1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 */
15
16#include <linux/types.h>
17#include <linux/bitops.h>
18#include <linux/cred.h>
19#include <linux/init.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/kmod.h>
23#include <linux/list.h>
24#include <linux/miscdevice.h>
25#include <linux/module.h>
26#include <linux/mutex.h>
27#include <linux/net.h>
28#include <linux/poll.h>
29#include <linux/skbuff.h>
30#include <linux/smp.h>
31#include <linux/socket.h>
32#include <linux/stddef.h>
33#include <linux/unistd.h>
34#include <linux/wait.h>
35#include <linux/workqueue.h>
36#include <net/sock.h>
37
38#include "af_vsock.h"
39#include "vmci_transport_notify.h"
40
41static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43static void vmci_transport_peer_attach_cb(u32 sub_id,
44					  const struct vmci_event_data *ed,
45					  void *client_data);
46static void vmci_transport_peer_detach_cb(u32 sub_id,
47					  const struct vmci_event_data *ed,
48					  void *client_data);
49static void vmci_transport_recv_pkt_work(struct work_struct *work);
50static int vmci_transport_recv_listen(struct sock *sk,
51				      struct vmci_transport_packet *pkt);
52static int vmci_transport_recv_connecting_server(
53					struct sock *sk,
54					struct sock *pending,
55					struct vmci_transport_packet *pkt);
56static int vmci_transport_recv_connecting_client(
57					struct sock *sk,
58					struct vmci_transport_packet *pkt);
59static int vmci_transport_recv_connecting_client_negotiate(
60					struct sock *sk,
61					struct vmci_transport_packet *pkt);
62static int vmci_transport_recv_connecting_client_invalid(
63					struct sock *sk,
64					struct vmci_transport_packet *pkt);
65static int vmci_transport_recv_connected(struct sock *sk,
66					 struct vmci_transport_packet *pkt);
67static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
68static u16 vmci_transport_new_proto_supported_versions(void);
69static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
70						  bool old_pkt_proto);
71
72struct vmci_transport_recv_pkt_info {
73	struct work_struct work;
74	struct sock *sk;
75	struct vmci_transport_packet pkt;
76};
77
78static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
79							   VMCI_INVALID_ID };
80static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
81
82static int PROTOCOL_OVERRIDE = -1;
83
84#define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
85#define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
86#define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
87
88/* The default peer timeout indicates how long we will wait for a peer response
89 * to a control message.
90 */
91#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
92
93#define SS_LISTEN 255
94
95/* Helper function to convert from a VMCI error code to a VSock error code. */
96
97static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98{
99	int err;
100
101	switch (vmci_error) {
102	case VMCI_ERROR_NO_MEM:
103		err = ENOMEM;
104		break;
105	case VMCI_ERROR_DUPLICATE_ENTRY:
106	case VMCI_ERROR_ALREADY_EXISTS:
107		err = EADDRINUSE;
108		break;
109	case VMCI_ERROR_NO_ACCESS:
110		err = EPERM;
111		break;
112	case VMCI_ERROR_NO_RESOURCES:
113		err = ENOBUFS;
114		break;
115	case VMCI_ERROR_INVALID_RESOURCE:
116		err = EHOSTUNREACH;
117		break;
118	case VMCI_ERROR_INVALID_ARGS:
119	default:
120		err = EINVAL;
121	}
122
123	return err > 0 ? -err : err;
124}
125
126static u32 vmci_transport_peer_rid(u32 peer_cid)
127{
128	if (VMADDR_CID_HYPERVISOR == peer_cid)
129		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
130
131	return VMCI_TRANSPORT_PACKET_RID;
132}
133
134static inline void
135vmci_transport_packet_init(struct vmci_transport_packet *pkt,
136			   struct sockaddr_vm *src,
137			   struct sockaddr_vm *dst,
138			   u8 type,
139			   u64 size,
140			   u64 mode,
141			   struct vmci_transport_waiting_info *wait,
142			   u16 proto,
143			   struct vmci_handle handle)
144{
145	/* We register the stream control handler as an any cid handle so we
146	 * must always send from a source address of VMADDR_CID_ANY
147	 */
148	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
149				       VMCI_TRANSPORT_PACKET_RID);
150	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
151				       vmci_transport_peer_rid(dst->svm_cid));
152	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
153	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
154	pkt->type = type;
155	pkt->src_port = src->svm_port;
156	pkt->dst_port = dst->svm_port;
157	memset(&pkt->proto, 0, sizeof(pkt->proto));
158	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
159
160	switch (pkt->type) {
161	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
162		pkt->u.size = 0;
163		break;
164
165	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
166	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
167		pkt->u.size = size;
168		break;
169
170	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
171	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
172		pkt->u.handle = handle;
173		break;
174
175	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
176	case VMCI_TRANSPORT_PACKET_TYPE_READ:
177	case VMCI_TRANSPORT_PACKET_TYPE_RST:
178		pkt->u.size = 0;
179		break;
180
181	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
182		pkt->u.mode = mode;
183		break;
184
185	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
186	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
187		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
188		break;
189
190	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
191	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
192		pkt->u.size = size;
193		pkt->proto = proto;
194		break;
195	}
196}
197
198static inline void
199vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
200				    struct sockaddr_vm *local,
201				    struct sockaddr_vm *remote)
202{
203	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
204	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
205}
206
207static int
208__vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
209				  struct sockaddr_vm *src,
210				  struct sockaddr_vm *dst,
211				  enum vmci_transport_packet_type type,
212				  u64 size,
213				  u64 mode,
214				  struct vmci_transport_waiting_info *wait,
215				  u16 proto,
216				  struct vmci_handle handle,
217				  bool convert_error)
218{
219	int err;
220
221	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
222				   proto, handle);
223	err = vmci_datagram_send(&pkt->dg);
224	if (convert_error && (err < 0))
225		return vmci_transport_error_to_vsock_error(err);
226
227	return err;
228}
229
230static int
231vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
232				      enum vmci_transport_packet_type type,
233				      u64 size,
234				      u64 mode,
235				      struct vmci_transport_waiting_info *wait,
236				      struct vmci_handle handle)
237{
238	struct vmci_transport_packet reply;
239	struct sockaddr_vm src, dst;
240
241	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
242		return 0;
243	} else {
244		vmci_transport_packet_get_addresses(pkt, &src, &dst);
245		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
246							 type,
247							 size, mode, wait,
248							 VSOCK_PROTO_INVALID,
249							 handle, true);
250	}
251}
252
253static int
254vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
255				   struct sockaddr_vm *dst,
256				   enum vmci_transport_packet_type type,
257				   u64 size,
258				   u64 mode,
259				   struct vmci_transport_waiting_info *wait,
260				   struct vmci_handle handle)
261{
262	/* Note that it is safe to use a single packet across all CPUs since
263	 * two tasklets of the same type are guaranteed to not ever run
264	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
265	 * we can use per-cpu packets.
266	 */
267	static struct vmci_transport_packet pkt;
268
269	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
270						 size, mode, wait,
271						 VSOCK_PROTO_INVALID, handle,
272						 false);
273}
274
275static int
276vmci_transport_send_control_pkt(struct sock *sk,
277				enum vmci_transport_packet_type type,
278				u64 size,
279				u64 mode,
280				struct vmci_transport_waiting_info *wait,
281				u16 proto,
282				struct vmci_handle handle)
283{
284	struct vmci_transport_packet *pkt;
285	struct vsock_sock *vsk;
286	int err;
287
288	vsk = vsock_sk(sk);
289
290	if (!vsock_addr_bound(&vsk->local_addr))
291		return -EINVAL;
292
293	if (!vsock_addr_bound(&vsk->remote_addr))
294		return -EINVAL;
295
296	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
297	if (!pkt)
298		return -ENOMEM;
299
300	err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
301						&vsk->remote_addr, type, size,
302						mode, wait, proto, handle,
303						true);
304	kfree(pkt);
305
306	return err;
307}
308
309static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
310					struct sockaddr_vm *src,
311					struct vmci_transport_packet *pkt)
312{
313	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
314		return 0;
315	return vmci_transport_send_control_pkt_bh(
316					dst, src,
317					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
318					0, NULL, VMCI_INVALID_HANDLE);
319}
320
321static int vmci_transport_send_reset(struct sock *sk,
322				     struct vmci_transport_packet *pkt)
323{
324	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
325		return 0;
326	return vmci_transport_send_control_pkt(sk,
327					VMCI_TRANSPORT_PACKET_TYPE_RST,
328					0, 0, NULL, VSOCK_PROTO_INVALID,
329					VMCI_INVALID_HANDLE);
330}
331
332static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
333{
334	return vmci_transport_send_control_pkt(
335					sk,
336					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
337					size, 0, NULL,
338					VSOCK_PROTO_INVALID,
339					VMCI_INVALID_HANDLE);
340}
341
342static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
343					  u16 version)
344{
345	return vmci_transport_send_control_pkt(
346					sk,
347					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
348					size, 0, NULL, version,
349					VMCI_INVALID_HANDLE);
350}
351
352static int vmci_transport_send_qp_offer(struct sock *sk,
353					struct vmci_handle handle)
354{
355	return vmci_transport_send_control_pkt(
356					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
357					0, NULL,
358					VSOCK_PROTO_INVALID, handle);
359}
360
361static int vmci_transport_send_attach(struct sock *sk,
362				      struct vmci_handle handle)
363{
364	return vmci_transport_send_control_pkt(
365					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
366					0, 0, NULL, VSOCK_PROTO_INVALID,
367					handle);
368}
369
370static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
371{
372	return vmci_transport_reply_control_pkt_fast(
373						pkt,
374						VMCI_TRANSPORT_PACKET_TYPE_RST,
375						0, 0, NULL,
376						VMCI_INVALID_HANDLE);
377}
378
379static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
380					  struct sockaddr_vm *src)
381{
382	return vmci_transport_send_control_pkt_bh(
383					dst, src,
384					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
385					0, 0, NULL, VMCI_INVALID_HANDLE);
386}
387
388int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
389				 struct sockaddr_vm *src)
390{
391	return vmci_transport_send_control_pkt_bh(
392					dst, src,
393					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
394					0, NULL, VMCI_INVALID_HANDLE);
395}
396
397int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
398				struct sockaddr_vm *src)
399{
400	return vmci_transport_send_control_pkt_bh(
401					dst, src,
402					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
403					0, NULL, VMCI_INVALID_HANDLE);
404}
405
406int vmci_transport_send_wrote(struct sock *sk)
407{
408	return vmci_transport_send_control_pkt(
409					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410					0, NULL, VSOCK_PROTO_INVALID,
411					VMCI_INVALID_HANDLE);
412}
413
414int vmci_transport_send_read(struct sock *sk)
415{
416	return vmci_transport_send_control_pkt(
417					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
418					0, NULL, VSOCK_PROTO_INVALID,
419					VMCI_INVALID_HANDLE);
420}
421
422int vmci_transport_send_waiting_write(struct sock *sk,
423				      struct vmci_transport_waiting_info *wait)
424{
425	return vmci_transport_send_control_pkt(
426				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
427				0, 0, wait, VSOCK_PROTO_INVALID,
428				VMCI_INVALID_HANDLE);
429}
430
431int vmci_transport_send_waiting_read(struct sock *sk,
432				     struct vmci_transport_waiting_info *wait)
433{
434	return vmci_transport_send_control_pkt(
435				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
436				0, 0, wait, VSOCK_PROTO_INVALID,
437				VMCI_INVALID_HANDLE);
438}
439
440static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
441{
442	return vmci_transport_send_control_pkt(
443					&vsk->sk,
444					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
445					0, mode, NULL,
446					VSOCK_PROTO_INVALID,
447					VMCI_INVALID_HANDLE);
448}
449
450static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
451{
452	return vmci_transport_send_control_pkt(sk,
453					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
454					size, 0, NULL,
455					VSOCK_PROTO_INVALID,
456					VMCI_INVALID_HANDLE);
457}
458
459static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
460					     u16 version)
461{
462	return vmci_transport_send_control_pkt(
463					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
464					size, 0, NULL, version,
465					VMCI_INVALID_HANDLE);
466}
467
468static struct sock *vmci_transport_get_pending(
469					struct sock *listener,
470					struct vmci_transport_packet *pkt)
471{
472	struct vsock_sock *vlistener;
473	struct vsock_sock *vpending;
474	struct sock *pending;
475	struct sockaddr_vm src;
476
477	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
478
479	vlistener = vsock_sk(listener);
480
481	list_for_each_entry(vpending, &vlistener->pending_links,
482			    pending_links) {
483		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
484		    pkt->dst_port == vpending->local_addr.svm_port) {
485			pending = sk_vsock(vpending);
486			sock_hold(pending);
487			goto found;
488		}
489	}
490
491	pending = NULL;
492found:
493	return pending;
494
495}
496
497static void vmci_transport_release_pending(struct sock *pending)
498{
499	sock_put(pending);
500}
501
502/* We allow two kinds of sockets to communicate with a restricted VM: 1)
503 * trusted sockets 2) sockets from applications running as the same user as the
504 * VM (this is only true for the host side and only when using hosted products)
505 */
506
507static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
508{
509	return vsock->trusted ||
510	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
511}
512
513/* We allow sending datagrams to and receiving datagrams from a restricted VM
514 * only if it is trusted as described in vmci_transport_is_trusted.
515 */
516
517static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
518{
519	if (VMADDR_CID_HYPERVISOR == peer_cid)
520		return true;
521
522	if (vsock->cached_peer != peer_cid) {
523		vsock->cached_peer = peer_cid;
524		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
525		    (vmci_context_get_priv_flags(peer_cid) &
526		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
527			vsock->cached_peer_allow_dgram = false;
528		} else {
529			vsock->cached_peer_allow_dgram = true;
530		}
531	}
532
533	return vsock->cached_peer_allow_dgram;
534}
535
536static int
537vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
538				struct vmci_handle *handle,
539				u64 produce_size,
540				u64 consume_size,
541				u32 peer, u32 flags, bool trusted)
542{
543	int err = 0;
544
545	if (trusted) {
546		/* Try to allocate our queue pair as trusted. This will only
547		 * work if vsock is running in the host.
548		 */
549
550		err = vmci_qpair_alloc(qpair, handle, produce_size,
551				       consume_size,
552				       peer, flags,
553				       VMCI_PRIVILEGE_FLAG_TRUSTED);
554		if (err != VMCI_ERROR_NO_ACCESS)
555			goto out;
556
557	}
558
559	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
560			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
561out:
562	if (err < 0) {
563		pr_err("Could not attach to queue pair with %d\n",
564		       err);
565		err = vmci_transport_error_to_vsock_error(err);
566	}
567
568	return err;
569}
570
571static int
572vmci_transport_datagram_create_hnd(u32 resource_id,
573				   u32 flags,
574				   vmci_datagram_recv_cb recv_cb,
575				   void *client_data,
576				   struct vmci_handle *out_handle)
577{
578	int err = 0;
579
580	/* Try to allocate our datagram handler as trusted. This will only work
581	 * if vsock is running in the host.
582	 */
583
584	err = vmci_datagram_create_handle_priv(resource_id, flags,
585					       VMCI_PRIVILEGE_FLAG_TRUSTED,
586					       recv_cb,
587					       client_data, out_handle);
588
589	if (err == VMCI_ERROR_NO_ACCESS)
590		err = vmci_datagram_create_handle(resource_id, flags,
591						  recv_cb, client_data,
592						  out_handle);
593
594	return err;
595}
596
597/* This is invoked as part of a tasklet that's scheduled when the VMCI
598 * interrupt fires.  This is run in bottom-half context and if it ever needs to
599 * sleep it should defer that work to a work queue.
600 */
601
602static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
603{
604	struct sock *sk;
605	size_t size;
606	struct sk_buff *skb;
607	struct vsock_sock *vsk;
608
609	sk = (struct sock *)data;
610
611	/* This handler is privileged when this module is running on the host.
612	 * We will get datagrams from all endpoints (even VMs that are in a
613	 * restricted context). If we get one from a restricted context then
614	 * the destination socket must be trusted.
615	 *
616	 * NOTE: We access the socket struct without holding the lock here.
617	 * This is ok because the field we are interested is never modified
618	 * outside of the create and destruct socket functions.
619	 */
620	vsk = vsock_sk(sk);
621	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
622		return VMCI_ERROR_NO_ACCESS;
623
624	size = VMCI_DG_SIZE(dg);
625
626	/* Attach the packet to the socket's receive queue as an sk_buff. */
627	skb = alloc_skb(size, GFP_ATOMIC);
628	if (skb) {
629		/* sk_receive_skb() will do a sock_put(), so hold here. */
630		sock_hold(sk);
631		skb_put(skb, size);
632		memcpy(skb->data, dg, size);
633		sk_receive_skb(sk, skb, 0);
634	}
635
636	return VMCI_SUCCESS;
637}
638
639static bool vmci_transport_stream_allow(u32 cid, u32 port)
640{
641	static const u32 non_socket_contexts[] = {
642		VMADDR_CID_RESERVED,
643	};
644	int i;
645
646	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
647
648	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
649		if (cid == non_socket_contexts[i])
650			return false;
651	}
652
653	return true;
654}
655
656/* This is invoked as part of a tasklet that's scheduled when the VMCI
657 * interrupt fires.  This is run in bottom-half context but it defers most of
658 * its work to the packet handling work queue.
659 */
660
661static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
662{
663	struct sock *sk;
664	struct sockaddr_vm dst;
665	struct sockaddr_vm src;
666	struct vmci_transport_packet *pkt;
667	struct vsock_sock *vsk;
668	bool bh_process_pkt;
669	int err;
670
671	sk = NULL;
672	err = VMCI_SUCCESS;
673	bh_process_pkt = false;
674
675	/* Ignore incoming packets from contexts without sockets, or resources
676	 * that aren't vsock implementations.
677	 */
678
679	if (!vmci_transport_stream_allow(dg->src.context, -1)
680	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
681		return VMCI_ERROR_NO_ACCESS;
682
683	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
684		/* Drop datagrams that do not contain full VSock packets. */
685		return VMCI_ERROR_INVALID_ARGS;
686
687	pkt = (struct vmci_transport_packet *)dg;
688
689	/* Find the socket that should handle this packet.  First we look for a
690	 * connected socket and if there is none we look for a socket bound to
691	 * the destintation address.
692	 */
693	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
694	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
695
696	sk = vsock_find_connected_socket(&src, &dst);
697	if (!sk) {
698		sk = vsock_find_bound_socket(&dst);
699		if (!sk) {
700			/* We could not find a socket for this specified
701			 * address.  If this packet is a RST, we just drop it.
702			 * If it is another packet, we send a RST.  Note that
703			 * we do not send a RST reply to RSTs so that we do not
704			 * continually send RSTs between two endpoints.
705			 *
706			 * Note that since this is a reply, dst is src and src
707			 * is dst.
708			 */
709			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
710				pr_err("unable to send reset\n");
711
712			err = VMCI_ERROR_NOT_FOUND;
713			goto out;
714		}
715	}
716
717	/* If the received packet type is beyond all types known to this
718	 * implementation, reply with an invalid message.  Hopefully this will
719	 * help when implementing backwards compatibility in the future.
720	 */
721	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
722		vmci_transport_send_invalid_bh(&dst, &src);
723		err = VMCI_ERROR_INVALID_ARGS;
724		goto out;
725	}
726
727	/* This handler is privileged when this module is running on the host.
728	 * We will get datagram connect requests from all endpoints (even VMs
729	 * that are in a restricted context). If we get one from a restricted
730	 * context then the destination socket must be trusted.
731	 *
732	 * NOTE: We access the socket struct without holding the lock here.
733	 * This is ok because the field we are interested is never modified
734	 * outside of the create and destruct socket functions.
735	 */
736	vsk = vsock_sk(sk);
737	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
738		err = VMCI_ERROR_NO_ACCESS;
739		goto out;
740	}
741
742	/* We do most everything in a work queue, but let's fast path the
743	 * notification of reads and writes to help data transfer performance.
744	 * We can only do this if there is no process context code executing
745	 * for this socket since that may change the state.
746	 */
747	bh_lock_sock(sk);
748
749	if (!sock_owned_by_user(sk)) {
750		/* The local context ID may be out of date, update it. */
751		vsk->local_addr.svm_cid = dst.svm_cid;
752
753		if (sk->sk_state == SS_CONNECTED)
754			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
755					sk, pkt, true, &dst, &src,
756					&bh_process_pkt);
757	}
758
759	bh_unlock_sock(sk);
760
761	if (!bh_process_pkt) {
762		struct vmci_transport_recv_pkt_info *recv_pkt_info;
763
764		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
765		if (!recv_pkt_info) {
766			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
767				pr_err("unable to send reset\n");
768
769			err = VMCI_ERROR_NO_MEM;
770			goto out;
771		}
772
773		recv_pkt_info->sk = sk;
774		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
775		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
776
777		schedule_work(&recv_pkt_info->work);
778		/* Clear sk so that the reference count incremented by one of
779		 * the Find functions above is not decremented below.  We need
780		 * that reference count for the packet handler we've scheduled
781		 * to run.
782		 */
783		sk = NULL;
784	}
785
786out:
787	if (sk)
788		sock_put(sk);
789
790	return err;
791}
792
793static void vmci_transport_peer_attach_cb(u32 sub_id,
794					  const struct vmci_event_data *e_data,
795					  void *client_data)
796{
797	struct sock *sk = client_data;
798	const struct vmci_event_payload_qp *e_payload;
799	struct vsock_sock *vsk;
800
801	e_payload = vmci_event_data_const_payload(e_data);
802
803	vsk = vsock_sk(sk);
804
805	/* We don't ask for delayed CBs when we subscribe to this event (we
806	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
807	 * guarantees in that case about what context we might be running in,
808	 * so it could be BH or process, blockable or non-blockable.  So we
809	 * need to account for all possible contexts here.
810	 */
811	local_bh_disable();
812	bh_lock_sock(sk);
813
814	/* XXX This is lame, we should provide a way to lookup sockets by
815	 * qp_handle.
816	 */
817	if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
818				 e_payload->handle)) {
819		/* XXX This doesn't do anything, but in the future we may want
820		 * to set a flag here to verify the attach really did occur and
821		 * we weren't just sent a datagram claiming it was.
822		 */
823		goto out;
824	}
825
826out:
827	bh_unlock_sock(sk);
828	local_bh_enable();
829}
830
831static void vmci_transport_handle_detach(struct sock *sk)
832{
833	struct vsock_sock *vsk;
834
835	vsk = vsock_sk(sk);
836	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
837		sock_set_flag(sk, SOCK_DONE);
838
839		/* On a detach the peer will not be sending or receiving
840		 * anymore.
841		 */
842		vsk->peer_shutdown = SHUTDOWN_MASK;
843
844		/* We should not be sending anymore since the peer won't be
845		 * there to receive, but we can still receive if there is data
846		 * left in our consume queue.
847		 */
848		if (vsock_stream_has_data(vsk) <= 0) {
849			if (sk->sk_state == SS_CONNECTING) {
850				/* The peer may detach from a queue pair while
851				 * we are still in the connecting state, i.e.,
852				 * if the peer VM is killed after attaching to
853				 * a queue pair, but before we complete the
854				 * handshake. In that case, we treat the detach
855				 * event like a reset.
856				 */
857
858				sk->sk_state = SS_UNCONNECTED;
859				sk->sk_err = ECONNRESET;
860				sk->sk_error_report(sk);
861				return;
862			}
863			sk->sk_state = SS_UNCONNECTED;
864		}
865		sk->sk_state_change(sk);
866	}
867}
868
869static void vmci_transport_peer_detach_cb(u32 sub_id,
870					  const struct vmci_event_data *e_data,
871					  void *client_data)
872{
873	struct sock *sk = client_data;
874	const struct vmci_event_payload_qp *e_payload;
875	struct vsock_sock *vsk;
876
877	e_payload = vmci_event_data_const_payload(e_data);
878	vsk = vsock_sk(sk);
879	if (vmci_handle_is_invalid(e_payload->handle))
880		return;
881
882	/* Same rules for locking as for peer_attach_cb(). */
883	local_bh_disable();
884	bh_lock_sock(sk);
885
886	/* XXX This is lame, we should provide a way to lookup sockets by
887	 * qp_handle.
888	 */
889	if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
890				 e_payload->handle))
891		vmci_transport_handle_detach(sk);
892
893	bh_unlock_sock(sk);
894	local_bh_enable();
895}
896
897static void vmci_transport_qp_resumed_cb(u32 sub_id,
898					 const struct vmci_event_data *e_data,
899					 void *client_data)
900{
901	vsock_for_each_connected_socket(vmci_transport_handle_detach);
902}
903
904static void vmci_transport_recv_pkt_work(struct work_struct *work)
905{
906	struct vmci_transport_recv_pkt_info *recv_pkt_info;
907	struct vmci_transport_packet *pkt;
908	struct sock *sk;
909
910	recv_pkt_info =
911		container_of(work, struct vmci_transport_recv_pkt_info, work);
912	sk = recv_pkt_info->sk;
913	pkt = &recv_pkt_info->pkt;
914
915	lock_sock(sk);
916
917	/* The local context ID may be out of date. */
918	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
919
920	switch (sk->sk_state) {
921	case SS_LISTEN:
922		vmci_transport_recv_listen(sk, pkt);
923		break;
924	case SS_CONNECTING:
925		/* Processing of pending connections for servers goes through
926		 * the listening socket, so see vmci_transport_recv_listen()
927		 * for that path.
928		 */
929		vmci_transport_recv_connecting_client(sk, pkt);
930		break;
931	case SS_CONNECTED:
932		vmci_transport_recv_connected(sk, pkt);
933		break;
934	default:
935		/* Because this function does not run in the same context as
936		 * vmci_transport_recv_stream_cb it is possible that the
937		 * socket has closed. We need to let the other side know or it
938		 * could be sitting in a connect and hang forever. Send a
939		 * reset to prevent that.
940		 */
941		vmci_transport_send_reset(sk, pkt);
942		goto out;
943	}
944
945out:
946	release_sock(sk);
947	kfree(recv_pkt_info);
948	/* Release reference obtained in the stream callback when we fetched
949	 * this socket out of the bound or connected list.
950	 */
951	sock_put(sk);
952}
953
954static int vmci_transport_recv_listen(struct sock *sk,
955				      struct vmci_transport_packet *pkt)
956{
957	struct sock *pending;
958	struct vsock_sock *vpending;
959	int err;
960	u64 qp_size;
961	bool old_request = false;
962	bool old_pkt_proto = false;
963
964	err = 0;
965
966	/* Because we are in the listen state, we could be receiving a packet
967	 * for ourself or any previous connection requests that we received.
968	 * If it's the latter, we try to find a socket in our list of pending
969	 * connections and, if we do, call the appropriate handler for the
970	 * state that that socket is in.  Otherwise we try to service the
971	 * connection request.
972	 */
973	pending = vmci_transport_get_pending(sk, pkt);
974	if (pending) {
975		lock_sock(pending);
976
977		/* The local context ID may be out of date. */
978		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
979
980		switch (pending->sk_state) {
981		case SS_CONNECTING:
982			err = vmci_transport_recv_connecting_server(sk,
983								    pending,
984								    pkt);
985			break;
986		default:
987			vmci_transport_send_reset(pending, pkt);
988			err = -EINVAL;
989		}
990
991		if (err < 0)
992			vsock_remove_pending(sk, pending);
993
994		release_sock(pending);
995		vmci_transport_release_pending(pending);
996
997		return err;
998	}
999
1000	/* The listen state only accepts connection requests.  Reply with a
1001	 * reset unless we received a reset.
1002	 */
1003
1004	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
1005	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
1006		vmci_transport_reply_reset(pkt);
1007		return -EINVAL;
1008	}
1009
1010	if (pkt->u.size == 0) {
1011		vmci_transport_reply_reset(pkt);
1012		return -EINVAL;
1013	}
1014
1015	/* If this socket can't accommodate this connection request, we send a
1016	 * reset.  Otherwise we create and initialize a child socket and reply
1017	 * with a connection negotiation.
1018	 */
1019	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1020		vmci_transport_reply_reset(pkt);
1021		return -ECONNREFUSED;
1022	}
1023
1024	pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1025				 sk->sk_type);
1026	if (!pending) {
1027		vmci_transport_send_reset(sk, pkt);
1028		return -ENOMEM;
1029	}
1030
1031	vpending = vsock_sk(pending);
1032
1033	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1034			pkt->dst_port);
1035	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1036			pkt->src_port);
1037
1038	/* If the proposed size fits within our min/max, accept it. Otherwise
1039	 * propose our own size.
1040	 */
1041	if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1042	    pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1043		qp_size = pkt->u.size;
1044	} else {
1045		qp_size = vmci_trans(vpending)->queue_pair_size;
1046	}
1047
1048	/* Figure out if we are using old or new requests based on the
1049	 * overrides pkt types sent by our peer.
1050	 */
1051	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1052		old_request = old_pkt_proto;
1053	} else {
1054		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1055			old_request = true;
1056		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1057			old_request = false;
1058
1059	}
1060
1061	if (old_request) {
1062		/* Handle a REQUEST (or override) */
1063		u16 version = VSOCK_PROTO_INVALID;
1064		if (vmci_transport_proto_to_notify_struct(
1065			pending, &version, true))
1066			err = vmci_transport_send_negotiate(pending, qp_size);
1067		else
1068			err = -EINVAL;
1069
1070	} else {
1071		/* Handle a REQUEST2 (or override) */
1072		int proto_int = pkt->proto;
1073		int pos;
1074		u16 active_proto_version = 0;
1075
1076		/* The list of possible protocols is the intersection of all
1077		 * protocols the client supports ... plus all the protocols we
1078		 * support.
1079		 */
1080		proto_int &= vmci_transport_new_proto_supported_versions();
1081
1082		/* We choose the highest possible protocol version and use that
1083		 * one.
1084		 */
1085		pos = fls(proto_int);
1086		if (pos) {
1087			active_proto_version = (1 << (pos - 1));
1088			if (vmci_transport_proto_to_notify_struct(
1089				pending, &active_proto_version, false))
1090				err = vmci_transport_send_negotiate2(pending,
1091							qp_size,
1092							active_proto_version);
1093			else
1094				err = -EINVAL;
1095
1096		} else {
1097			err = -EINVAL;
1098		}
1099	}
1100
1101	if (err < 0) {
1102		vmci_transport_send_reset(sk, pkt);
1103		sock_put(pending);
1104		err = vmci_transport_error_to_vsock_error(err);
1105		goto out;
1106	}
1107
1108	vsock_add_pending(sk, pending);
1109	sk->sk_ack_backlog++;
1110
1111	pending->sk_state = SS_CONNECTING;
1112	vmci_trans(vpending)->produce_size =
1113		vmci_trans(vpending)->consume_size = qp_size;
1114	vmci_trans(vpending)->queue_pair_size = qp_size;
1115
1116	vmci_trans(vpending)->notify_ops->process_request(pending);
1117
1118	/* We might never receive another message for this socket and it's not
1119	 * connected to any process, so we have to ensure it gets cleaned up
1120	 * ourself.  Our delayed work function will take care of that.  Note
1121	 * that we do not ever cancel this function since we have few
1122	 * guarantees about its state when calling cancel_delayed_work().
1123	 * Instead we hold a reference on the socket for that function and make
1124	 * it capable of handling cases where it needs to do nothing but
1125	 * release that reference.
1126	 */
1127	vpending->listener = sk;
1128	sock_hold(sk);
1129	sock_hold(pending);
1130	INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1131	schedule_delayed_work(&vpending->dwork, HZ);
1132
1133out:
1134	return err;
1135}
1136
1137static int
1138vmci_transport_recv_connecting_server(struct sock *listener,
1139				      struct sock *pending,
1140				      struct vmci_transport_packet *pkt)
1141{
1142	struct vsock_sock *vpending;
1143	struct vmci_handle handle;
1144	struct vmci_qp *qpair;
1145	bool is_local;
1146	u32 flags;
1147	u32 detach_sub_id;
1148	int err;
1149	int skerr;
1150
1151	vpending = vsock_sk(pending);
1152	detach_sub_id = VMCI_INVALID_ID;
1153
1154	switch (pkt->type) {
1155	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1156		if (vmci_handle_is_invalid(pkt->u.handle)) {
1157			vmci_transport_send_reset(pending, pkt);
1158			skerr = EPROTO;
1159			err = -EINVAL;
1160			goto destroy;
1161		}
1162		break;
1163	default:
1164		/* Close and cleanup the connection. */
1165		vmci_transport_send_reset(pending, pkt);
1166		skerr = EPROTO;
1167		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1168		goto destroy;
1169	}
1170
1171	/* In order to complete the connection we need to attach to the offered
1172	 * queue pair and send an attach notification.  We also subscribe to the
1173	 * detach event so we know when our peer goes away, and we do that
1174	 * before attaching so we don't miss an event.  If all this succeeds,
1175	 * we update our state and wakeup anything waiting in accept() for a
1176	 * connection.
1177	 */
1178
1179	/* We don't care about attach since we ensure the other side has
1180	 * attached by specifying the ATTACH_ONLY flag below.
1181	 */
1182	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1183				   vmci_transport_peer_detach_cb,
1184				   pending, &detach_sub_id);
1185	if (err < VMCI_SUCCESS) {
1186		vmci_transport_send_reset(pending, pkt);
1187		err = vmci_transport_error_to_vsock_error(err);
1188		skerr = -err;
1189		goto destroy;
1190	}
1191
1192	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1193
1194	/* Now attach to the queue pair the client created. */
1195	handle = pkt->u.handle;
1196
1197	/* vpending->local_addr always has a context id so we do not need to
1198	 * worry about VMADDR_CID_ANY in this case.
1199	 */
1200	is_local =
1201	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1202	flags = VMCI_QPFLAG_ATTACH_ONLY;
1203	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1204
1205	err = vmci_transport_queue_pair_alloc(
1206					&qpair,
1207					&handle,
1208					vmci_trans(vpending)->produce_size,
1209					vmci_trans(vpending)->consume_size,
1210					pkt->dg.src.context,
1211					flags,
1212					vmci_transport_is_trusted(
1213						vpending,
1214						vpending->remote_addr.svm_cid));
1215	if (err < 0) {
1216		vmci_transport_send_reset(pending, pkt);
1217		skerr = -err;
1218		goto destroy;
1219	}
1220
1221	vmci_trans(vpending)->qp_handle = handle;
1222	vmci_trans(vpending)->qpair = qpair;
1223
1224	/* When we send the attach message, we must be ready to handle incoming
1225	 * control messages on the newly connected socket. So we move the
1226	 * pending socket to the connected state before sending the attach
1227	 * message. Otherwise, an incoming packet triggered by the attach being
1228	 * received by the peer may be processed concurrently with what happens
1229	 * below after sending the attach message, and that incoming packet
1230	 * will find the listening socket instead of the (currently) pending
1231	 * socket. Note that enqueueing the socket increments the reference
1232	 * count, so even if a reset comes before the connection is accepted,
1233	 * the socket will be valid until it is removed from the queue.
1234	 *
1235	 * If we fail sending the attach below, we remove the socket from the
1236	 * connected list and move the socket to SS_UNCONNECTED before
1237	 * releasing the lock, so a pending slow path processing of an incoming
1238	 * packet will not see the socket in the connected state in that case.
1239	 */
1240	pending->sk_state = SS_CONNECTED;
1241
1242	vsock_insert_connected(vpending);
1243
1244	/* Notify our peer of our attach. */
1245	err = vmci_transport_send_attach(pending, handle);
1246	if (err < 0) {
1247		vsock_remove_connected(vpending);
1248		pr_err("Could not send attach\n");
1249		vmci_transport_send_reset(pending, pkt);
1250		err = vmci_transport_error_to_vsock_error(err);
1251		skerr = -err;
1252		goto destroy;
1253	}
1254
1255	/* We have a connection. Move the now connected socket from the
1256	 * listener's pending list to the accept queue so callers of accept()
1257	 * can find it.
1258	 */
1259	vsock_remove_pending(listener, pending);
1260	vsock_enqueue_accept(listener, pending);
1261
1262	/* Callers of accept() will be be waiting on the listening socket, not
1263	 * the pending socket.
1264	 */
1265	listener->sk_state_change(listener);
1266
1267	return 0;
1268
1269destroy:
1270	pending->sk_err = skerr;
1271	pending->sk_state = SS_UNCONNECTED;
1272	/* As long as we drop our reference, all necessary cleanup will handle
1273	 * when the cleanup function drops its reference and our destruct
1274	 * implementation is called.  Note that since the listen handler will
1275	 * remove pending from the pending list upon our failure, the cleanup
1276	 * function won't drop the additional reference, which is why we do it
1277	 * here.
1278	 */
1279	sock_put(pending);
1280
1281	return err;
1282}
1283
1284static int
1285vmci_transport_recv_connecting_client(struct sock *sk,
1286				      struct vmci_transport_packet *pkt)
1287{
1288	struct vsock_sock *vsk;
1289	int err;
1290	int skerr;
1291
1292	vsk = vsock_sk(sk);
1293
1294	switch (pkt->type) {
1295	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1296		if (vmci_handle_is_invalid(pkt->u.handle) ||
1297		    !vmci_handle_is_equal(pkt->u.handle,
1298					  vmci_trans(vsk)->qp_handle)) {
1299			skerr = EPROTO;
1300			err = -EINVAL;
1301			goto destroy;
1302		}
1303
1304		/* Signify the socket is connected and wakeup the waiter in
1305		 * connect(). Also place the socket in the connected table for
1306		 * accounting (it can already be found since it's in the bound
1307		 * table).
1308		 */
1309		sk->sk_state = SS_CONNECTED;
1310		sk->sk_socket->state = SS_CONNECTED;
1311		vsock_insert_connected(vsk);
1312		sk->sk_state_change(sk);
1313
1314		break;
1315	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1316	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1317		if (pkt->u.size == 0
1318		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1319		    || pkt->src_port != vsk->remote_addr.svm_port
1320		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1321		    || vmci_trans(vsk)->qpair
1322		    || vmci_trans(vsk)->produce_size != 0
1323		    || vmci_trans(vsk)->consume_size != 0
1324		    || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID
1325		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1326			skerr = EPROTO;
1327			err = -EINVAL;
1328
1329			goto destroy;
1330		}
1331
1332		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1333		if (err) {
1334			skerr = -err;
1335			goto destroy;
1336		}
1337
1338		break;
1339	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1340		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1341		if (err) {
1342			skerr = -err;
1343			goto destroy;
1344		}
1345
1346		break;
1347	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1348		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1349		 * continue processing here after they sent an INVALID packet.
1350		 * This meant that we got a RST after the INVALID. We ignore a
1351		 * RST after an INVALID. The common code doesn't send the RST
1352		 * ... so we can hang if an old version of the common code
1353		 * fails between getting a REQUEST and sending an OFFER back.
1354		 * Not much we can do about it... except hope that it doesn't
1355		 * happen.
1356		 */
1357		if (vsk->ignore_connecting_rst) {
1358			vsk->ignore_connecting_rst = false;
1359		} else {
1360			skerr = ECONNRESET;
1361			err = 0;
1362			goto destroy;
1363		}
1364
1365		break;
1366	default:
1367		/* Close and cleanup the connection. */
1368		skerr = EPROTO;
1369		err = -EINVAL;
1370		goto destroy;
1371	}
1372
1373	return 0;
1374
1375destroy:
1376	vmci_transport_send_reset(sk, pkt);
1377
1378	sk->sk_state = SS_UNCONNECTED;
1379	sk->sk_err = skerr;
1380	sk->sk_error_report(sk);
1381	return err;
1382}
1383
1384static int vmci_transport_recv_connecting_client_negotiate(
1385					struct sock *sk,
1386					struct vmci_transport_packet *pkt)
1387{
1388	int err;
1389	struct vsock_sock *vsk;
1390	struct vmci_handle handle;
1391	struct vmci_qp *qpair;
1392	u32 attach_sub_id;
1393	u32 detach_sub_id;
1394	bool is_local;
1395	u32 flags;
1396	bool old_proto = true;
1397	bool old_pkt_proto;
1398	u16 version;
1399
1400	vsk = vsock_sk(sk);
1401	handle = VMCI_INVALID_HANDLE;
1402	attach_sub_id = VMCI_INVALID_ID;
1403	detach_sub_id = VMCI_INVALID_ID;
1404
1405	/* If we have gotten here then we should be past the point where old
1406	 * linux vsock could have sent the bogus rst.
1407	 */
1408	vsk->sent_request = false;
1409	vsk->ignore_connecting_rst = false;
1410
1411	/* Verify that we're OK with the proposed queue pair size */
1412	if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1413	    pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1414		err = -EINVAL;
1415		goto destroy;
1416	}
1417
1418	/* At this point we know the CID the peer is using to talk to us. */
1419
1420	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1421		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1422
1423	/* Setup the notify ops to be the highest supported version that both
1424	 * the server and the client support.
1425	 */
1426
1427	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1428		old_proto = old_pkt_proto;
1429	} else {
1430		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1431			old_proto = true;
1432		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1433			old_proto = false;
1434
1435	}
1436
1437	if (old_proto)
1438		version = VSOCK_PROTO_INVALID;
1439	else
1440		version = pkt->proto;
1441
1442	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1443		err = -EINVAL;
1444		goto destroy;
1445	}
1446
1447	/* Subscribe to attach and detach events first.
1448	 *
1449	 * XXX We attach once for each queue pair created for now so it is easy
1450	 * to find the socket (it's provided), but later we should only
1451	 * subscribe once and add a way to lookup sockets by queue pair handle.
1452	 */
1453	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH,
1454				   vmci_transport_peer_attach_cb,
1455				   sk, &attach_sub_id);
1456	if (err < VMCI_SUCCESS) {
1457		err = vmci_transport_error_to_vsock_error(err);
1458		goto destroy;
1459	}
1460
1461	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1462				   vmci_transport_peer_detach_cb,
1463				   sk, &detach_sub_id);
1464	if (err < VMCI_SUCCESS) {
1465		err = vmci_transport_error_to_vsock_error(err);
1466		goto destroy;
1467	}
1468
1469	/* Make VMCI select the handle for us. */
1470	handle = VMCI_INVALID_HANDLE;
1471	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1472	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1473
1474	err = vmci_transport_queue_pair_alloc(&qpair,
1475					      &handle,
1476					      pkt->u.size,
1477					      pkt->u.size,
1478					      vsk->remote_addr.svm_cid,
1479					      flags,
1480					      vmci_transport_is_trusted(
1481						  vsk,
1482						  vsk->
1483						  remote_addr.svm_cid));
1484	if (err < 0)
1485		goto destroy;
1486
1487	err = vmci_transport_send_qp_offer(sk, handle);
1488	if (err < 0) {
1489		err = vmci_transport_error_to_vsock_error(err);
1490		goto destroy;
1491	}
1492
1493	vmci_trans(vsk)->qp_handle = handle;
1494	vmci_trans(vsk)->qpair = qpair;
1495
1496	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1497		pkt->u.size;
1498
1499	vmci_trans(vsk)->attach_sub_id = attach_sub_id;
1500	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1501
1502	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1503
1504	return 0;
1505
1506destroy:
1507	if (attach_sub_id != VMCI_INVALID_ID)
1508		vmci_event_unsubscribe(attach_sub_id);
1509
1510	if (detach_sub_id != VMCI_INVALID_ID)
1511		vmci_event_unsubscribe(detach_sub_id);
1512
1513	if (!vmci_handle_is_invalid(handle))
1514		vmci_qpair_detach(&qpair);
1515
1516	return err;
1517}
1518
1519static int
1520vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1521					      struct vmci_transport_packet *pkt)
1522{
1523	int err = 0;
1524	struct vsock_sock *vsk = vsock_sk(sk);
1525
1526	if (vsk->sent_request) {
1527		vsk->sent_request = false;
1528		vsk->ignore_connecting_rst = true;
1529
1530		err = vmci_transport_send_conn_request(
1531			sk, vmci_trans(vsk)->queue_pair_size);
1532		if (err < 0)
1533			err = vmci_transport_error_to_vsock_error(err);
1534		else
1535			err = 0;
1536
1537	}
1538
1539	return err;
1540}
1541
1542static int vmci_transport_recv_connected(struct sock *sk,
1543					 struct vmci_transport_packet *pkt)
1544{
1545	struct vsock_sock *vsk;
1546	bool pkt_processed = false;
1547
1548	/* In cases where we are closing the connection, it's sufficient to
1549	 * mark the state change (and maybe error) and wake up any waiting
1550	 * threads. Since this is a connected socket, it's owned by a user
1551	 * process and will be cleaned up when the failure is passed back on
1552	 * the current or next system call.  Our system call implementations
1553	 * must therefore check for error and state changes on entry and when
1554	 * being awoken.
1555	 */
1556	switch (pkt->type) {
1557	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1558		if (pkt->u.mode) {
1559			vsk = vsock_sk(sk);
1560
1561			vsk->peer_shutdown |= pkt->u.mode;
1562			sk->sk_state_change(sk);
1563		}
1564		break;
1565
1566	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1567		vsk = vsock_sk(sk);
1568		/* It is possible that we sent our peer a message (e.g a
1569		 * WAITING_READ) right before we got notified that the peer had
1570		 * detached. If that happens then we can get a RST pkt back
1571		 * from our peer even though there is data available for us to
1572		 * read. In that case, don't shutdown the socket completely but
1573		 * instead allow the local client to finish reading data off
1574		 * the queuepair. Always treat a RST pkt in connected mode like
1575		 * a clean shutdown.
1576		 */
1577		sock_set_flag(sk, SOCK_DONE);
1578		vsk->peer_shutdown = SHUTDOWN_MASK;
1579		if (vsock_stream_has_data(vsk) <= 0)
1580			sk->sk_state = SS_DISCONNECTING;
1581
1582		sk->sk_state_change(sk);
1583		break;
1584
1585	default:
1586		vsk = vsock_sk(sk);
1587		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1588				sk, pkt, false, NULL, NULL,
1589				&pkt_processed);
1590		if (!pkt_processed)
1591			return -EINVAL;
1592
1593		break;
1594	}
1595
1596	return 0;
1597}
1598
1599static int vmci_transport_socket_init(struct vsock_sock *vsk,
1600				      struct vsock_sock *psk)
1601{
1602	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1603	if (!vsk->trans)
1604		return -ENOMEM;
1605
1606	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1607	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1608	vmci_trans(vsk)->qpair = NULL;
1609	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1610	vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id =
1611		VMCI_INVALID_ID;
1612	vmci_trans(vsk)->notify_ops = NULL;
1613	if (psk) {
1614		vmci_trans(vsk)->queue_pair_size =
1615			vmci_trans(psk)->queue_pair_size;
1616		vmci_trans(vsk)->queue_pair_min_size =
1617			vmci_trans(psk)->queue_pair_min_size;
1618		vmci_trans(vsk)->queue_pair_max_size =
1619			vmci_trans(psk)->queue_pair_max_size;
1620	} else {
1621		vmci_trans(vsk)->queue_pair_size =
1622			VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1623		vmci_trans(vsk)->queue_pair_min_size =
1624			 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1625		vmci_trans(vsk)->queue_pair_max_size =
1626			VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1627	}
1628
1629	return 0;
1630}
1631
1632static void vmci_transport_destruct(struct vsock_sock *vsk)
1633{
1634	if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) {
1635		vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id);
1636		vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID;
1637	}
1638
1639	if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1640		vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id);
1641		vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1642	}
1643
1644	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
1645		vmci_qpair_detach(&vmci_trans(vsk)->qpair);
1646		vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1647		vmci_trans(vsk)->produce_size = 0;
1648		vmci_trans(vsk)->consume_size = 0;
1649	}
1650
1651	if (vmci_trans(vsk)->notify_ops)
1652		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1653
1654	kfree(vsk->trans);
1655	vsk->trans = NULL;
1656}
1657
1658static void vmci_transport_release(struct vsock_sock *vsk)
1659{
1660	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1661		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1662		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1663	}
1664}
1665
1666static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1667				     struct sockaddr_vm *addr)
1668{
1669	u32 port;
1670	u32 flags;
1671	int err;
1672
1673	/* VMCI will select a resource ID for us if we provide
1674	 * VMCI_INVALID_ID.
1675	 */
1676	port = addr->svm_port == VMADDR_PORT_ANY ?
1677			VMCI_INVALID_ID : addr->svm_port;
1678
1679	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1680		return -EACCES;
1681
1682	flags = addr->svm_cid == VMADDR_CID_ANY ?
1683				VMCI_FLAG_ANYCID_DG_HND : 0;
1684
1685	err = vmci_transport_datagram_create_hnd(port, flags,
1686						 vmci_transport_recv_dgram_cb,
1687						 &vsk->sk,
1688						 &vmci_trans(vsk)->dg_handle);
1689	if (err < VMCI_SUCCESS)
1690		return vmci_transport_error_to_vsock_error(err);
1691	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1692			vmci_trans(vsk)->dg_handle.resource);
1693
1694	return 0;
1695}
1696
1697static int vmci_transport_dgram_enqueue(
1698	struct vsock_sock *vsk,
1699	struct sockaddr_vm *remote_addr,
1700	struct iovec *iov,
1701	size_t len)
1702{
1703	int err;
1704	struct vmci_datagram *dg;
1705
1706	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1707		return -EMSGSIZE;
1708
1709	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1710		return -EPERM;
1711
1712	/* Allocate a buffer for the user's message and our packet header. */
1713	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1714	if (!dg)
1715		return -ENOMEM;
1716
1717	memcpy_fromiovec(VMCI_DG_PAYLOAD(dg), iov, len);
1718
1719	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1720				   remote_addr->svm_port);
1721	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1722				   vsk->local_addr.svm_port);
1723	dg->payload_size = len;
1724
1725	err = vmci_datagram_send(dg);
1726	kfree(dg);
1727	if (err < 0)
1728		return vmci_transport_error_to_vsock_error(err);
1729
1730	return err - sizeof(*dg);
1731}
1732
1733static int vmci_transport_dgram_dequeue(struct kiocb *kiocb,
1734					struct vsock_sock *vsk,
1735					struct msghdr *msg, size_t len,
1736					int flags)
1737{
1738	int err;
1739	int noblock;
1740	struct vmci_datagram *dg;
1741	size_t payload_len;
1742	struct sk_buff *skb;
1743
1744	noblock = flags & MSG_DONTWAIT;
1745
1746	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1747		return -EOPNOTSUPP;
1748
1749	msg->msg_namelen = 0;
1750
1751	/* Retrieve the head sk_buff from the socket's receive queue. */
1752	err = 0;
1753	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1754	if (err)
1755		return err;
1756
1757	if (!skb)
1758		return -EAGAIN;
1759
1760	dg = (struct vmci_datagram *)skb->data;
1761	if (!dg)
1762		/* err is 0, meaning we read zero bytes. */
1763		goto out;
1764
1765	payload_len = dg->payload_size;
1766	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1767	if (payload_len != skb->len - sizeof(*dg)) {
1768		err = -EINVAL;
1769		goto out;
1770	}
1771
1772	if (payload_len > len) {
1773		payload_len = len;
1774		msg->msg_flags |= MSG_TRUNC;
1775	}
1776
1777	/* Place the datagram payload in the user's iovec. */
1778	err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov,
1779		payload_len);
1780	if (err)
1781		goto out;
1782
1783	if (msg->msg_name) {
1784		struct sockaddr_vm *vm_addr;
1785
1786		/* Provide the address of the sender. */
1787		vm_addr = (struct sockaddr_vm *)msg->msg_name;
1788		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1789		msg->msg_namelen = sizeof(*vm_addr);
1790	}
1791	err = payload_len;
1792
1793out:
1794	skb_free_datagram(&vsk->sk, skb);
1795	return err;
1796}
1797
1798static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1799{
1800	if (cid == VMADDR_CID_HYPERVISOR) {
1801		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1802		 * state and are allowed.
1803		 */
1804		return port == VMCI_UNITY_PBRPC_REGISTER;
1805	}
1806
1807	return true;
1808}
1809
1810static int vmci_transport_connect(struct vsock_sock *vsk)
1811{
1812	int err;
1813	bool old_pkt_proto = false;
1814	struct sock *sk = &vsk->sk;
1815
1816	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1817		old_pkt_proto) {
1818		err = vmci_transport_send_conn_request(
1819			sk, vmci_trans(vsk)->queue_pair_size);
1820		if (err < 0) {
1821			sk->sk_state = SS_UNCONNECTED;
1822			return err;
1823		}
1824	} else {
1825		int supported_proto_versions =
1826			vmci_transport_new_proto_supported_versions();
1827		err = vmci_transport_send_conn_request2(
1828				sk, vmci_trans(vsk)->queue_pair_size,
1829				supported_proto_versions);
1830		if (err < 0) {
1831			sk->sk_state = SS_UNCONNECTED;
1832			return err;
1833		}
1834
1835		vsk->sent_request = true;
1836	}
1837
1838	return err;
1839}
1840
1841static ssize_t vmci_transport_stream_dequeue(
1842	struct vsock_sock *vsk,
1843	struct iovec *iov,
1844	size_t len,
1845	int flags)
1846{
1847	if (flags & MSG_PEEK)
1848		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, iov, len, 0);
1849	else
1850		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, iov, len, 0);
1851}
1852
1853static ssize_t vmci_transport_stream_enqueue(
1854	struct vsock_sock *vsk,
1855	struct iovec *iov,
1856	size_t len)
1857{
1858	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, iov, len, 0);
1859}
1860
1861static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1862{
1863	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1864}
1865
1866static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1867{
1868	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1869}
1870
1871static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1872{
1873	return vmci_trans(vsk)->consume_size;
1874}
1875
1876static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1877{
1878	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1879}
1880
1881static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1882{
1883	return vmci_trans(vsk)->queue_pair_size;
1884}
1885
1886static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1887{
1888	return vmci_trans(vsk)->queue_pair_min_size;
1889}
1890
1891static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1892{
1893	return vmci_trans(vsk)->queue_pair_max_size;
1894}
1895
1896static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1897{
1898	if (val < vmci_trans(vsk)->queue_pair_min_size)
1899		vmci_trans(vsk)->queue_pair_min_size = val;
1900	if (val > vmci_trans(vsk)->queue_pair_max_size)
1901		vmci_trans(vsk)->queue_pair_max_size = val;
1902	vmci_trans(vsk)->queue_pair_size = val;
1903}
1904
1905static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1906					       u64 val)
1907{
1908	if (val > vmci_trans(vsk)->queue_pair_size)
1909		vmci_trans(vsk)->queue_pair_size = val;
1910	vmci_trans(vsk)->queue_pair_min_size = val;
1911}
1912
1913static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1914					       u64 val)
1915{
1916	if (val < vmci_trans(vsk)->queue_pair_size)
1917		vmci_trans(vsk)->queue_pair_size = val;
1918	vmci_trans(vsk)->queue_pair_max_size = val;
1919}
1920
1921static int vmci_transport_notify_poll_in(
1922	struct vsock_sock *vsk,
1923	size_t target,
1924	bool *data_ready_now)
1925{
1926	return vmci_trans(vsk)->notify_ops->poll_in(
1927			&vsk->sk, target, data_ready_now);
1928}
1929
1930static int vmci_transport_notify_poll_out(
1931	struct vsock_sock *vsk,
1932	size_t target,
1933	bool *space_available_now)
1934{
1935	return vmci_trans(vsk)->notify_ops->poll_out(
1936			&vsk->sk, target, space_available_now);
1937}
1938
1939static int vmci_transport_notify_recv_init(
1940	struct vsock_sock *vsk,
1941	size_t target,
1942	struct vsock_transport_recv_notify_data *data)
1943{
1944	return vmci_trans(vsk)->notify_ops->recv_init(
1945			&vsk->sk, target,
1946			(struct vmci_transport_recv_notify_data *)data);
1947}
1948
1949static int vmci_transport_notify_recv_pre_block(
1950	struct vsock_sock *vsk,
1951	size_t target,
1952	struct vsock_transport_recv_notify_data *data)
1953{
1954	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1955			&vsk->sk, target,
1956			(struct vmci_transport_recv_notify_data *)data);
1957}
1958
1959static int vmci_transport_notify_recv_pre_dequeue(
1960	struct vsock_sock *vsk,
1961	size_t target,
1962	struct vsock_transport_recv_notify_data *data)
1963{
1964	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1965			&vsk->sk, target,
1966			(struct vmci_transport_recv_notify_data *)data);
1967}
1968
1969static int vmci_transport_notify_recv_post_dequeue(
1970	struct vsock_sock *vsk,
1971	size_t target,
1972	ssize_t copied,
1973	bool data_read,
1974	struct vsock_transport_recv_notify_data *data)
1975{
1976	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1977			&vsk->sk, target, copied, data_read,
1978			(struct vmci_transport_recv_notify_data *)data);
1979}
1980
1981static int vmci_transport_notify_send_init(
1982	struct vsock_sock *vsk,
1983	struct vsock_transport_send_notify_data *data)
1984{
1985	return vmci_trans(vsk)->notify_ops->send_init(
1986			&vsk->sk,
1987			(struct vmci_transport_send_notify_data *)data);
1988}
1989
1990static int vmci_transport_notify_send_pre_block(
1991	struct vsock_sock *vsk,
1992	struct vsock_transport_send_notify_data *data)
1993{
1994	return vmci_trans(vsk)->notify_ops->send_pre_block(
1995			&vsk->sk,
1996			(struct vmci_transport_send_notify_data *)data);
1997}
1998
1999static int vmci_transport_notify_send_pre_enqueue(
2000	struct vsock_sock *vsk,
2001	struct vsock_transport_send_notify_data *data)
2002{
2003	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
2004			&vsk->sk,
2005			(struct vmci_transport_send_notify_data *)data);
2006}
2007
2008static int vmci_transport_notify_send_post_enqueue(
2009	struct vsock_sock *vsk,
2010	ssize_t written,
2011	struct vsock_transport_send_notify_data *data)
2012{
2013	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2014			&vsk->sk, written,
2015			(struct vmci_transport_send_notify_data *)data);
2016}
2017
2018static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2019{
2020	if (PROTOCOL_OVERRIDE != -1) {
2021		if (PROTOCOL_OVERRIDE == 0)
2022			*old_pkt_proto = true;
2023		else
2024			*old_pkt_proto = false;
2025
2026		pr_info("Proto override in use\n");
2027		return true;
2028	}
2029
2030	return false;
2031}
2032
2033static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2034						  u16 *proto,
2035						  bool old_pkt_proto)
2036{
2037	struct vsock_sock *vsk = vsock_sk(sk);
2038
2039	if (old_pkt_proto) {
2040		if (*proto != VSOCK_PROTO_INVALID) {
2041			pr_err("Can't set both an old and new protocol\n");
2042			return false;
2043		}
2044		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2045		goto exit;
2046	}
2047
2048	switch (*proto) {
2049	case VSOCK_PROTO_PKT_ON_NOTIFY:
2050		vmci_trans(vsk)->notify_ops =
2051			&vmci_transport_notify_pkt_q_state_ops;
2052		break;
2053	default:
2054		pr_err("Unknown notify protocol version\n");
2055		return false;
2056	}
2057
2058exit:
2059	vmci_trans(vsk)->notify_ops->socket_init(sk);
2060	return true;
2061}
2062
2063static u16 vmci_transport_new_proto_supported_versions(void)
2064{
2065	if (PROTOCOL_OVERRIDE != -1)
2066		return PROTOCOL_OVERRIDE;
2067
2068	return VSOCK_PROTO_ALL_SUPPORTED;
2069}
2070
2071static u32 vmci_transport_get_local_cid(void)
2072{
2073	return vmci_get_context_id();
2074}
2075
2076static struct vsock_transport vmci_transport = {
2077	.init = vmci_transport_socket_init,
2078	.destruct = vmci_transport_destruct,
2079	.release = vmci_transport_release,
2080	.connect = vmci_transport_connect,
2081	.dgram_bind = vmci_transport_dgram_bind,
2082	.dgram_dequeue = vmci_transport_dgram_dequeue,
2083	.dgram_enqueue = vmci_transport_dgram_enqueue,
2084	.dgram_allow = vmci_transport_dgram_allow,
2085	.stream_dequeue = vmci_transport_stream_dequeue,
2086	.stream_enqueue = vmci_transport_stream_enqueue,
2087	.stream_has_data = vmci_transport_stream_has_data,
2088	.stream_has_space = vmci_transport_stream_has_space,
2089	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2090	.stream_is_active = vmci_transport_stream_is_active,
2091	.stream_allow = vmci_transport_stream_allow,
2092	.notify_poll_in = vmci_transport_notify_poll_in,
2093	.notify_poll_out = vmci_transport_notify_poll_out,
2094	.notify_recv_init = vmci_transport_notify_recv_init,
2095	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2096	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2097	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2098	.notify_send_init = vmci_transport_notify_send_init,
2099	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2100	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2101	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2102	.shutdown = vmci_transport_shutdown,
2103	.set_buffer_size = vmci_transport_set_buffer_size,
2104	.set_min_buffer_size = vmci_transport_set_min_buffer_size,
2105	.set_max_buffer_size = vmci_transport_set_max_buffer_size,
2106	.get_buffer_size = vmci_transport_get_buffer_size,
2107	.get_min_buffer_size = vmci_transport_get_min_buffer_size,
2108	.get_max_buffer_size = vmci_transport_get_max_buffer_size,
2109	.get_local_cid = vmci_transport_get_local_cid,
2110};
2111
2112static int __init vmci_transport_init(void)
2113{
2114	int err;
2115
2116	/* Create the datagram handle that we will use to send and receive all
2117	 * VSocket control messages for this context.
2118	 */
2119	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2120						 VMCI_FLAG_ANYCID_DG_HND,
2121						 vmci_transport_recv_stream_cb,
2122						 NULL,
2123						 &vmci_transport_stream_handle);
2124	if (err < VMCI_SUCCESS) {
2125		pr_err("Unable to create datagram handle. (%d)\n", err);
2126		return vmci_transport_error_to_vsock_error(err);
2127	}
2128
2129	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2130				   vmci_transport_qp_resumed_cb,
2131				   NULL, &vmci_transport_qp_resumed_sub_id);
2132	if (err < VMCI_SUCCESS) {
2133		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2134		err = vmci_transport_error_to_vsock_error(err);
2135		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2136		goto err_destroy_stream_handle;
2137	}
2138
2139	err = vsock_core_init(&vmci_transport);
2140	if (err < 0)
2141		goto err_unsubscribe;
2142
2143	return 0;
2144
2145err_unsubscribe:
2146	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2147err_destroy_stream_handle:
2148	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2149	return err;
2150}
2151module_init(vmci_transport_init);
2152
2153static void __exit vmci_transport_exit(void)
2154{
2155	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2156		if (vmci_datagram_destroy_handle(
2157			vmci_transport_stream_handle) != VMCI_SUCCESS)
2158			pr_err("Couldn't destroy datagram handle\n");
2159		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2160	}
2161
2162	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2163		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2164		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2165	}
2166
2167	vsock_core_exit();
2168}
2169module_exit(vmci_transport_exit);
2170
2171MODULE_AUTHOR("VMware, Inc.");
2172MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2173MODULE_LICENSE("GPL v2");
2174MODULE_ALIAS("vmware_vsock");
2175MODULE_ALIAS_NETPROTO(PF_VSOCK);
2176