1/*
2 * omap-pm-noop.c - OMAP power management interface - dummy version
3 *
4 * This code implements the OMAP power management interface to
5 * drivers, CPUIdle, CPUFreq, and DSP Bridge.  It is strictly for
6 * debug/demonstration use, as it does nothing but printk() whenever a
7 * function is called (when DEBUG is defined, below)
8 *
9 * Copyright (C) 2008-2009 Texas Instruments, Inc.
10 * Copyright (C) 2008-2009 Nokia Corporation
11 * Paul Walmsley
12 *
13 * Interface developed by (in alphabetical order):
14 * Karthik Dasu, Tony Lindgren, Rajendra Nayak, Sakari Poussa, Veeramanikandan
15 * Raju, Anand Sawant, Igor Stoppa, Paul Walmsley, Richard Woodruff
16 */
17
18#undef DEBUG
19
20#include <linux/init.h>
21#include <linux/cpufreq.h>
22#include <linux/device.h>
23#include <linux/platform_device.h>
24
25#include "omap_device.h"
26#include "omap-pm.h"
27
28static bool off_mode_enabled;
29static int dummy_context_loss_counter;
30
31/*
32 * Device-driver-originated constraints (via board-*.c files)
33 */
34
35int omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t)
36{
37	if (!dev || t < -1) {
38		WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
39		return -EINVAL;
40	}
41
42	if (t == -1)
43		pr_debug("OMAP PM: remove max MPU wakeup latency constraint: dev %s\n",
44			 dev_name(dev));
45	else
46		pr_debug("OMAP PM: add max MPU wakeup latency constraint: dev %s, t = %ld usec\n",
47			 dev_name(dev), t);
48
49	/*
50	 * For current Linux, this needs to map the MPU to a
51	 * powerdomain, then go through the list of current max lat
52	 * constraints on the MPU and find the smallest.  If
53	 * the latency constraint has changed, the code should
54	 * recompute the state to enter for the next powerdomain
55	 * state.
56	 *
57	 * TI CDP code can call constraint_set here.
58	 */
59
60	return 0;
61}
62
63int omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r)
64{
65	if (!dev || (agent_id != OCP_INITIATOR_AGENT &&
66	    agent_id != OCP_TARGET_AGENT)) {
67		WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
68		return -EINVAL;
69	}
70
71	if (r == 0)
72		pr_debug("OMAP PM: remove min bus tput constraint: dev %s for agent_id %d\n",
73			 dev_name(dev), agent_id);
74	else
75		pr_debug("OMAP PM: add min bus tput constraint: dev %s for agent_id %d: rate %ld KiB\n",
76			 dev_name(dev), agent_id, r);
77
78	/*
79	 * This code should model the interconnect and compute the
80	 * required clock frequency, convert that to a VDD2 OPP ID, then
81	 * set the VDD2 OPP appropriately.
82	 *
83	 * TI CDP code can call constraint_set here on the VDD2 OPP.
84	 */
85
86	return 0;
87}
88
89int omap_pm_set_max_dev_wakeup_lat(struct device *req_dev, struct device *dev,
90				   long t)
91{
92	if (!req_dev || !dev || t < -1) {
93		WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
94		return -EINVAL;
95	}
96
97	if (t == -1)
98		pr_debug("OMAP PM: remove max device latency constraint: dev %s\n",
99			 dev_name(dev));
100	else
101		pr_debug("OMAP PM: add max device latency constraint: dev %s, t = %ld usec\n",
102			 dev_name(dev), t);
103
104	/*
105	 * For current Linux, this needs to map the device to a
106	 * powerdomain, then go through the list of current max lat
107	 * constraints on that powerdomain and find the smallest.  If
108	 * the latency constraint has changed, the code should
109	 * recompute the state to enter for the next powerdomain
110	 * state.  Conceivably, this code should also determine
111	 * whether to actually disable the device clocks or not,
112	 * depending on how long it takes to re-enable the clocks.
113	 *
114	 * TI CDP code can call constraint_set here.
115	 */
116
117	return 0;
118}
119
120int omap_pm_set_max_sdma_lat(struct device *dev, long t)
121{
122	if (!dev || t < -1) {
123		WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
124		return -EINVAL;
125	}
126
127	if (t == -1)
128		pr_debug("OMAP PM: remove max DMA latency constraint: dev %s\n",
129			 dev_name(dev));
130	else
131		pr_debug("OMAP PM: add max DMA latency constraint: dev %s, t = %ld usec\n",
132			 dev_name(dev), t);
133
134	/*
135	 * For current Linux PM QOS params, this code should scan the
136	 * list of maximum CPU and DMA latencies and select the
137	 * smallest, then set cpu_dma_latency pm_qos_param
138	 * accordingly.
139	 *
140	 * For future Linux PM QOS params, with separate CPU and DMA
141	 * latency params, this code should just set the dma_latency param.
142	 *
143	 * TI CDP code can call constraint_set here.
144	 */
145
146	return 0;
147}
148
149int omap_pm_set_min_clk_rate(struct device *dev, struct clk *c, long r)
150{
151	if (!dev || !c || r < 0) {
152		WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
153		return -EINVAL;
154	}
155
156	if (r == 0)
157		pr_debug("OMAP PM: remove min clk rate constraint: dev %s\n",
158			 dev_name(dev));
159	else
160		pr_debug("OMAP PM: add min clk rate constraint: dev %s, rate = %ld Hz\n",
161			 dev_name(dev), r);
162
163	/*
164	 * Code in a real implementation should keep track of these
165	 * constraints on the clock, and determine the highest minimum
166	 * clock rate.  It should iterate over each OPP and determine
167	 * whether the OPP will result in a clock rate that would
168	 * satisfy this constraint (and any other PM constraint in effect
169	 * at that time).  Once it finds the lowest-voltage OPP that
170	 * meets those conditions, it should switch to it, or return
171	 * an error if the code is not capable of doing so.
172	 */
173
174	return 0;
175}
176
177/*
178 * DSP Bridge-specific constraints
179 */
180
181const struct omap_opp *omap_pm_dsp_get_opp_table(void)
182{
183	pr_debug("OMAP PM: DSP request for OPP table\n");
184
185	/*
186	 * Return DSP frequency table here:  The final item in the
187	 * array should have .rate = .opp_id = 0.
188	 */
189
190	return NULL;
191}
192
193void omap_pm_dsp_set_min_opp(u8 opp_id)
194{
195	if (opp_id == 0) {
196		WARN_ON(1);
197		return;
198	}
199
200	pr_debug("OMAP PM: DSP requests minimum VDD1 OPP to be %d\n", opp_id);
201
202	/*
203	 *
204	 * For l-o dev tree, our VDD1 clk is keyed on OPP ID, so we
205	 * can just test to see which is higher, the CPU's desired OPP
206	 * ID or the DSP's desired OPP ID, and use whichever is
207	 * highest.
208	 *
209	 * In CDP12.14+, the VDD1 OPP custom clock that controls the DSP
210	 * rate is keyed on MPU speed, not the OPP ID.  So we need to
211	 * map the OPP ID to the MPU speed for use with clk_set_rate()
212	 * if it is higher than the current OPP clock rate.
213	 *
214	 */
215}
216
217
218u8 omap_pm_dsp_get_opp(void)
219{
220	pr_debug("OMAP PM: DSP requests current DSP OPP ID\n");
221
222	/*
223	 * For l-o dev tree, call clk_get_rate() on VDD1 OPP clock
224	 *
225	 * CDP12.14+:
226	 * Call clk_get_rate() on the OPP custom clock, map that to an
227	 * OPP ID using the tables defined in board-*.c/chip-*.c files.
228	 */
229
230	return 0;
231}
232
233/*
234 * CPUFreq-originated constraint
235 *
236 * In the future, this should be handled by custom OPP clocktype
237 * functions.
238 */
239
240struct cpufreq_frequency_table **omap_pm_cpu_get_freq_table(void)
241{
242	pr_debug("OMAP PM: CPUFreq request for frequency table\n");
243
244	/*
245	 * Return CPUFreq frequency table here: loop over
246	 * all VDD1 clkrates, pull out the mpu_ck frequencies, build
247	 * table
248	 */
249
250	return NULL;
251}
252
253void omap_pm_cpu_set_freq(unsigned long f)
254{
255	if (f == 0) {
256		WARN_ON(1);
257		return;
258	}
259
260	pr_debug("OMAP PM: CPUFreq requests CPU frequency to be set to %lu\n",
261		 f);
262
263	/*
264	 * For l-o dev tree, determine whether MPU freq or DSP OPP id
265	 * freq is higher.  Find the OPP ID corresponding to the
266	 * higher frequency.  Call clk_round_rate() and clk_set_rate()
267	 * on the OPP custom clock.
268	 *
269	 * CDP should just be able to set the VDD1 OPP clock rate here.
270	 */
271}
272
273unsigned long omap_pm_cpu_get_freq(void)
274{
275	pr_debug("OMAP PM: CPUFreq requests current CPU frequency\n");
276
277	/*
278	 * Call clk_get_rate() on the mpu_ck.
279	 */
280
281	return 0;
282}
283
284/**
285 * omap_pm_enable_off_mode - notify OMAP PM that off-mode is enabled
286 *
287 * Intended for use only by OMAP PM core code to notify this layer
288 * that off mode has been enabled.
289 */
290void omap_pm_enable_off_mode(void)
291{
292	off_mode_enabled = true;
293}
294
295/**
296 * omap_pm_disable_off_mode - notify OMAP PM that off-mode is disabled
297 *
298 * Intended for use only by OMAP PM core code to notify this layer
299 * that off mode has been disabled.
300 */
301void omap_pm_disable_off_mode(void)
302{
303	off_mode_enabled = false;
304}
305
306/*
307 * Device context loss tracking
308 */
309
310#ifdef CONFIG_ARCH_OMAP2PLUS
311
312int omap_pm_get_dev_context_loss_count(struct device *dev)
313{
314	struct platform_device *pdev = to_platform_device(dev);
315	int count;
316
317	if (WARN_ON(!dev))
318		return -ENODEV;
319
320	if (dev->pm_domain == &omap_device_pm_domain) {
321		count = omap_device_get_context_loss_count(pdev);
322	} else {
323		WARN_ONCE(off_mode_enabled, "omap_pm: using dummy context loss counter; device %s should be converted to omap_device",
324			  dev_name(dev));
325
326		count = dummy_context_loss_counter;
327
328		if (off_mode_enabled) {
329			count++;
330			/*
331			 * Context loss count has to be a non-negative value.
332			 * Clear the sign bit to get a value range from 0 to
333			 * INT_MAX.
334			 */
335			count &= INT_MAX;
336			dummy_context_loss_counter = count;
337		}
338	}
339
340	pr_debug("OMAP PM: context loss count for dev %s = %d\n",
341		 dev_name(dev), count);
342
343	return count;
344}
345
346#else
347
348int omap_pm_get_dev_context_loss_count(struct device *dev)
349{
350	return dummy_context_loss_counter;
351}
352
353#endif
354
355/* Should be called before clk framework init */
356int __init omap_pm_if_early_init(void)
357{
358	return 0;
359}
360
361/* Must be called after clock framework is initialized */
362int __init omap_pm_if_init(void)
363{
364	return 0;
365}
366
367void omap_pm_if_exit(void)
368{
369	/* Deallocate CPUFreq frequency table here */
370}
371
372