6a33979d5bd7521497121c5ae4435d7003115a0f |
|
10-Oct-2014 |
Mel Gorman <mgorman@suse.de> |
mm: remove misleading ARCH_USES_NUMA_PROT_NONE ARCH_USES_NUMA_PROT_NONE was defined for architectures that implemented _PAGE_NUMA using _PROT_NONE. This saved using an additional PTE bit and relied on the fact that PROT_NONE vmas were skipped by the NUMA hinting fault scanner. This was found to be conceptually confusing with a lot of implicit assumptions and it was asked that an alternative be found. Commit c46a7c81 "x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levels" redefined _PAGE_NUMA on x86 to be one of the swap PTE bits and shrunk the maximum possible swap size but it did not go far enough. There are no architectures that reuse _PROT_NONE as _PROT_NUMA but the relics still exist. This patch removes ARCH_USES_NUMA_PROT_NONE and removes some unnecessary duplication in powerpc vs the generic implementation by defining the types the core NUMA helpers expected to exist from x86 with their ppc64 equivalent. This necessitated that a PTE bit mask be created that identified the bits that distinguish present from NUMA pte entries but it is expected this will only differ between arches based on _PAGE_PROTNONE. The naming for the generic helpers was taken from x86 originally but ppc64 has types that are equivalent for the purposes of the helper so they are mapped instead of duplicating code. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
09597cfe93d3cc2c6e064a3ead5956b882511560 |
|
15-Apr-2011 |
Stefan Roese <sr@denx.de> |
powerpc: Don't write protect kernel text with CONFIG_DYNAMIC_FTRACE enabled This problem was noticed on an MPC855T platform. Ftrace did oops when trying to write to the kernel text segment. Many thanks to Joakim for finding the root cause of this problem. Signed-off-by: Stefan Roese <sr@denx.de> Cc: Joakim Tjernlund <joakim.tjernlund@transmode.se> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
25985edcedea6396277003854657b5f3cb31a628 |
|
31-Mar-2011 |
Lucas De Marchi <lucas.demarchi@profusion.mobi> |
Fix common misspellings Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
|
92437d41374bf59b1914b53bd10ca69d31b1b581 |
|
24-Sep-2010 |
Paul Gortmaker <paul.gortmaker@windriver.com> |
powerpc: Fix invalid page flags in create TLB CAM path for PTE_64BIT There exists a four line chunk of code, which when configured for 64 bit address space, can incorrectly set certain page flags during the TLB creation. It turns out that this is code which isn't used, but might still serve a purpose. Since it isn't obvious why it exists or why it causes problems, the below description covers both in detail. For powerpc bootstrap, the physical memory (at most 768M), is mapped into the kernel space via the following path: MMU_init() | + adjust_total_lowmem() | + map_mem_in_cams() | + settlbcam(i, virt, phys, cam_sz, PAGE_KERNEL_X, 0); On settlbcam(), the kernel will create TLB entries according to the flag, PAGE_KERNEL_X. settlbcam() { ... TLBCAM[index].MAS1 = MAS1_VALID | MAS1_IPROT | MAS1_TSIZE(tsize) | MAS1_TID(pid); ^ These entries cannot be invalidated by the kernel since MAS1_IPROT is set on TLB property. ... if (flags & _PAGE_USER) { TLBCAM[index].MAS3 |= MAS3_UX | MAS3_UR; TLBCAM[index].MAS3 |= ((flags & _PAGE_RW) ? MAS3_UW : 0); } For classic BookE (flags & _PAGE_USER) is 'zero' so it's fine. But on boards like the the Freescale P4080, we want to support 36-bit physical address on it. So the following options may be set: CONFIG_FSL_BOOKE=y CONFIG_PTE_64BIT=y CONFIG_PHYS_64BIT=y As a result, boards like the P4080 will introduce PTE format as Book3E. As per the file: arch/powerpc/include/asm/pgtable-ppc32.h * #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) * #include <asm/pte-book3e.h> So PAGE_KERNEL_X is __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) and the book3E version of _PAGE_KERNEL_RWX is defined with: (_PAGE_BAP_SW | _PAGE_BAP_SR | _PAGE_DIRTY | _PAGE_BAP_SX) Note the _PAGE_BAP_SR, which is also defined in the book3E _PAGE_USER: #define _PAGE_USER (_PAGE_BAP_UR | _PAGE_BAP_SR) /* Can be read */ So the possibility exists to wrongly assign the user MAS3_U<RWX> bits to kernel (PAGE_KERNEL_X) address space via the following code fragment: if (flags & _PAGE_USER) { TLBCAM[index].MAS3 |= MAS3_UX | MAS3_UR; TLBCAM[index].MAS3 |= ((flags & _PAGE_RW) ? MAS3_UW : 0); } Here is a dump of the TLB info from Simics with the above code present: ------ L2 TLB1 GT SSS UUU V I Row Logical Physical SS TLPID TID WIMGE XWR XWR F P V ----- ----------------- ------------------- -- ----- ----- ----- --- --- - - - 0 c0000000-cfffffff 000000000-00fffffff 00 0 0 M XWR XWR 0 1 1 1 d0000000-dfffffff 010000000-01fffffff 00 0 0 M XWR XWR 0 1 1 2 e0000000-efffffff 020000000-02fffffff 00 0 0 M XWR XWR 0 1 1 Actually this conditional code was used for two legacy functions: 1: support KGDB to set break point. KGDB already dropped this; now uses its core write to set break point. 2: io_block_mapping() to create TLB in segmentation size (not PAGE_SIZE) for device IO space. This use case is also removed from the latest PowerPC kernel. However, there may still be a use case for it in the future, like large user pages, so we can't remove it entirely. As an alternative, we match on all bits of _PAGE_USER instead of just any bits, so the case where just _PAGE_BAP_SR is set can't sneak through. With this done, the TLB appears without U having XWR as below: ------- L2 TLB1 GT SSS UUU V I Row Logical Physical SS TLPID TID WIMGE XWR XWR F P V ----- ----------------- ------------------- -- ----- ----- ----- --- --- - - - 0 c0000000-cfffffff 000000000-00fffffff 00 0 0 M XWR 0 1 1 1 d0000000-dfffffff 010000000-01fffffff 00 0 0 M XWR 0 1 1 2 e0000000-efffffff 020000000-02fffffff 00 0 0 M XWR 0 1 1 Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
f32af63ed1327451cb91e3816fa043b6c2c52db1 |
|
22-Sep-2009 |
Benjamin Herrenschmidt <benh@kernel.crashing.org> |
powerpc/mm: Fix 40x and 8xx vs. _PAGE_SPECIAL The test to check whether we have _PAGE_SPECIAL defined is broken, since we always define it, just not always to a meaninful value :-) That broke 8xx and 40x under some circumstances. This fixes it by adding _PAGE_SPECIAL for both of these since they had a free PTE bit, and removing the condition around advertising it. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
ea3cc330ac0cd521ff07c7cd432a1848c19a7e92 |
|
18-Aug-2009 |
Benjamin Herrenschmidt <benh@kernel.crashing.org> |
powerpc/mm: Cleanup handling of execute permission This is an attempt at cleaning up a bit the way we handle execute permission on powerpc. _PAGE_HWEXEC is gone, _PAGE_EXEC is now only defined by CPUs that can do something with it, and the myriad of #ifdef's in the I$/D$ coherency code is reduced to 2 cases that hopefully should cover everything. The logic on BookE is a little bit different than what it was though not by much. Since now, _PAGE_EXEC will be set by the generic code for executable pages, we need to filter out if they are unclean and recover it. However, I don't expect the code to be more bloated than it already was in that area due to that change. I could boast that this brings proper enforcing of per-page execute permissions to all BookE and 40x but in fact, we've had that now for some time as a side effect of my previous rework in that area (and I didn't even know it :-) We would only enable execute permission if the page was cache clean and we would only cache clean it if we took and exec fault. Since we now enforce that the later only work if VM_EXEC is part of the VMA flags, we de-fact already enforce per-page execute permissions... Unless I missed something Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
57e2a99f74b0d3720c97a6aadb57ae6aad3c61ea |
|
28-Jul-2009 |
Benjamin Herrenschmidt <benh@kernel.crashing.org> |
powerpc: Add memory management headers for new 64-bit BookE This adds the PTE and pgtable format definitions, along with changes to the kernel memory map and other definitions related to implementing support for 64-bit Book3E. This also shields some asm-offset bits that are currently only relevant on 32-bit We also move the definition of the "linux" page size constants to the common mmu.h file and add a few sizes that are relevant to embedded processors. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
11b55da700eb77905f1c2dde3a0cbeedc665a753 |
|
06-Apr-2009 |
Paul Mackerras <paulus@samba.org> |
powerpc: Fix oops when loading modules This fixes a problem reported by Sean MacLennan where loading any module would cause an oops. We weren't marking the pages containing the module text as having hardware execute permission, due to a bug introduced in commit 8d1cf34e ("powerpc/mm: Tweak PTE bit combination definitions"), hence trying to execute the module text caused an exception on processors that support hardware execute permission. This adds _PAGE_HWEXEC to the definitions of PAGE_KERNEL_X and PAGE_KERNEL_ROX to fix this problem. Reported-by: Sean MacLennan <smaclennan@pikatech.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
|
71087002cf807e25056dba4e4028a9f204dc9ffd |
|
19-Mar-2009 |
Benjamin Herrenschmidt <benh@kernel.crashing.org> |
powerpc/mm: Merge various PTE bits and accessors definitions Now that they are almost identical, we can merge some of the definitions related to the PTE format into common files. This creates a new pte-common.h which is included by both 32 and 64-bit right after the CPU specific pte-*.h file, and which defines some bits to "default" values if they haven't been defined already, and then provides a generic definition of most of the bit combinations based on these and exposed to the rest of the kernel. I also moved to the common pgtable.h most of the "small" accessors to the PTE bits and modification helpers (pte_mk*). The actual accessors remain in their separate files. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|