq_init_qdisc,
1539	.reset		= qfq_reset_qdisc,
1540	.destroy	= qfq_destroy_qdisc,
1541	.owner		= THIS_MODULE,
1542};
1543
1544static int __init qfq_init(void)
1545{
1546	return register_qdisc(&qfq_qdisc_ops);
1547}
1548
1549static void __exit qfq_exit(void)
1550{
1551	unregister_qdisc(&qfq_qdisc_ops);
1552}
1553
1554module_init(qfq_init);
1555module_exit(qfq_exit);
1556MODULE_LICENSE("GPL");
1557