1/*!**************************************************************************
2*!
3*! FILE NAME  : kgdb.c
4*!
5*! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6*!              It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7*!
8*!---------------------------------------------------------------------------
9*! HISTORY
10*!
11*! DATE         NAME            CHANGES
12*! ----         ----            -------
13*! Apr 26 1999  Hendrik Ruijter Initial version.
14*! May  6 1999  Hendrik Ruijter Removed call to strlen in libc and removed
15*!                              struct assignment as it generates calls to
16*!                              memcpy in libc.
17*! Jun 17 1999  Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18*! Jul 21 1999  Bjorn Wesen     eLinux port
19*!
20*!---------------------------------------------------------------------------
21*!
22*! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23*!
24*!**************************************************************************/
25/* @(#) cris_stub.c 1.3 06/17/99 */
26
27/*
28 *  kgdb usage notes:
29 *  -----------------
30 *
31 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32 * built with different gcc flags: "-g" is added to get debug infos, and
33 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35 * before compresion. Such a kernel will behave just as usually, except if
36 * given a "debug=<device>" command line option. (Only serial devices are
37 * allowed for <device>, i.e. no printers or the like; possible values are
38 * machine depedend and are the same as for the usual debug device, the one
39 * for logging kernel messages.) If that option is given and the device can be
40 * initialized, the kernel will connect to the remote gdb in trap_init(). The
41 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42 * implementation.
43 *
44 * To start a debugging session, start that gdb with the debugging kernel
45 * image (the one with the symbols, vmlinux.debug) named on the command line.
46 * This file will be used by gdb to get symbol and debugging infos about the
47 * kernel. Next, select remote debug mode by
48 *    target remote <device>
49 * where <device> is the name of the serial device over which the debugged
50 * machine is connected. Maybe you have to adjust the baud rate by
51 *    set remotebaud <rate>
52 * or also other parameters with stty:
53 *    shell stty ... </dev/...
54 * If the kernel to debug has already booted, it waited for gdb and now
55 * connects, and you'll see a breakpoint being reported. If the kernel isn't
56 * running yet, start it now. The order of gdb and the kernel doesn't matter.
57 * Another thing worth knowing about in the getting-started phase is how to
58 * debug the remote protocol itself. This is activated with
59 *    set remotedebug 1
60 * gdb will then print out each packet sent or received. You'll also get some
61 * messages about the gdb stub on the console of the debugged machine.
62 *
63 * If all that works, you can use lots of the usual debugging techniques on
64 * the kernel, e.g. inspecting and changing variables/memory, setting
65 * breakpoints, single stepping and so on. It's also possible to interrupt the
66 * debugged kernel by pressing C-c in gdb. Have fun! :-)
67 *
68 * The gdb stub is entered (and thus the remote gdb gets control) in the
69 * following situations:
70 *
71 *  - If breakpoint() is called. This is just after kgdb initialization, or if
72 *    a breakpoint() call has been put somewhere into the kernel source.
73 *    (Breakpoints can of course also be set the usual way in gdb.)
74 *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75 *
76 *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77 *    are entered. All the CPU exceptions are mapped to (more or less..., see
78 *    the hard_trap_info array below) appropriate signal, which are reported
79 *    to gdb. die_if_kernel() is usually called after some kind of access
80 *    error and thus is reported as SIGSEGV.
81 *
82 *  - When panic() is called. This is reported as SIGABRT.
83 *
84 *  - If C-c is received over the serial line, which is treated as
85 *    SIGINT.
86 *
87 * Of course, all these signals are just faked for gdb, since there is no
88 * signal concept as such for the kernel. It also isn't possible --obviously--
89 * to set signal handlers from inside gdb, or restart the kernel with a
90 * signal.
91 *
92 * Current limitations:
93 *
94 *  - While the kernel is stopped, interrupts are disabled for safety reasons
95 *    (i.e., variables not changing magically or the like). But this also
96 *    means that the clock isn't running anymore, and that interrupts from the
97 *    hardware may get lost/not be served in time. This can cause some device
98 *    errors...
99 *
100 *  - When single-stepping, only one instruction of the current thread is
101 *    executed, but interrupts are allowed for that time and will be serviced
102 *    if pending. Be prepared for that.
103 *
104 *  - All debugging happens in kernel virtual address space. There's no way to
105 *    access physical memory not mapped in kernel space, or to access user
106 *    space. A way to work around this is using get_user_long & Co. in gdb
107 *    expressions, but only for the current process.
108 *
109 *  - Interrupting the kernel only works if interrupts are currently allowed,
110 *    and the interrupt of the serial line isn't blocked by some other means
111 *    (IPL too high, disabled, ...)
112 *
113 *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
114 *    (e.g. accessing invalid memory) may not be caught correctly. This could
115 *    be removed in future by introducing a stack of struct registers.
116 *
117 */
118
119/*
120 *  To enable debugger support, two things need to happen.  One, a
121 *  call to kgdb_init() is necessary in order to allow any breakpoints
122 *  or error conditions to be properly intercepted and reported to gdb.
123 *  Two, a breakpoint needs to be generated to begin communication.  This
124 *  is most easily accomplished by a call to breakpoint().
125 *
126 *    The following gdb commands are supported:
127 *
128 * command          function                               Return value
129 *
130 *    g             return the value of the CPU registers  hex data or ENN
131 *    G             set the value of the CPU registers     OK or ENN
132 *
133 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
134 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
135 *
136 *    c             Resume at current address              SNN   ( signal NN)
137 *    cAA..AA       Continue at address AA..AA             SNN
138 *
139 *    s             Step one instruction                   SNN
140 *    sAA..AA       Step one instruction from AA..AA       SNN
141 *
142 *    k             kill
143 *
144 *    ?             What was the last sigval ?             SNN   (signal NN)
145 *
146 *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
147 *							   baud rate
148 *
149 * All commands and responses are sent with a packet which includes a
150 * checksum.  A packet consists of
151 *
152 * $<packet info>#<checksum>.
153 *
154 * where
155 * <packet info> :: <characters representing the command or response>
156 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157 *
158 * When a packet is received, it is first acknowledged with either '+' or '-'.
159 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
160 *
161 * Example:
162 *
163 * Host:                  Reply:
164 * $m0,10#2a               +$00010203040506070809101112131415#42
165 *
166 */
167
168
169#include <linux/string.h>
170#include <linux/signal.h>
171#include <linux/kernel.h>
172#include <linux/delay.h>
173#include <linux/linkage.h>
174#include <linux/reboot.h>
175
176#include <asm/setup.h>
177#include <asm/ptrace.h>
178
179#include <arch/svinto.h>
180#include <asm/irq.h>
181
182static int kgdb_started = 0;
183
184/********************************* Register image ****************************/
185/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186   Reference", p. 1-1, with the additional register definitions of the
187   ETRAX 100LX in cris-opc.h.
188   There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189   pointer, SP, and R15 is the program counter, PC.
190   There are 16 special registers, P0-P15, where three of the unimplemented
191   registers, P0, P4 and P8, are reserved as zero-registers. A read from
192   any of these registers returns zero and a write has no effect. */
193
194typedef
195struct register_image
196{
197	/* Offset */
198	unsigned int     r0;   /* 0x00 */
199	unsigned int     r1;   /* 0x04 */
200	unsigned int     r2;   /* 0x08 */
201	unsigned int     r3;   /* 0x0C */
202	unsigned int     r4;   /* 0x10 */
203	unsigned int     r5;   /* 0x14 */
204	unsigned int     r6;   /* 0x18 */
205	unsigned int     r7;   /* 0x1C */
206	unsigned int     r8;   /* 0x20 Frame pointer */
207	unsigned int     r9;   /* 0x24 */
208	unsigned int    r10;   /* 0x28 */
209	unsigned int    r11;   /* 0x2C */
210	unsigned int    r12;   /* 0x30 */
211	unsigned int    r13;   /* 0x34 */
212	unsigned int     sp;   /* 0x38 Stack pointer */
213	unsigned int     pc;   /* 0x3C Program counter */
214
215        unsigned char    p0;   /* 0x40 8-bit zero-register */
216	unsigned char    vr;   /* 0x41 Version register */
217
218        unsigned short   p4;   /* 0x42 16-bit zero-register */
219	unsigned short  ccr;   /* 0x44 Condition code register */
220
221	unsigned int    mof;   /* 0x46 Multiply overflow register */
222
223        unsigned int     p8;   /* 0x4A 32-bit zero-register */
224	unsigned int    ibr;   /* 0x4E Interrupt base register */
225	unsigned int    irp;   /* 0x52 Interrupt return pointer */
226	unsigned int    srp;   /* 0x56 Subroutine return pointer */
227	unsigned int    bar;   /* 0x5A Breakpoint address register */
228	unsigned int   dccr;   /* 0x5E Double condition code register */
229	unsigned int    brp;   /* 0x62 Breakpoint return pointer (pc in caller) */
230	unsigned int    usp;   /* 0x66 User mode stack pointer */
231} registers;
232
233/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
234int getDebugChar (void);
235
236/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
237void putDebugChar (int val);
238
239void enableDebugIRQ (void);
240
241/******************** Prototypes for global functions. ***********************/
242
243/* The string str is prepended with the GDB printout token and sent. */
244void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
245
246/* The hook for both static (compiled) and dynamic breakpoints set by GDB.
247   ETRAX 100 specific. */
248void handle_breakpoint (void);                          /* used by irq.c */
249
250/* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
251void handle_interrupt (void);                           /* used by irq.c */
252
253/* A static breakpoint to be used at startup. */
254void breakpoint (void);                                 /* called by init/main.c */
255
256/* From osys_int.c, executing_task contains the number of the current
257   executing task in osys. Does not know of object-oriented threads. */
258extern unsigned char executing_task;
259
260/* The number of characters used for a 64 bit thread identifier. */
261#define HEXCHARS_IN_THREAD_ID 16
262
263/********************************** Packet I/O ******************************/
264/* BUFMAX defines the maximum number of characters in
265   inbound/outbound buffers */
266#define BUFMAX 512
267
268/* Run-length encoding maximum length. Send 64 at most. */
269#define RUNLENMAX 64
270
271/* The inbound/outbound buffers used in packet I/O */
272static char remcomInBuffer[BUFMAX];
273static char remcomOutBuffer[BUFMAX];
274
275/* Error and warning messages. */
276enum error_type
277{
278	SUCCESS, E01, E02, E03, E04, E05, E06, E07
279};
280static char *error_message[] =
281{
282	"",
283	"E01 Set current or general thread - H[c,g] - internal error.",
284	"E02 Change register content - P - cannot change read-only register.",
285	"E03 Thread is not alive.", /* T, not used. */
286	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
287	"E05 Change register content - P - the register is not implemented..",
288	"E06 Change memory content - M - internal error.",
289	"E07 Change register content - P - the register is not stored on the stack"
290};
291/********************************* Register image ****************************/
292/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
293   Reference", p. 1-1, with the additional register definitions of the
294   ETRAX 100LX in cris-opc.h.
295   There are 16 general 32-bit registers, R0-R15, where R14 is the stack
296   pointer, SP, and R15 is the program counter, PC.
297   There are 16 special registers, P0-P15, where three of the unimplemented
298   registers, P0, P4 and P8, are reserved as zero-registers. A read from
299   any of these registers returns zero and a write has no effect. */
300enum register_name
301{
302	R0,  R1,   R2,  R3,
303	R4,  R5,   R6,  R7,
304	R8,  R9,   R10, R11,
305	R12, R13,  SP,  PC,
306	P0,  VR,   P2,  P3,
307	P4,  CCR,  P6,  MOF,
308	P8,  IBR,  IRP, SRP,
309	BAR, DCCR, BRP, USP
310};
311
312/* The register sizes of the registers in register_name. An unimplemented register
313   is designated by size 0 in this array. */
314static int register_size[] =
315{
316	4, 4, 4, 4,
317	4, 4, 4, 4,
318	4, 4, 4, 4,
319	4, 4, 4, 4,
320	1, 1, 0, 0,
321	2, 2, 0, 4,
322	4, 4, 4, 4,
323	4, 4, 4, 4
324};
325
326/* Contains the register image of the executing thread in the assembler
327   part of the code in order to avoid horrible addressing modes. */
328registers cris_reg;
329
330/* FIXME: Should this be used? Delete otherwise. */
331/* Contains the assumed consistency state of the register image. Uses the
332   enum error_type for state information. */
333static int consistency_status = SUCCESS;
334
335/********************************** Handle exceptions ************************/
336/* The variable cris_reg contains the register image associated with the
337   current_thread_c variable. It is a complete register image created at
338   entry. The reg_g contains a register image of a task where the general
339   registers are taken from the stack and all special registers are taken
340   from the executing task. It is associated with current_thread_g and used
341   in order to provide access mainly for 'g', 'G' and 'P'.
342*/
343
344/********************************** Breakpoint *******************************/
345/* Use an internal stack in the breakpoint and interrupt response routines */
346#define INTERNAL_STACK_SIZE 1024
347char internal_stack[INTERNAL_STACK_SIZE];
348
349/* Due to the breakpoint return pointer, a state variable is needed to keep
350   track of whether it is a static (compiled) or dynamic (gdb-invoked)
351   breakpoint to be handled. A static breakpoint uses the content of register
352   BRP as it is whereas a dynamic breakpoint requires subtraction with 2
353   in order to execute the instruction. The first breakpoint is static. */
354static unsigned char is_dyn_brkp = 0;
355
356/********************************* String library ****************************/
357/* Single-step over library functions creates trap loops. */
358
359/* Copy char s2[] to s1[]. */
360static char*
361gdb_cris_strcpy (char *s1, const char *s2)
362{
363	char *s = s1;
364
365	for (s = s1; (*s++ = *s2++) != '\0'; )
366		;
367	return (s1);
368}
369
370/* Find length of s[]. */
371static int
372gdb_cris_strlen (const char *s)
373{
374	const char *sc;
375
376	for (sc = s; *sc != '\0'; sc++)
377		;
378	return (sc - s);
379}
380
381/* Find first occurrence of c in s[n]. */
382static void*
383gdb_cris_memchr (const void *s, int c, int n)
384{
385	const unsigned char uc = c;
386	const unsigned char *su;
387
388	for (su = s; 0 < n; ++su, --n)
389		if (*su == uc)
390			return ((void *)su);
391	return (NULL);
392}
393/******************************* Standard library ****************************/
394/* Single-step over library functions creates trap loops. */
395/* Convert string to long. */
396static int
397gdb_cris_strtol (const char *s, char **endptr, int base)
398{
399	char *s1;
400	char *sd;
401	int x = 0;
402
403	for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
404		x = x * base + (sd - hex_asc);
405
406        if (endptr)
407        {
408                /* Unconverted suffix is stored in endptr unless endptr is NULL. */
409                *endptr = s1;
410        }
411
412	return x;
413}
414
415/********************************** Packet I/O ******************************/
416/* Returns the integer equivalent of a hexadecimal character. */
417static int
418hex (char ch)
419{
420	if ((ch >= 'a') && (ch <= 'f'))
421		return (ch - 'a' + 10);
422	if ((ch >= '0') && (ch <= '9'))
423		return (ch - '0');
424	if ((ch >= 'A') && (ch <= 'F'))
425		return (ch - 'A' + 10);
426	return (-1);
427}
428
429/* Convert the memory, pointed to by mem into hexadecimal representation.
430   Put the result in buf, and return a pointer to the last character
431   in buf (null). */
432
433static char *
434mem2hex(char *buf, unsigned char *mem, int count)
435{
436	int i;
437	int ch;
438
439        if (mem == NULL) {
440                /* Bogus read from m0. FIXME: What constitutes a valid address? */
441                for (i = 0; i < count; i++) {
442                        *buf++ = '0';
443                        *buf++ = '0';
444                }
445        } else {
446                /* Valid mem address. */
447                for (i = 0; i < count; i++) {
448                        ch = *mem++;
449			buf = hex_byte_pack(buf, ch);
450                }
451        }
452
453        /* Terminate properly. */
454	*buf = '\0';
455	return (buf);
456}
457
458/* Convert the array, in hexadecimal representation, pointed to by buf into
459   binary representation. Put the result in mem, and return a pointer to
460   the character after the last byte written. */
461static unsigned char*
462hex2mem (unsigned char *mem, char *buf, int count)
463{
464	int i;
465	unsigned char ch;
466	for (i = 0; i < count; i++) {
467		ch = hex (*buf++) << 4;
468		ch = ch + hex (*buf++);
469		*mem++ = ch;
470	}
471	return (mem);
472}
473
474/* Put the content of the array, in binary representation, pointed to by buf
475   into memory pointed to by mem, and return a pointer to the character after
476   the last byte written.
477   Gdb will escape $, #, and the escape char (0x7d). */
478static unsigned char*
479bin2mem (unsigned char *mem, unsigned char *buf, int count)
480{
481	int i;
482	unsigned char *next;
483	for (i = 0; i < count; i++) {
484		/* Check for any escaped characters. Be paranoid and
485		   only unescape chars that should be escaped. */
486		if (*buf == 0x7d) {
487			next = buf + 1;
488			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
489				{
490					buf++;
491					*buf += 0x20;
492				}
493		}
494		*mem++ = *buf++;
495	}
496	return (mem);
497}
498
499/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
500   returned. */
501static void
502getpacket (char *buffer)
503{
504	unsigned char checksum;
505	unsigned char xmitcsum;
506	int i;
507	int count;
508	char ch;
509	do {
510		while ((ch = getDebugChar ()) != '$')
511			/* Wait for the start character $ and ignore all other characters */;
512		checksum = 0;
513		xmitcsum = -1;
514		count = 0;
515		/* Read until a # or the end of the buffer is reached */
516		while (count < BUFMAX - 1) {
517			ch = getDebugChar ();
518			if (ch == '#')
519				break;
520			checksum = checksum + ch;
521			buffer[count] = ch;
522			count = count + 1;
523		}
524		buffer[count] = '\0';
525
526		if (ch == '#') {
527			xmitcsum = hex (getDebugChar ()) << 4;
528			xmitcsum += hex (getDebugChar ());
529			if (checksum != xmitcsum) {
530				/* Wrong checksum */
531				putDebugChar ('-');
532			}
533			else {
534				/* Correct checksum */
535				putDebugChar ('+');
536				/* If sequence characters are received, reply with them */
537				if (buffer[2] == ':') {
538					putDebugChar (buffer[0]);
539					putDebugChar (buffer[1]);
540					/* Remove the sequence characters from the buffer */
541					count = gdb_cris_strlen (buffer);
542					for (i = 3; i <= count; i++)
543						buffer[i - 3] = buffer[i];
544				}
545			}
546		}
547	} while (checksum != xmitcsum);
548}
549
550/* Send $<data>#<checksum> from the <data> in the array buffer. */
551
552static void
553putpacket(char *buffer)
554{
555	int checksum;
556	int runlen;
557	int encode;
558
559	do {
560		char *src = buffer;
561		putDebugChar ('$');
562		checksum = 0;
563		while (*src) {
564			/* Do run length encoding */
565			putDebugChar (*src);
566			checksum += *src;
567			runlen = 0;
568			while (runlen < RUNLENMAX && *src == src[runlen]) {
569				runlen++;
570			}
571			if (runlen > 3) {
572				/* Got a useful amount */
573				putDebugChar ('*');
574				checksum += '*';
575				encode = runlen + ' ' - 4;
576				putDebugChar (encode);
577				checksum += encode;
578				src += runlen;
579			}
580			else {
581				src++;
582			}
583		}
584		putDebugChar('#');
585		putDebugChar(hex_asc_hi(checksum));
586		putDebugChar(hex_asc_lo(checksum));
587	} while(kgdb_started && (getDebugChar() != '+'));
588}
589
590/* The string str is prepended with the GDB printout token and sent. Required
591   in traditional implementations. */
592void
593putDebugString (const unsigned char *str, int length)
594{
595        remcomOutBuffer[0] = 'O';
596        mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
597        putpacket(remcomOutBuffer);
598}
599
600/********************************* Register image ****************************/
601/* Write a value to a specified register in the register image of the current
602   thread. Returns status code SUCCESS, E02 or E05. */
603static int
604write_register (int regno, char *val)
605{
606	int status = SUCCESS;
607	registers *current_reg = &cris_reg;
608
609        if (regno >= R0 && regno <= PC) {
610		/* 32-bit register with simple offset. */
611		hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
612			 val, sizeof(unsigned int));
613	}
614        else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
615		/* Do not support read-only registers. */
616		status = E02;
617	}
618        else if (regno == CCR) {
619		/* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
620                   and P7 (MOF) is 32 bits in ETRAX 100LX. */
621		hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
622			 val, sizeof(unsigned short));
623	}
624	else if (regno >= MOF && regno <= USP) {
625		/* 32 bit register with complex offset.  (P8 has been taken care of.) */
626		hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
627			 val, sizeof(unsigned int));
628	}
629        else {
630		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
631		status = E05;
632	}
633	return status;
634}
635
636/* Read a value from a specified register in the register image. Returns the
637   value in the register or -1 for non-implemented registers.
638   Should check consistency_status after a call which may be E05 after changes
639   in the implementation. */
640static int
641read_register (char regno, unsigned int *valptr)
642{
643	registers *current_reg = &cris_reg;
644
645	if (regno >= R0 && regno <= PC) {
646		/* 32-bit register with simple offset. */
647		*valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
648                return SUCCESS;
649	}
650	else if (regno == P0 || regno == VR) {
651		/* 8 bit register with complex offset. */
652		*valptr = (unsigned int)(*(unsigned char *)
653                                         ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
654                return SUCCESS;
655	}
656	else if (regno == P4 || regno == CCR) {
657		/* 16 bit register with complex offset. */
658		*valptr = (unsigned int)(*(unsigned short *)
659                                         ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
660                return SUCCESS;
661	}
662	else if (regno >= MOF && regno <= USP) {
663		/* 32 bit register with complex offset. */
664		*valptr = *(unsigned int *)((char *)&(current_reg->p8)
665                                            + (regno-P8) * sizeof(unsigned int));
666                return SUCCESS;
667	}
668	else {
669		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
670		consistency_status = E05;
671		return E05;
672	}
673}
674
675/********************************** Handle exceptions ************************/
676/* Build and send a response packet in order to inform the host the
677   stub is stopped. TAAn...:r...;n...:r...;n...:r...;
678                    AA = signal number
679                    n... = register number (hex)
680                    r... = register contents
681                    n... = `thread'
682                    r... = thread process ID.  This is a hex integer.
683                    n... = other string not starting with valid hex digit.
684                    gdb should ignore this n,r pair and go on to the next.
685                    This way we can extend the protocol. */
686static void
687stub_is_stopped(int sigval)
688{
689	char *ptr = remcomOutBuffer;
690	int regno;
691
692	unsigned int reg_cont;
693	int status;
694
695	/* Send trap type (converted to signal) */
696
697	*ptr++ = 'T';
698	ptr = hex_byte_pack(ptr, sigval);
699
700	/* Send register contents. We probably only need to send the
701	 * PC, frame pointer and stack pointer here. Other registers will be
702	 * explicitly asked for. But for now, send all.
703	 */
704
705	for (regno = R0; regno <= USP; regno++) {
706		/* Store n...:r...; for the registers in the buffer. */
707
708                status = read_register (regno, &reg_cont);
709
710		if (status == SUCCESS) {
711			ptr = hex_byte_pack(ptr, regno);
712                        *ptr++ = ':';
713
714                        ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
715                                      register_size[regno]);
716                        *ptr++ = ';';
717                }
718
719	}
720
721	/* null-terminate and send it off */
722
723	*ptr = 0;
724
725	putpacket (remcomOutBuffer);
726}
727
728/* Performs a complete re-start from scratch. */
729static void
730kill_restart (void)
731{
732	machine_restart("");
733}
734
735/* All expected commands are sent from remote.c. Send a response according
736   to the description in remote.c. */
737void
738handle_exception (int sigval)
739{
740	/* Send response. */
741
742	stub_is_stopped (sigval);
743
744	for (;;) {
745		remcomOutBuffer[0] = '\0';
746		getpacket (remcomInBuffer);
747		switch (remcomInBuffer[0]) {
748			case 'g':
749				/* Read registers: g
750				   Success: Each byte of register data is described by two hex digits.
751				   Registers are in the internal order for GDB, and the bytes
752				   in a register  are in the same order the machine uses.
753				   Failure: void. */
754
755				mem2hex(remcomOutBuffer, (char *)&cris_reg, sizeof(registers));
756				break;
757
758			case 'G':
759				/* Write registers. GXX..XX
760				   Each byte of register data  is described by two hex digits.
761				   Success: OK
762				   Failure: void. */
763				hex2mem((char *)&cris_reg, &remcomInBuffer[1], sizeof(registers));
764				gdb_cris_strcpy (remcomOutBuffer, "OK");
765				break;
766
767			case 'P':
768				/* Write register. Pn...=r...
769				   Write register n..., hex value without 0x, with value r...,
770				   which contains a hex value without 0x and two hex digits
771				   for each byte in the register (target byte order). P1f=11223344 means
772				   set register 31 to 44332211.
773				   Success: OK
774				   Failure: E02, E05 */
775				{
776					char *suffix;
777					int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
778					int status;
779					status = write_register (regno, suffix+1);
780
781					switch (status) {
782						case E02:
783							/* Do not support read-only registers. */
784							gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
785							break;
786						case E05:
787							/* Do not support non-existing registers. */
788							gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
789							break;
790						case E07:
791							/* Do not support non-existing registers on the stack. */
792							gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
793							break;
794						default:
795							/* Valid register number. */
796							gdb_cris_strcpy (remcomOutBuffer, "OK");
797							break;
798					}
799				}
800				break;
801
802			case 'm':
803				/* Read from memory. mAA..AA,LLLL
804				   AA..AA is the address and LLLL is the length.
805				   Success: XX..XX is the memory content.  Can be fewer bytes than
806				   requested if only part of the data may be read. m6000120a,6c means
807				   retrieve 108 byte from base address 6000120a.
808				   Failure: void. */
809				{
810                                        char *suffix;
811					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
812                                                                                               &suffix, 16);                                        int length = gdb_cris_strtol(suffix+1, 0, 16);
813
814                                        mem2hex(remcomOutBuffer, addr, length);
815                                }
816				break;
817
818			case 'X':
819				/* Write to memory. XAA..AA,LLLL:XX..XX
820				   AA..AA is the start address,  LLLL is the number of bytes, and
821				   XX..XX is the binary data.
822				   Success: OK
823				   Failure: void. */
824			case 'M':
825				/* Write to memory. MAA..AA,LLLL:XX..XX
826				   AA..AA is the start address,  LLLL is the number of bytes, and
827				   XX..XX is the hexadecimal data.
828				   Success: OK
829				   Failure: void. */
830				{
831					char *lenptr;
832					char *dataptr;
833					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
834										      &lenptr, 16);
835					int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
836					if (*lenptr == ',' && *dataptr == ':') {
837						if (remcomInBuffer[0] == 'M') {
838							hex2mem(addr, dataptr + 1, length);
839						}
840						else /* X */ {
841							bin2mem(addr, dataptr + 1, length);
842						}
843						gdb_cris_strcpy (remcomOutBuffer, "OK");
844					}
845					else {
846						gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
847					}
848				}
849				break;
850
851			case 'c':
852				/* Continue execution. cAA..AA
853				   AA..AA is the address where execution is resumed. If AA..AA is
854				   omitted, resume at the present address.
855				   Success: return to the executing thread.
856				   Failure: will never know. */
857				if (remcomInBuffer[1] != '\0') {
858					cris_reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
859				}
860				enableDebugIRQ();
861				return;
862
863			case 's':
864				/* Step. sAA..AA
865				   AA..AA is the address where execution is resumed. If AA..AA is
866				   omitted, resume at the present address. Success: return to the
867				   executing thread. Failure: will never know.
868
869				   Should never be invoked. The single-step is implemented on
870				   the host side. If ever invoked, it is an internal error E04. */
871				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
872				putpacket (remcomOutBuffer);
873				return;
874
875			case '?':
876				/* The last signal which caused a stop. ?
877				   Success: SAA, where AA is the signal number.
878				   Failure: void. */
879				remcomOutBuffer[0] = 'S';
880				remcomOutBuffer[1] = hex_asc_hi(sigval);
881				remcomOutBuffer[2] = hex_asc_lo(sigval);
882				remcomOutBuffer[3] = 0;
883				break;
884
885			case 'D':
886				/* Detach from host. D
887				   Success: OK, and return to the executing thread.
888				   Failure: will never know */
889				putpacket ("OK");
890				return;
891
892			case 'k':
893			case 'r':
894				/* kill request or reset request.
895				   Success: restart of target.
896				   Failure: will never know. */
897				kill_restart ();
898				break;
899
900			case 'C':
901			case 'S':
902			case '!':
903			case 'R':
904			case 'd':
905				/* Continue with signal sig. Csig;AA..AA
906				   Step with signal sig. Ssig;AA..AA
907				   Use the extended remote protocol. !
908				   Restart the target system. R0
909				   Toggle debug flag. d
910				   Search backwards. tAA:PP,MM
911				   Not supported: E04 */
912				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
913				break;
914
915			default:
916				/* The stub should ignore other request and send an empty
917				   response ($#<checksum>). This way we can extend the protocol and GDB
918				   can tell whether the stub it is talking to uses the old or the new. */
919				remcomOutBuffer[0] = 0;
920				break;
921		}
922		putpacket(remcomOutBuffer);
923	}
924}
925
926/********************************** Breakpoint *******************************/
927/* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
928   An internal stack is used by the stub. The register image of the caller is
929   stored in the structure register_image.
930   Interactive communication with the host is handled by handle_exception and
931   finally the register image is restored. */
932
933void kgdb_handle_breakpoint(void);
934
935asm ("\n"
936"  .global kgdb_handle_breakpoint\n"
937"kgdb_handle_breakpoint:\n"
938";;\n"
939";; Response to the break-instruction\n"
940";;\n"
941";; Create a register image of the caller\n"
942";;\n"
943"  move     $dccr,[cris_reg+0x5E] ; Save the flags in DCCR before disable interrupts\n"
944"  di                        ; Disable interrupts\n"
945"  move.d   $r0,[cris_reg]        ; Save R0\n"
946"  move.d   $r1,[cris_reg+0x04]   ; Save R1\n"
947"  move.d   $r2,[cris_reg+0x08]   ; Save R2\n"
948"  move.d   $r3,[cris_reg+0x0C]   ; Save R3\n"
949"  move.d   $r4,[cris_reg+0x10]   ; Save R4\n"
950"  move.d   $r5,[cris_reg+0x14]   ; Save R5\n"
951"  move.d   $r6,[cris_reg+0x18]   ; Save R6\n"
952"  move.d   $r7,[cris_reg+0x1C]   ; Save R7\n"
953"  move.d   $r8,[cris_reg+0x20]   ; Save R8\n"
954"  move.d   $r9,[cris_reg+0x24]   ; Save R9\n"
955"  move.d   $r10,[cris_reg+0x28]  ; Save R10\n"
956"  move.d   $r11,[cris_reg+0x2C]  ; Save R11\n"
957"  move.d   $r12,[cris_reg+0x30]  ; Save R12\n"
958"  move.d   $r13,[cris_reg+0x34]  ; Save R13\n"
959"  move.d   $sp,[cris_reg+0x38]   ; Save SP (R14)\n"
960";; Due to the old assembler-versions BRP might not be recognized\n"
961"  .word 0xE670              ; move brp,$r0\n"
962"  subq     2,$r0             ; Set to address of previous instruction.\n"
963"  move.d   $r0,[cris_reg+0x3c]   ; Save the address in PC (R15)\n"
964"  clear.b  [cris_reg+0x40]      ; Clear P0\n"
965"  move     $vr,[cris_reg+0x41]   ; Save special register P1\n"
966"  clear.w  [cris_reg+0x42]      ; Clear P4\n"
967"  move     $ccr,[cris_reg+0x44]  ; Save special register CCR\n"
968"  move     $mof,[cris_reg+0x46]  ; P7\n"
969"  clear.d  [cris_reg+0x4A]      ; Clear P8\n"
970"  move     $ibr,[cris_reg+0x4E]  ; P9,\n"
971"  move     $irp,[cris_reg+0x52]  ; P10,\n"
972"  move     $srp,[cris_reg+0x56]  ; P11,\n"
973"  move     $dtp0,[cris_reg+0x5A] ; P12, register BAR, assembler might not know BAR\n"
974"                            ; P13, register DCCR already saved\n"
975";; Due to the old assembler-versions BRP might not be recognized\n"
976"  .word 0xE670              ; move brp,r0\n"
977";; Static (compiled) breakpoints must return to the next instruction in order\n"
978";; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction\n"
979";; in order to execute it when execution is continued.\n"
980"  test.b   [is_dyn_brkp]    ; Is this a dynamic breakpoint?\n"
981"  beq      is_static         ; No, a static breakpoint\n"
982"  nop\n"
983"  subq     2,$r0              ; rerun the instruction the break replaced\n"
984"is_static:\n"
985"  moveq    1,$r1\n"
986"  move.b   $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint\n"
987"  move.d   $r0,[cris_reg+0x62]    ; Save the return address in BRP\n"
988"  move     $usp,[cris_reg+0x66]   ; USP\n"
989";;\n"
990";; Handle the communication\n"
991";;\n"
992"  move.d   internal_stack+1020,$sp ; Use the internal stack which grows upward\n"
993"  moveq    5,$r10                   ; SIGTRAP\n"
994"  jsr      handle_exception       ; Interactive routine\n"
995";;\n"
996";; Return to the caller\n"
997";;\n"
998"   move.d  [cris_reg],$r0         ; Restore R0\n"
999"   move.d  [cris_reg+0x04],$r1    ; Restore R1\n"
1000"   move.d  [cris_reg+0x08],$r2    ; Restore R2\n"
1001"   move.d  [cris_reg+0x0C],$r3    ; Restore R3\n"
1002"   move.d  [cris_reg+0x10],$r4    ; Restore R4\n"
1003"   move.d  [cris_reg+0x14],$r5    ; Restore R5\n"
1004"   move.d  [cris_reg+0x18],$r6    ; Restore R6\n"
1005"   move.d  [cris_reg+0x1C],$r7    ; Restore R7\n"
1006"   move.d  [cris_reg+0x20],$r8    ; Restore R8\n"
1007"   move.d  [cris_reg+0x24],$r9    ; Restore R9\n"
1008"   move.d  [cris_reg+0x28],$r10   ; Restore R10\n"
1009"   move.d  [cris_reg+0x2C],$r11   ; Restore R11\n"
1010"   move.d  [cris_reg+0x30],$r12   ; Restore R12\n"
1011"   move.d  [cris_reg+0x34],$r13   ; Restore R13\n"
1012";;\n"
1013";; FIXME: Which registers should be restored?\n"
1014";;\n"
1015"   move.d  [cris_reg+0x38],$sp    ; Restore SP (R14)\n"
1016"   move    [cris_reg+0x56],$srp   ; Restore the subroutine return pointer.\n"
1017"   move    [cris_reg+0x5E],$dccr  ; Restore DCCR\n"
1018"   move    [cris_reg+0x66],$usp   ; Restore USP\n"
1019"   jump    [cris_reg+0x62]       ; A jump to the content in register BRP works.\n"
1020"   nop                       ;\n"
1021"\n");
1022
1023/* The hook for an interrupt generated by GDB. An internal stack is used
1024   by the stub. The register image of the caller is stored in the structure
1025   register_image. Interactive communication with the host is handled by
1026   handle_exception and finally the register image is restored. Due to the
1027   old assembler which does not recognise the break instruction and the
1028   breakpoint return pointer hex-code is used. */
1029
1030void kgdb_handle_serial(void);
1031
1032asm ("\n"
1033"  .global kgdb_handle_serial\n"
1034"kgdb_handle_serial:\n"
1035";;\n"
1036";; Response to a serial interrupt\n"
1037";;\n"
1038"\n"
1039"  move     $dccr,[cris_reg+0x5E] ; Save the flags in DCCR\n"
1040"  di                        ; Disable interrupts\n"
1041"  move.d   $r0,[cris_reg]        ; Save R0\n"
1042"  move.d   $r1,[cris_reg+0x04]   ; Save R1\n"
1043"  move.d   $r2,[cris_reg+0x08]   ; Save R2\n"
1044"  move.d   $r3,[cris_reg+0x0C]   ; Save R3\n"
1045"  move.d   $r4,[cris_reg+0x10]   ; Save R4\n"
1046"  move.d   $r5,[cris_reg+0x14]   ; Save R5\n"
1047"  move.d   $r6,[cris_reg+0x18]   ; Save R6\n"
1048"  move.d   $r7,[cris_reg+0x1C]   ; Save R7\n"
1049"  move.d   $r8,[cris_reg+0x20]   ; Save R8\n"
1050"  move.d   $r9,[cris_reg+0x24]   ; Save R9\n"
1051"  move.d   $r10,[cris_reg+0x28]  ; Save R10\n"
1052"  move.d   $r11,[cris_reg+0x2C]  ; Save R11\n"
1053"  move.d   $r12,[cris_reg+0x30]  ; Save R12\n"
1054"  move.d   $r13,[cris_reg+0x34]  ; Save R13\n"
1055"  move.d   $sp,[cris_reg+0x38]   ; Save SP (R14)\n"
1056"  move     $irp,[cris_reg+0x3c]  ; Save the address in PC (R15)\n"
1057"  clear.b  [cris_reg+0x40]      ; Clear P0\n"
1058"  move     $vr,[cris_reg+0x41]   ; Save special register P1,\n"
1059"  clear.w  [cris_reg+0x42]      ; Clear P4\n"
1060"  move     $ccr,[cris_reg+0x44]  ; Save special register CCR\n"
1061"  move     $mof,[cris_reg+0x46]  ; P7\n"
1062"  clear.d  [cris_reg+0x4A]      ; Clear P8\n"
1063"  move     $ibr,[cris_reg+0x4E]  ; P9,\n"
1064"  move     $irp,[cris_reg+0x52]  ; P10,\n"
1065"  move     $srp,[cris_reg+0x56]  ; P11,\n"
1066"  move     $dtp0,[cris_reg+0x5A] ; P12, register BAR, assembler might not know BAR\n"
1067"                            ; P13, register DCCR already saved\n"
1068";; Due to the old assembler-versions BRP might not be recognized\n"
1069"  .word 0xE670              ; move brp,r0\n"
1070"  move.d   $r0,[cris_reg+0x62]   ; Save the return address in BRP\n"
1071"  move     $usp,[cris_reg+0x66]  ; USP\n"
1072"\n"
1073";; get the serial character (from debugport.c) and check if it is a ctrl-c\n"
1074"\n"
1075"  jsr getDebugChar\n"
1076"  cmp.b 3, $r10\n"
1077"  bne goback\n"
1078"  nop\n"
1079"\n"
1080"  move.d  [cris_reg+0x5E], $r10		; Get DCCR\n"
1081"  btstq	   8, $r10			; Test the U-flag.\n"
1082"  bmi	   goback\n"
1083"  nop\n"
1084"\n"
1085";;\n"
1086";; Handle the communication\n"
1087";;\n"
1088"  move.d   internal_stack+1020,$sp ; Use the internal stack\n"
1089"  moveq    2,$r10                   ; SIGINT\n"
1090"  jsr      handle_exception       ; Interactive routine\n"
1091"\n"
1092"goback:\n"
1093";;\n"
1094";; Return to the caller\n"
1095";;\n"
1096"   move.d  [cris_reg],$r0         ; Restore R0\n"
1097"   move.d  [cris_reg+0x04],$r1    ; Restore R1\n"
1098"   move.d  [cris_reg+0x08],$r2    ; Restore R2\n"
1099"   move.d  [cris_reg+0x0C],$r3    ; Restore R3\n"
1100"   move.d  [cris_reg+0x10],$r4    ; Restore R4\n"
1101"   move.d  [cris_reg+0x14],$r5    ; Restore R5\n"
1102"   move.d  [cris_reg+0x18],$r6    ; Restore R6\n"
1103"   move.d  [cris_reg+0x1C],$r7    ; Restore R7\n"
1104"   move.d  [cris_reg+0x20],$r8    ; Restore R8\n"
1105"   move.d  [cris_reg+0x24],$r9    ; Restore R9\n"
1106"   move.d  [cris_reg+0x28],$r10   ; Restore R10\n"
1107"   move.d  [cris_reg+0x2C],$r11   ; Restore R11\n"
1108"   move.d  [cris_reg+0x30],$r12   ; Restore R12\n"
1109"   move.d  [cris_reg+0x34],$r13   ; Restore R13\n"
1110";;\n"
1111";; FIXME: Which registers should be restored?\n"
1112";;\n"
1113"   move.d  [cris_reg+0x38],$sp    ; Restore SP (R14)\n"
1114"   move    [cris_reg+0x56],$srp   ; Restore the subroutine return pointer.\n"
1115"   move    [cris_reg+0x5E],$dccr  ; Restore DCCR\n"
1116"   move    [cris_reg+0x66],$usp   ; Restore USP\n"
1117"   reti                      ; Return from the interrupt routine\n"
1118"   nop\n"
1119"\n");
1120
1121/* Use this static breakpoint in the start-up only. */
1122
1123void
1124breakpoint(void)
1125{
1126	kgdb_started = 1;
1127	is_dyn_brkp = 0;     /* This is a static, not a dynamic breakpoint. */
1128	__asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1129}
1130
1131/* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1132
1133void
1134kgdb_init(void)
1135{
1136	/* could initialize debug port as well but it's done in head.S already... */
1137
1138        /* breakpoint handler is now set in irq.c */
1139	set_int_vector(8, kgdb_handle_serial);
1140
1141	enableDebugIRQ();
1142}
1143
1144/****************************** End of file **********************************/
1145