1/* provide some functions which dump the trace buffer, in a nice way for people
2 * to read it, and understand what is going on
3 *
4 * Copyright 2004-2010 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later
7 */
8
9#include <linux/kernel.h>
10#include <linux/hardirq.h>
11#include <linux/thread_info.h>
12#include <linux/mm.h>
13#include <linux/oom.h>
14#include <linux/sched.h>
15#include <linux/uaccess.h>
16#include <linux/module.h>
17#include <linux/kallsyms.h>
18#include <linux/err.h>
19#include <linux/fs.h>
20#include <linux/irq.h>
21#include <asm/dma.h>
22#include <asm/trace.h>
23#include <asm/fixed_code.h>
24#include <asm/traps.h>
25#include <asm/irq_handler.h>
26#include <asm/pda.h>
27
28void decode_address(char *buf, unsigned long address)
29{
30	struct task_struct *p;
31	struct mm_struct *mm;
32	unsigned long offset;
33	struct rb_node *n;
34
35#ifdef CONFIG_KALLSYMS
36	unsigned long symsize;
37	const char *symname;
38	char *modname;
39	char *delim = ":";
40	char namebuf[128];
41#endif
42
43	buf += sprintf(buf, "<0x%08lx> ", address);
44
45#ifdef CONFIG_KALLSYMS
46	/* look up the address and see if we are in kernel space */
47	symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
48
49	if (symname) {
50		/* yeah! kernel space! */
51		if (!modname)
52			modname = delim = "";
53		sprintf(buf, "{ %s%s%s%s + 0x%lx }",
54			delim, modname, delim, symname,
55			(unsigned long)offset);
56		return;
57	}
58#endif
59
60	if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
61		/* Problem in fixed code section? */
62		strcat(buf, "/* Maybe fixed code section */");
63		return;
64
65	} else if (address < CONFIG_BOOT_LOAD) {
66		/* Problem somewhere before the kernel start address */
67		strcat(buf, "/* Maybe null pointer? */");
68		return;
69
70	} else if (address >= COREMMR_BASE) {
71		strcat(buf, "/* core mmrs */");
72		return;
73
74	} else if (address >= SYSMMR_BASE) {
75		strcat(buf, "/* system mmrs */");
76		return;
77
78	} else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) {
79		strcat(buf, "/* on-chip L1 ROM */");
80		return;
81
82	} else if (address >= L1_SCRATCH_START && address < L1_SCRATCH_START + L1_SCRATCH_LENGTH) {
83		strcat(buf, "/* on-chip scratchpad */");
84		return;
85
86	} else if (address >= physical_mem_end && address < ASYNC_BANK0_BASE) {
87		strcat(buf, "/* unconnected memory */");
88		return;
89
90	} else if (address >= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE && address < BOOT_ROM_START) {
91		strcat(buf, "/* reserved memory */");
92		return;
93
94	} else if (address >= L1_DATA_A_START && address < L1_DATA_A_START + L1_DATA_A_LENGTH) {
95		strcat(buf, "/* on-chip Data Bank A */");
96		return;
97
98	} else if (address >= L1_DATA_B_START && address < L1_DATA_B_START + L1_DATA_B_LENGTH) {
99		strcat(buf, "/* on-chip Data Bank B */");
100		return;
101	}
102
103	/*
104	 * Don't walk any of the vmas if we are oopsing, it has been known
105	 * to cause problems - corrupt vmas (kernel crashes) cause double faults
106	 */
107	if (oops_in_progress) {
108		strcat(buf, "/* kernel dynamic memory (maybe user-space) */");
109		return;
110	}
111
112	/* looks like we're off in user-land, so let's walk all the
113	 * mappings of all our processes and see if we can't be a whee
114	 * bit more specific
115	 */
116	read_lock(&tasklist_lock);
117	for_each_process(p) {
118		struct task_struct *t;
119
120		t = find_lock_task_mm(p);
121		if (!t)
122			continue;
123
124		mm = t->mm;
125		if (!down_read_trylock(&mm->mmap_sem))
126			goto __continue;
127
128		for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
129			struct vm_area_struct *vma;
130
131			vma = rb_entry(n, struct vm_area_struct, vm_rb);
132
133			if (address >= vma->vm_start && address < vma->vm_end) {
134				char _tmpbuf[256];
135				char *name = t->comm;
136				struct file *file = vma->vm_file;
137
138				if (file) {
139					char *d_name = d_path(&file->f_path, _tmpbuf,
140						      sizeof(_tmpbuf));
141					if (!IS_ERR(d_name))
142						name = d_name;
143				}
144
145				/* FLAT does not have its text aligned to the start of
146				 * the map while FDPIC ELF does ...
147				 */
148
149				/* before we can check flat/fdpic, we need to
150				 * make sure current is valid
151				 */
152				if ((unsigned long)current >= FIXED_CODE_START &&
153				    !((unsigned long)current & 0x3)) {
154					if (current->mm &&
155					    (address > current->mm->start_code) &&
156					    (address < current->mm->end_code))
157						offset = address - current->mm->start_code;
158					else
159						offset = (address - vma->vm_start) +
160							 (vma->vm_pgoff << PAGE_SHIFT);
161
162					sprintf(buf, "[ %s + 0x%lx ]", name, offset);
163				} else
164					sprintf(buf, "[ %s vma:0x%lx-0x%lx]",
165						name, vma->vm_start, vma->vm_end);
166
167				up_read(&mm->mmap_sem);
168				task_unlock(t);
169
170				if (buf[0] == '\0')
171					sprintf(buf, "[ %s ] dynamic memory", name);
172
173				goto done;
174			}
175		}
176
177		up_read(&mm->mmap_sem);
178__continue:
179		task_unlock(t);
180	}
181
182	/*
183	 * we were unable to find this address anywhere,
184	 * or some MMs were skipped because they were in use.
185	 */
186	sprintf(buf, "/* kernel dynamic memory */");
187
188done:
189	read_unlock(&tasklist_lock);
190}
191
192#define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
193
194/*
195 * Similar to get_user, do some address checking, then dereference
196 * Return true on success, false on bad address
197 */
198bool get_mem16(unsigned short *val, unsigned short *address)
199{
200	unsigned long addr = (unsigned long)address;
201
202	/* Check for odd addresses */
203	if (addr & 0x1)
204		return false;
205
206	switch (bfin_mem_access_type(addr, 2)) {
207	case BFIN_MEM_ACCESS_CORE:
208	case BFIN_MEM_ACCESS_CORE_ONLY:
209		*val = *address;
210		return true;
211	case BFIN_MEM_ACCESS_DMA:
212		dma_memcpy(val, address, 2);
213		return true;
214	case BFIN_MEM_ACCESS_ITEST:
215		isram_memcpy(val, address, 2);
216		return true;
217	default: /* invalid access */
218		return false;
219	}
220}
221
222bool get_instruction(unsigned int *val, unsigned short *address)
223{
224	unsigned long addr = (unsigned long)address;
225	unsigned short opcode0, opcode1;
226
227	/* Check for odd addresses */
228	if (addr & 0x1)
229		return false;
230
231	/* MMR region will never have instructions */
232	if (addr >= SYSMMR_BASE)
233		return false;
234
235	/* Scratchpad will never have instructions */
236	if (addr >= L1_SCRATCH_START && addr < L1_SCRATCH_START + L1_SCRATCH_LENGTH)
237		return false;
238
239	/* Data banks will never have instructions */
240	if (addr >= BOOT_ROM_START + BOOT_ROM_LENGTH && addr < L1_CODE_START)
241		return false;
242
243	if (!get_mem16(&opcode0, address))
244		return false;
245
246	/* was this a 32-bit instruction? If so, get the next 16 bits */
247	if ((opcode0 & 0xc000) == 0xc000) {
248		if (!get_mem16(&opcode1, address + 1))
249			return false;
250		*val = (opcode0 << 16) + opcode1;
251	} else
252		*val = opcode0;
253
254	return true;
255}
256
257#if defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
258/*
259 * decode the instruction if we are printing out the trace, as it
260 * makes things easier to follow, without running it through objdump
261 * Decode the change of flow, and the common load/store instructions
262 * which are the main cause for faults, and discontinuities in the trace
263 * buffer.
264 */
265
266#define ProgCtrl_opcode         0x0000
267#define ProgCtrl_poprnd_bits    0
268#define ProgCtrl_poprnd_mask    0xf
269#define ProgCtrl_prgfunc_bits   4
270#define ProgCtrl_prgfunc_mask   0xf
271#define ProgCtrl_code_bits      8
272#define ProgCtrl_code_mask      0xff
273
274static void decode_ProgCtrl_0(unsigned int opcode)
275{
276	int poprnd  = ((opcode >> ProgCtrl_poprnd_bits) & ProgCtrl_poprnd_mask);
277	int prgfunc = ((opcode >> ProgCtrl_prgfunc_bits) & ProgCtrl_prgfunc_mask);
278
279	if (prgfunc == 0 && poprnd == 0)
280		pr_cont("NOP");
281	else if (prgfunc == 1 && poprnd == 0)
282		pr_cont("RTS");
283	else if (prgfunc == 1 && poprnd == 1)
284		pr_cont("RTI");
285	else if (prgfunc == 1 && poprnd == 2)
286		pr_cont("RTX");
287	else if (prgfunc == 1 && poprnd == 3)
288		pr_cont("RTN");
289	else if (prgfunc == 1 && poprnd == 4)
290		pr_cont("RTE");
291	else if (prgfunc == 2 && poprnd == 0)
292		pr_cont("IDLE");
293	else if (prgfunc == 2 && poprnd == 3)
294		pr_cont("CSYNC");
295	else if (prgfunc == 2 && poprnd == 4)
296		pr_cont("SSYNC");
297	else if (prgfunc == 2 && poprnd == 5)
298		pr_cont("EMUEXCPT");
299	else if (prgfunc == 3)
300		pr_cont("CLI R%i", poprnd);
301	else if (prgfunc == 4)
302		pr_cont("STI R%i", poprnd);
303	else if (prgfunc == 5)
304		pr_cont("JUMP (P%i)", poprnd);
305	else if (prgfunc == 6)
306		pr_cont("CALL (P%i)", poprnd);
307	else if (prgfunc == 7)
308		pr_cont("CALL (PC + P%i)", poprnd);
309	else if (prgfunc == 8)
310		pr_cont("JUMP (PC + P%i", poprnd);
311	else if (prgfunc == 9)
312		pr_cont("RAISE %i", poprnd);
313	else if (prgfunc == 10)
314		pr_cont("EXCPT %i", poprnd);
315	else
316		pr_cont("0x%04x", opcode);
317
318}
319
320#define BRCC_opcode             0x1000
321#define BRCC_offset_bits        0
322#define BRCC_offset_mask        0x3ff
323#define BRCC_B_bits             10
324#define BRCC_B_mask             0x1
325#define BRCC_T_bits             11
326#define BRCC_T_mask             0x1
327#define BRCC_code_bits          12
328#define BRCC_code_mask          0xf
329
330static void decode_BRCC_0(unsigned int opcode)
331{
332	int B = ((opcode >> BRCC_B_bits) & BRCC_B_mask);
333	int T = ((opcode >> BRCC_T_bits) & BRCC_T_mask);
334
335	pr_cont("IF %sCC JUMP pcrel %s", T ? "" : "!", B ? "(BP)" : "");
336}
337
338#define CALLa_opcode    0xe2000000
339#define CALLa_addr_bits 0
340#define CALLa_addr_mask 0xffffff
341#define CALLa_S_bits    24
342#define CALLa_S_mask    0x1
343#define CALLa_code_bits 25
344#define CALLa_code_mask 0x7f
345
346static void decode_CALLa_0(unsigned int opcode)
347{
348	int S   = ((opcode >> (CALLa_S_bits - 16)) & CALLa_S_mask);
349
350	if (S)
351		pr_cont("CALL pcrel");
352	else
353		pr_cont("JUMP.L");
354}
355
356#define LoopSetup_opcode                0xe0800000
357#define LoopSetup_eoffset_bits          0
358#define LoopSetup_eoffset_mask          0x3ff
359#define LoopSetup_dontcare_bits         10
360#define LoopSetup_dontcare_mask         0x3
361#define LoopSetup_reg_bits              12
362#define LoopSetup_reg_mask              0xf
363#define LoopSetup_soffset_bits          16
364#define LoopSetup_soffset_mask          0xf
365#define LoopSetup_c_bits                20
366#define LoopSetup_c_mask                0x1
367#define LoopSetup_rop_bits              21
368#define LoopSetup_rop_mask              0x3
369#define LoopSetup_code_bits             23
370#define LoopSetup_code_mask             0x1ff
371
372static void decode_LoopSetup_0(unsigned int opcode)
373{
374	int c   = ((opcode >> LoopSetup_c_bits)   & LoopSetup_c_mask);
375	int reg = ((opcode >> LoopSetup_reg_bits) & LoopSetup_reg_mask);
376	int rop = ((opcode >> LoopSetup_rop_bits) & LoopSetup_rop_mask);
377
378	pr_cont("LSETUP <> LC%i", c);
379	if ((rop & 1) == 1)
380		pr_cont("= P%i", reg);
381	if ((rop & 2) == 2)
382		pr_cont(" >> 0x1");
383}
384
385#define DspLDST_opcode          0x9c00
386#define DspLDST_reg_bits        0
387#define DspLDST_reg_mask        0x7
388#define DspLDST_i_bits          3
389#define DspLDST_i_mask          0x3
390#define DspLDST_m_bits          5
391#define DspLDST_m_mask          0x3
392#define DspLDST_aop_bits        7
393#define DspLDST_aop_mask        0x3
394#define DspLDST_W_bits          9
395#define DspLDST_W_mask          0x1
396#define DspLDST_code_bits       10
397#define DspLDST_code_mask       0x3f
398
399static void decode_dspLDST_0(unsigned int opcode)
400{
401	int i   = ((opcode >> DspLDST_i_bits) & DspLDST_i_mask);
402	int m   = ((opcode >> DspLDST_m_bits) & DspLDST_m_mask);
403	int W   = ((opcode >> DspLDST_W_bits) & DspLDST_W_mask);
404	int aop = ((opcode >> DspLDST_aop_bits) & DspLDST_aop_mask);
405	int reg = ((opcode >> DspLDST_reg_bits) & DspLDST_reg_mask);
406
407	if (W == 0) {
408		pr_cont("R%i", reg);
409		switch (m) {
410		case 0:
411			pr_cont(" = ");
412			break;
413		case 1:
414			pr_cont(".L = ");
415			break;
416		case 2:
417			pr_cont(".W = ");
418			break;
419		}
420	}
421
422	pr_cont("[ I%i", i);
423
424	switch (aop) {
425	case 0:
426		pr_cont("++ ]");
427		break;
428	case 1:
429		pr_cont("-- ]");
430		break;
431	}
432
433	if (W == 1) {
434		pr_cont(" = R%i", reg);
435		switch (m) {
436		case 1:
437			pr_cont(".L = ");
438			break;
439		case 2:
440			pr_cont(".W = ");
441			break;
442		}
443	}
444}
445
446#define LDST_opcode             0x9000
447#define LDST_reg_bits           0
448#define LDST_reg_mask           0x7
449#define LDST_ptr_bits           3
450#define LDST_ptr_mask           0x7
451#define LDST_Z_bits             6
452#define LDST_Z_mask             0x1
453#define LDST_aop_bits           7
454#define LDST_aop_mask           0x3
455#define LDST_W_bits             9
456#define LDST_W_mask             0x1
457#define LDST_sz_bits            10
458#define LDST_sz_mask            0x3
459#define LDST_code_bits          12
460#define LDST_code_mask          0xf
461
462static void decode_LDST_0(unsigned int opcode)
463{
464	int Z   = ((opcode >> LDST_Z_bits) & LDST_Z_mask);
465	int W   = ((opcode >> LDST_W_bits) & LDST_W_mask);
466	int sz  = ((opcode >> LDST_sz_bits) & LDST_sz_mask);
467	int aop = ((opcode >> LDST_aop_bits) & LDST_aop_mask);
468	int reg = ((opcode >> LDST_reg_bits) & LDST_reg_mask);
469	int ptr = ((opcode >> LDST_ptr_bits) & LDST_ptr_mask);
470
471	if (W == 0)
472		pr_cont("%s%i = ", (sz == 0 && Z == 1) ? "P" : "R", reg);
473
474	switch (sz) {
475	case 1:
476		pr_cont("W");
477		break;
478	case 2:
479		pr_cont("B");
480		break;
481	}
482
483	pr_cont("[P%i", ptr);
484
485	switch (aop) {
486	case 0:
487		pr_cont("++");
488		break;
489	case 1:
490		pr_cont("--");
491		break;
492	}
493	pr_cont("]");
494
495	if (W == 1)
496		pr_cont(" = %s%i ", (sz == 0 && Z == 1) ? "P" : "R", reg);
497
498	if (sz) {
499		if (Z)
500			pr_cont(" (X)");
501		else
502			pr_cont(" (Z)");
503	}
504}
505
506#define LDSTii_opcode           0xa000
507#define LDSTii_reg_bit          0
508#define LDSTii_reg_mask         0x7
509#define LDSTii_ptr_bit          3
510#define LDSTii_ptr_mask         0x7
511#define LDSTii_offset_bit       6
512#define LDSTii_offset_mask      0xf
513#define LDSTii_op_bit           10
514#define LDSTii_op_mask          0x3
515#define LDSTii_W_bit            12
516#define LDSTii_W_mask           0x1
517#define LDSTii_code_bit         13
518#define LDSTii_code_mask        0x7
519
520static void decode_LDSTii_0(unsigned int opcode)
521{
522	int reg = ((opcode >> LDSTii_reg_bit) & LDSTii_reg_mask);
523	int ptr = ((opcode >> LDSTii_ptr_bit) & LDSTii_ptr_mask);
524	int offset = ((opcode >> LDSTii_offset_bit) & LDSTii_offset_mask);
525	int op = ((opcode >> LDSTii_op_bit) & LDSTii_op_mask);
526	int W = ((opcode >> LDSTii_W_bit) & LDSTii_W_mask);
527
528	if (W == 0) {
529		pr_cont("%s%i = %s[P%i + %i]", op == 3 ? "R" : "P", reg,
530			op == 1 || op == 2 ? "" : "W", ptr, offset);
531		if (op == 2)
532			pr_cont("(Z)");
533		if (op == 3)
534			pr_cont("(X)");
535	} else {
536		pr_cont("%s[P%i + %i] = %s%i", op == 0 ? "" : "W", ptr,
537			offset, op == 3 ? "P" : "R", reg);
538	}
539}
540
541#define LDSTidxI_opcode         0xe4000000
542#define LDSTidxI_offset_bits    0
543#define LDSTidxI_offset_mask    0xffff
544#define LDSTidxI_reg_bits       16
545#define LDSTidxI_reg_mask       0x7
546#define LDSTidxI_ptr_bits       19
547#define LDSTidxI_ptr_mask       0x7
548#define LDSTidxI_sz_bits        22
549#define LDSTidxI_sz_mask        0x3
550#define LDSTidxI_Z_bits         24
551#define LDSTidxI_Z_mask         0x1
552#define LDSTidxI_W_bits         25
553#define LDSTidxI_W_mask         0x1
554#define LDSTidxI_code_bits      26
555#define LDSTidxI_code_mask      0x3f
556
557static void decode_LDSTidxI_0(unsigned int opcode)
558{
559	int Z      = ((opcode >> LDSTidxI_Z_bits)      & LDSTidxI_Z_mask);
560	int W      = ((opcode >> LDSTidxI_W_bits)      & LDSTidxI_W_mask);
561	int sz     = ((opcode >> LDSTidxI_sz_bits)     & LDSTidxI_sz_mask);
562	int reg    = ((opcode >> LDSTidxI_reg_bits)    & LDSTidxI_reg_mask);
563	int ptr    = ((opcode >> LDSTidxI_ptr_bits)    & LDSTidxI_ptr_mask);
564	int offset = ((opcode >> LDSTidxI_offset_bits) & LDSTidxI_offset_mask);
565
566	if (W == 0)
567		pr_cont("%s%i = ", sz == 0 && Z == 1 ? "P" : "R", reg);
568
569	if (sz == 1)
570		pr_cont("W");
571	if (sz == 2)
572		pr_cont("B");
573
574	pr_cont("[P%i + %s0x%x]", ptr, offset & 0x20 ? "-" : "",
575		(offset & 0x1f) << 2);
576
577	if (W == 0 && sz != 0) {
578		if (Z)
579			pr_cont("(X)");
580		else
581			pr_cont("(Z)");
582	}
583
584	if (W == 1)
585		pr_cont("= %s%i", (sz == 0 && Z == 1) ? "P" : "R", reg);
586
587}
588
589static void decode_opcode(unsigned int opcode)
590{
591#ifdef CONFIG_BUG
592	if (opcode == BFIN_BUG_OPCODE)
593		pr_cont("BUG");
594	else
595#endif
596	if ((opcode & 0xffffff00) == ProgCtrl_opcode)
597		decode_ProgCtrl_0(opcode);
598	else if ((opcode & 0xfffff000) == BRCC_opcode)
599		decode_BRCC_0(opcode);
600	else if ((opcode & 0xfffff000) == 0x2000)
601		pr_cont("JUMP.S");
602	else if ((opcode & 0xfe000000) == CALLa_opcode)
603		decode_CALLa_0(opcode);
604	else if ((opcode & 0xff8000C0) == LoopSetup_opcode)
605		decode_LoopSetup_0(opcode);
606	else if ((opcode & 0xfffffc00) == DspLDST_opcode)
607		decode_dspLDST_0(opcode);
608	else if ((opcode & 0xfffff000) == LDST_opcode)
609		decode_LDST_0(opcode);
610	else if ((opcode & 0xffffe000) == LDSTii_opcode)
611		decode_LDSTii_0(opcode);
612	else if ((opcode & 0xfc000000) == LDSTidxI_opcode)
613		decode_LDSTidxI_0(opcode);
614	else if (opcode & 0xffff0000)
615		pr_cont("0x%08x", opcode);
616	else
617		pr_cont("0x%04x", opcode);
618}
619
620#define BIT_MULTI_INS 0x08000000
621static void decode_instruction(unsigned short *address)
622{
623	unsigned int opcode;
624
625	if (!get_instruction(&opcode, address))
626		return;
627
628	decode_opcode(opcode);
629
630	/* If things are a 32-bit instruction, it has the possibility of being
631	 * a multi-issue instruction (a 32-bit, and 2 16 bit instrucitions)
632	 * This test collidates with the unlink instruction, so disallow that
633	 */
634	if ((opcode & 0xc0000000) == 0xc0000000 &&
635	    (opcode & BIT_MULTI_INS) &&
636	    (opcode & 0xe8000000) != 0xe8000000) {
637		pr_cont(" || ");
638		if (!get_instruction(&opcode, address + 2))
639			return;
640		decode_opcode(opcode);
641		pr_cont(" || ");
642		if (!get_instruction(&opcode, address + 3))
643			return;
644		decode_opcode(opcode);
645	}
646}
647#endif
648
649void dump_bfin_trace_buffer(void)
650{
651#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
652	int tflags, i = 0, fault = 0;
653	char buf[150];
654	unsigned short *addr;
655	unsigned int cpu = raw_smp_processor_id();
656#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
657	int j, index;
658#endif
659
660	trace_buffer_save(tflags);
661
662	pr_notice("Hardware Trace:\n");
663
664#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
665	pr_notice("WARNING: Expanded trace turned on - can not trace exceptions\n");
666#endif
667
668	if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
669		for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
670			addr = (unsigned short *)bfin_read_TBUF();
671			decode_address(buf, (unsigned long)addr);
672			pr_notice("%4i Target : %s\n", i, buf);
673			/* Normally, the faulting instruction doesn't go into
674			 * the trace buffer, (since it doesn't commit), so
675			 * we print out the fault address here
676			 */
677			if (!fault && addr == ((unsigned short *)evt_ivhw)) {
678				addr = (unsigned short *)bfin_read_TBUF();
679				decode_address(buf, (unsigned long)addr);
680				pr_notice("      FAULT : %s ", buf);
681				decode_instruction(addr);
682				pr_cont("\n");
683				fault = 1;
684				continue;
685			}
686			if (!fault && addr == (unsigned short *)trap &&
687				(cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE) > VEC_EXCPT15) {
688				decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
689				pr_notice("      FAULT : %s ", buf);
690				decode_instruction((unsigned short *)cpu_pda[cpu].icplb_fault_addr);
691				pr_cont("\n");
692				fault = 1;
693			}
694			addr = (unsigned short *)bfin_read_TBUF();
695			decode_address(buf, (unsigned long)addr);
696			pr_notice("     Source : %s ", buf);
697			decode_instruction(addr);
698			pr_cont("\n");
699		}
700	}
701
702#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
703	if (trace_buff_offset)
704		index = trace_buff_offset / 4;
705	else
706		index = EXPAND_LEN;
707
708	j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
709	while (j) {
710		decode_address(buf, software_trace_buff[index]);
711		pr_notice("%4i Target : %s\n", i, buf);
712		index -= 1;
713		if (index < 0)
714			index = EXPAND_LEN;
715		decode_address(buf, software_trace_buff[index]);
716		pr_notice("     Source : %s ", buf);
717		decode_instruction((unsigned short *)software_trace_buff[index]);
718		pr_cont("\n");
719		index -= 1;
720		if (index < 0)
721			index = EXPAND_LEN;
722		j--;
723		i++;
724	}
725#endif
726
727	trace_buffer_restore(tflags);
728#endif
729}
730EXPORT_SYMBOL(dump_bfin_trace_buffer);
731
732void dump_bfin_process(struct pt_regs *fp)
733{
734	/* We should be able to look at fp->ipend, but we don't push it on the
735	 * stack all the time, so do this until we fix that */
736	unsigned int context = bfin_read_IPEND();
737
738	if (oops_in_progress)
739		pr_emerg("Kernel OOPS in progress\n");
740
741	if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
742		pr_notice("HW Error context\n");
743	else if (context & 0x0020)
744		pr_notice("Deferred Exception context\n");
745	else if (context & 0x3FC0)
746		pr_notice("Interrupt context\n");
747	else if (context & 0x4000)
748		pr_notice("Deferred Interrupt context\n");
749	else if (context & 0x8000)
750		pr_notice("Kernel process context\n");
751
752	/* Because we are crashing, and pointers could be bad, we check things
753	 * pretty closely before we use them
754	 */
755	if ((unsigned long)current >= FIXED_CODE_START &&
756	    !((unsigned long)current & 0x3) && current->pid) {
757		pr_notice("CURRENT PROCESS:\n");
758		if (current->comm >= (char *)FIXED_CODE_START)
759			pr_notice("COMM=%s PID=%d",
760				current->comm, current->pid);
761		else
762			pr_notice("COMM= invalid");
763
764		pr_cont("  CPU=%d\n", current_thread_info()->cpu);
765		if (!((unsigned long)current->mm & 0x3) &&
766			(unsigned long)current->mm >= FIXED_CODE_START) {
767			pr_notice("TEXT = 0x%p-0x%p        DATA = 0x%p-0x%p\n",
768				(void *)current->mm->start_code,
769				(void *)current->mm->end_code,
770				(void *)current->mm->start_data,
771				(void *)current->mm->end_data);
772			pr_notice(" BSS = 0x%p-0x%p  USER-STACK = 0x%p\n\n",
773				(void *)current->mm->end_data,
774				(void *)current->mm->brk,
775				(void *)current->mm->start_stack);
776		} else
777			pr_notice("invalid mm\n");
778	} else
779		pr_notice("No Valid process in current context\n");
780}
781
782void dump_bfin_mem(struct pt_regs *fp)
783{
784	unsigned short *addr, *erraddr, val = 0, err = 0;
785	char sti = 0, buf[6];
786
787	erraddr = (void *)fp->pc;
788
789	pr_notice("return address: [0x%p]; contents of:", erraddr);
790
791	for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
792	     addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
793	     addr++) {
794		if (!((unsigned long)addr & 0xF))
795			pr_notice("0x%p: ", addr);
796
797		if (!get_mem16(&val, addr)) {
798				val = 0;
799				sprintf(buf, "????");
800		} else
801			sprintf(buf, "%04x", val);
802
803		if (addr == erraddr) {
804			pr_cont("[%s]", buf);
805			err = val;
806		} else
807			pr_cont(" %s ", buf);
808
809		/* Do any previous instructions turn on interrupts? */
810		if (addr <= erraddr &&				/* in the past */
811		    ((val >= 0x0040 && val <= 0x0047) ||	/* STI instruction */
812		      val == 0x017b))				/* [SP++] = RETI */
813			sti = 1;
814	}
815
816	pr_cont("\n");
817
818	/* Hardware error interrupts can be deferred */
819	if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
820	    oops_in_progress)){
821		pr_notice("Looks like this was a deferred error - sorry\n");
822#ifndef CONFIG_DEBUG_HWERR
823		pr_notice("The remaining message may be meaningless\n");
824		pr_notice("You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n");
825#else
826		/* If we are handling only one peripheral interrupt
827		 * and current mm and pid are valid, and the last error
828		 * was in that user space process's text area
829		 * print it out - because that is where the problem exists
830		 */
831		if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
832		     (current->pid && current->mm)) {
833			/* And the last RETI points to the current userspace context */
834			if ((fp + 1)->pc >= current->mm->start_code &&
835			    (fp + 1)->pc <= current->mm->end_code) {
836				pr_notice("It might be better to look around here :\n");
837				pr_notice("-------------------------------------------\n");
838				show_regs(fp + 1);
839				pr_notice("-------------------------------------------\n");
840			}
841		}
842#endif
843	}
844}
845
846void show_regs(struct pt_regs *fp)
847{
848	char buf[150];
849	struct irqaction *action;
850	unsigned int i;
851	unsigned long flags = 0;
852	unsigned int cpu = raw_smp_processor_id();
853	unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
854
855	pr_notice("\n");
856	show_regs_print_info(KERN_NOTICE);
857
858	if (CPUID != bfin_cpuid())
859		pr_notice("Compiled for cpu family 0x%04x (Rev %d), "
860			"but running on:0x%04x (Rev %d)\n",
861			CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid());
862
863	pr_notice("ADSP-%s-0.%d",
864		CPU, bfin_compiled_revid());
865
866	if (bfin_compiled_revid() !=  bfin_revid())
867		pr_cont("(Detected 0.%d)", bfin_revid());
868
869	pr_cont(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n",
870		get_cclk()/1000000, get_sclk()/1000000,
871#ifdef CONFIG_MPU
872		"mpu on"
873#else
874		"mpu off"
875#endif
876		);
877
878	pr_notice("%s", linux_banner);
879
880	pr_notice("\nSEQUENCER STATUS:\t\t%s\n", print_tainted());
881	pr_notice(" SEQSTAT: %08lx  IPEND: %04lx  IMASK: %04lx  SYSCFG: %04lx\n",
882		(long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg);
883	if (fp->ipend & EVT_IRPTEN)
884		pr_notice("  Global Interrupts Disabled (IPEND[4])\n");
885	if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 |
886			EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR)))
887		pr_notice("  Peripheral interrupts masked off\n");
888	if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14)))
889		pr_notice("  Kernel interrupts masked off\n");
890	if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
891		pr_notice("  HWERRCAUSE: 0x%lx\n",
892			(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
893#ifdef EBIU_ERRMST
894		/* If the error was from the EBIU, print it out */
895		if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
896			pr_notice("  EBIU Error Reason  : 0x%04x\n",
897				bfin_read_EBIU_ERRMST());
898			pr_notice("  EBIU Error Address : 0x%08x\n",
899				bfin_read_EBIU_ERRADD());
900		}
901#endif
902	}
903	pr_notice("  EXCAUSE   : 0x%lx\n",
904		fp->seqstat & SEQSTAT_EXCAUSE);
905	for (i = 2; i <= 15 ; i++) {
906		if (fp->ipend & (1 << i)) {
907			if (i != 4) {
908				decode_address(buf, bfin_read32(EVT0 + 4*i));
909				pr_notice("  physical IVG%i asserted : %s\n", i, buf);
910			} else
911				pr_notice("  interrupts disabled\n");
912		}
913	}
914
915	/* if no interrupts are going off, don't print this out */
916	if (fp->ipend & ~0x3F) {
917		for (i = 0; i < (NR_IRQS - 1); i++) {
918			struct irq_desc *desc = irq_to_desc(i);
919			if (!in_atomic)
920				raw_spin_lock_irqsave(&desc->lock, flags);
921
922			action = desc->action;
923			if (!action)
924				goto unlock;
925
926			decode_address(buf, (unsigned int)action->handler);
927			pr_notice("  logical irq %3d mapped  : %s", i, buf);
928			for (action = action->next; action; action = action->next) {
929				decode_address(buf, (unsigned int)action->handler);
930				pr_cont(", %s", buf);
931			}
932			pr_cont("\n");
933unlock:
934			if (!in_atomic)
935				raw_spin_unlock_irqrestore(&desc->lock, flags);
936		}
937	}
938
939	decode_address(buf, fp->rete);
940	pr_notice(" RETE: %s\n", buf);
941	decode_address(buf, fp->retn);
942	pr_notice(" RETN: %s\n", buf);
943	decode_address(buf, fp->retx);
944	pr_notice(" RETX: %s\n", buf);
945	decode_address(buf, fp->rets);
946	pr_notice(" RETS: %s\n", buf);
947	decode_address(buf, fp->pc);
948	pr_notice(" PC  : %s\n", buf);
949
950	if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) &&
951	    (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
952		decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
953		pr_notice("DCPLB_FAULT_ADDR: %s\n", buf);
954		decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
955		pr_notice("ICPLB_FAULT_ADDR: %s\n", buf);
956	}
957
958	pr_notice("PROCESSOR STATE:\n");
959	pr_notice(" R0 : %08lx    R1 : %08lx    R2 : %08lx    R3 : %08lx\n",
960		fp->r0, fp->r1, fp->r2, fp->r3);
961	pr_notice(" R4 : %08lx    R5 : %08lx    R6 : %08lx    R7 : %08lx\n",
962		fp->r4, fp->r5, fp->r6, fp->r7);
963	pr_notice(" P0 : %08lx    P1 : %08lx    P2 : %08lx    P3 : %08lx\n",
964		fp->p0, fp->p1, fp->p2, fp->p3);
965	pr_notice(" P4 : %08lx    P5 : %08lx    FP : %08lx    SP : %08lx\n",
966		fp->p4, fp->p5, fp->fp, (long)fp);
967	pr_notice(" LB0: %08lx    LT0: %08lx    LC0: %08lx\n",
968		fp->lb0, fp->lt0, fp->lc0);
969	pr_notice(" LB1: %08lx    LT1: %08lx    LC1: %08lx\n",
970		fp->lb1, fp->lt1, fp->lc1);
971	pr_notice(" B0 : %08lx    L0 : %08lx    M0 : %08lx    I0 : %08lx\n",
972		fp->b0, fp->l0, fp->m0, fp->i0);
973	pr_notice(" B1 : %08lx    L1 : %08lx    M1 : %08lx    I1 : %08lx\n",
974		fp->b1, fp->l1, fp->m1, fp->i1);
975	pr_notice(" B2 : %08lx    L2 : %08lx    M2 : %08lx    I2 : %08lx\n",
976		fp->b2, fp->l2, fp->m2, fp->i2);
977	pr_notice(" B3 : %08lx    L3 : %08lx    M3 : %08lx    I3 : %08lx\n",
978		fp->b3, fp->l3, fp->m3, fp->i3);
979	pr_notice("A0.w: %08lx   A0.x: %08lx   A1.w: %08lx   A1.x: %08lx\n",
980		fp->a0w, fp->a0x, fp->a1w, fp->a1x);
981
982	pr_notice("USP : %08lx  ASTAT: %08lx\n",
983		rdusp(), fp->astat);
984
985	pr_notice("\n");
986}
987