1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 *   written by Ralf Baechle <ralf@linux-mips.org>
9 */
10#include <linux/compiler.h>
11#include <linux/vmalloc.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/console.h>
15#include <linux/delay.h>
16#include <linux/export.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/serial.h>
20#include <linux/smp.h>
21#include <linux/types.h>
22#include <linux/string.h>	/* for memset */
23#include <linux/tty.h>
24#include <linux/time.h>
25#include <linux/platform_device.h>
26#include <linux/serial_core.h>
27#include <linux/serial_8250.h>
28#include <linux/of_fdt.h>
29#include <linux/libfdt.h>
30#include <linux/kexec.h>
31
32#include <asm/processor.h>
33#include <asm/reboot.h>
34#include <asm/smp-ops.h>
35#include <asm/irq_cpu.h>
36#include <asm/mipsregs.h>
37#include <asm/bootinfo.h>
38#include <asm/sections.h>
39#include <asm/time.h>
40
41#include <asm/octeon/octeon.h>
42#include <asm/octeon/pci-octeon.h>
43#include <asm/octeon/cvmx-mio-defs.h>
44
45extern struct plat_smp_ops octeon_smp_ops;
46
47#ifdef CONFIG_PCI
48extern void pci_console_init(const char *arg);
49#endif
50
51static unsigned long long MAX_MEMORY = 512ull << 20;
52
53struct octeon_boot_descriptor *octeon_boot_desc_ptr;
54
55struct cvmx_bootinfo *octeon_bootinfo;
56EXPORT_SYMBOL(octeon_bootinfo);
57
58static unsigned long long RESERVE_LOW_MEM = 0ull;
59#ifdef CONFIG_KEXEC
60#ifdef CONFIG_SMP
61/*
62 * Wait for relocation code is prepared and send
63 * secondary CPUs to spin until kernel is relocated.
64 */
65static void octeon_kexec_smp_down(void *ignored)
66{
67	int cpu = smp_processor_id();
68
69	local_irq_disable();
70	set_cpu_online(cpu, false);
71	while (!atomic_read(&kexec_ready_to_reboot))
72		cpu_relax();
73
74	asm volatile (
75	"	sync						\n"
76	"	synci	($0)					\n");
77
78	relocated_kexec_smp_wait(NULL);
79}
80#endif
81
82#define OCTEON_DDR0_BASE    (0x0ULL)
83#define OCTEON_DDR0_SIZE    (0x010000000ULL)
84#define OCTEON_DDR1_BASE    (0x410000000ULL)
85#define OCTEON_DDR1_SIZE    (0x010000000ULL)
86#define OCTEON_DDR2_BASE    (0x020000000ULL)
87#define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
88#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
89
90static struct kimage *kimage_ptr;
91
92static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
93{
94	int64_t addr;
95	struct cvmx_bootmem_desc *bootmem_desc;
96
97	bootmem_desc = cvmx_bootmem_get_desc();
98
99	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
100		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
101		pr_err("Error: requested memory too large,"
102		       "truncating to maximum size\n");
103	}
104
105	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
106	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
107
108	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
109	bootmem_desc->head_addr = 0;
110
111	if (mem_size <= OCTEON_DDR0_SIZE) {
112		__cvmx_bootmem_phy_free(addr,
113				mem_size - RESERVE_LOW_MEM -
114				low_reserved_bytes, 0);
115		return;
116	}
117
118	__cvmx_bootmem_phy_free(addr,
119			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
120			low_reserved_bytes, 0);
121
122	mem_size -= OCTEON_DDR0_SIZE;
123
124	if (mem_size > OCTEON_DDR1_SIZE) {
125		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
126		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
127				mem_size - OCTEON_DDR1_SIZE, 0);
128	} else
129		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
130}
131
132static int octeon_kexec_prepare(struct kimage *image)
133{
134	int i;
135	char *bootloader = "kexec";
136
137	octeon_boot_desc_ptr->argc = 0;
138	for (i = 0; i < image->nr_segments; i++) {
139		if (!strncmp(bootloader, (char *)image->segment[i].buf,
140				strlen(bootloader))) {
141			/*
142			 * convert command line string to array
143			 * of parameters (as bootloader does).
144			 */
145			int argc = 0, offt;
146			char *str = (char *)image->segment[i].buf;
147			char *ptr = strchr(str, ' ');
148			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
149				*ptr = '\0';
150				if (ptr[1] != ' ') {
151					offt = (int)(ptr - str + 1);
152					octeon_boot_desc_ptr->argv[argc] =
153						image->segment[i].mem + offt;
154					argc++;
155				}
156				ptr = strchr(ptr + 1, ' ');
157			}
158			octeon_boot_desc_ptr->argc = argc;
159			break;
160		}
161	}
162
163	/*
164	 * Information about segments will be needed during pre-boot memory
165	 * initialization.
166	 */
167	kimage_ptr = image;
168	return 0;
169}
170
171static void octeon_generic_shutdown(void)
172{
173	int i;
174#ifdef CONFIG_SMP
175	int cpu;
176#endif
177	struct cvmx_bootmem_desc *bootmem_desc;
178	void *named_block_array_ptr;
179
180	bootmem_desc = cvmx_bootmem_get_desc();
181	named_block_array_ptr =
182		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
183
184#ifdef CONFIG_SMP
185	/* disable watchdogs */
186	for_each_online_cpu(cpu)
187		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
188#else
189	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
190#endif
191	if (kimage_ptr != kexec_crash_image) {
192		memset(named_block_array_ptr,
193			0x0,
194			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
195			sizeof(struct cvmx_bootmem_named_block_desc));
196		/*
197		 * Mark all memory (except low 0x100000 bytes) as free.
198		 * It is the same thing that bootloader does.
199		 */
200		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
201				0x100000);
202		/*
203		 * Allocate all segments to avoid their corruption during boot.
204		 */
205		for (i = 0; i < kimage_ptr->nr_segments; i++)
206			cvmx_bootmem_alloc_address(
207				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
208				kimage_ptr->segment[i].mem - PAGE_SIZE,
209				PAGE_SIZE);
210	} else {
211		/*
212		 * Do not mark all memory as free. Free only named sections
213		 * leaving the rest of memory unchanged.
214		 */
215		struct cvmx_bootmem_named_block_desc *ptr =
216			(struct cvmx_bootmem_named_block_desc *)
217			named_block_array_ptr;
218
219		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
220			if (ptr[i].size)
221				cvmx_bootmem_free_named(ptr[i].name);
222	}
223	kexec_args[2] = 1UL; /* running on octeon_main_processor */
224	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
225#ifdef CONFIG_SMP
226	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
227	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
228#endif
229}
230
231static void octeon_shutdown(void)
232{
233	octeon_generic_shutdown();
234#ifdef CONFIG_SMP
235	smp_call_function(octeon_kexec_smp_down, NULL, 0);
236	smp_wmb();
237	while (num_online_cpus() > 1) {
238		cpu_relax();
239		mdelay(1);
240	}
241#endif
242}
243
244static void octeon_crash_shutdown(struct pt_regs *regs)
245{
246	octeon_generic_shutdown();
247	default_machine_crash_shutdown(regs);
248}
249
250#endif /* CONFIG_KEXEC */
251
252#ifdef CONFIG_CAVIUM_RESERVE32
253uint64_t octeon_reserve32_memory;
254EXPORT_SYMBOL(octeon_reserve32_memory);
255#endif
256
257#ifdef CONFIG_KEXEC
258/* crashkernel cmdline parameter is parsed _after_ memory setup
259 * we also parse it here (workaround for EHB5200) */
260static uint64_t crashk_size, crashk_base;
261#endif
262
263static int octeon_uart;
264
265extern asmlinkage void handle_int(void);
266
267/**
268 * Return non zero if we are currently running in the Octeon simulator
269 *
270 * Returns
271 */
272int octeon_is_simulation(void)
273{
274	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
275}
276EXPORT_SYMBOL(octeon_is_simulation);
277
278/**
279 * Return true if Octeon is in PCI Host mode. This means
280 * Linux can control the PCI bus.
281 *
282 * Returns Non zero if Octeon in host mode.
283 */
284int octeon_is_pci_host(void)
285{
286#ifdef CONFIG_PCI
287	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
288#else
289	return 0;
290#endif
291}
292
293/**
294 * Get the clock rate of Octeon
295 *
296 * Returns Clock rate in HZ
297 */
298uint64_t octeon_get_clock_rate(void)
299{
300	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
301
302	return sysinfo->cpu_clock_hz;
303}
304EXPORT_SYMBOL(octeon_get_clock_rate);
305
306static u64 octeon_io_clock_rate;
307
308u64 octeon_get_io_clock_rate(void)
309{
310	return octeon_io_clock_rate;
311}
312EXPORT_SYMBOL(octeon_get_io_clock_rate);
313
314
315/**
316 * Write to the LCD display connected to the bootbus. This display
317 * exists on most Cavium evaluation boards. If it doesn't exist, then
318 * this function doesn't do anything.
319 *
320 * @s:	    String to write
321 */
322void octeon_write_lcd(const char *s)
323{
324	if (octeon_bootinfo->led_display_base_addr) {
325		void __iomem *lcd_address =
326			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
327					8);
328		int i;
329		for (i = 0; i < 8; i++, s++) {
330			if (*s)
331				iowrite8(*s, lcd_address + i);
332			else
333				iowrite8(' ', lcd_address + i);
334		}
335		iounmap(lcd_address);
336	}
337}
338
339/**
340 * Return the console uart passed by the bootloader
341 *
342 * Returns uart	  (0 or 1)
343 */
344int octeon_get_boot_uart(void)
345{
346	int uart;
347#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
348	uart = 1;
349#else
350	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
351		1 : 0;
352#endif
353	return uart;
354}
355
356/**
357 * Get the coremask Linux was booted on.
358 *
359 * Returns Core mask
360 */
361int octeon_get_boot_coremask(void)
362{
363	return octeon_boot_desc_ptr->core_mask;
364}
365
366/**
367 * Check the hardware BIST results for a CPU
368 */
369void octeon_check_cpu_bist(void)
370{
371	const int coreid = cvmx_get_core_num();
372	unsigned long long mask;
373	unsigned long long bist_val;
374
375	/* Check BIST results for COP0 registers */
376	mask = 0x1f00000000ull;
377	bist_val = read_octeon_c0_icacheerr();
378	if (bist_val & mask)
379		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
380		       coreid, bist_val);
381
382	bist_val = read_octeon_c0_dcacheerr();
383	if (bist_val & 1)
384		pr_err("Core%d L1 Dcache parity error: "
385		       "CacheErr(dcache) = 0x%llx\n",
386		       coreid, bist_val);
387
388	mask = 0xfc00000000000000ull;
389	bist_val = read_c0_cvmmemctl();
390	if (bist_val & mask)
391		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
392		       coreid, bist_val);
393
394	write_octeon_c0_dcacheerr(0);
395}
396
397/**
398 * Reboot Octeon
399 *
400 * @command: Command to pass to the bootloader. Currently ignored.
401 */
402static void octeon_restart(char *command)
403{
404	/* Disable all watchdogs before soft reset. They don't get cleared */
405#ifdef CONFIG_SMP
406	int cpu;
407	for_each_online_cpu(cpu)
408		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
409#else
410	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
411#endif
412
413	mb();
414	while (1)
415		cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
416}
417
418
419/**
420 * Permanently stop a core.
421 *
422 * @arg: Ignored.
423 */
424static void octeon_kill_core(void *arg)
425{
426	if (octeon_is_simulation())
427		/* A break instruction causes the simulator stop a core */
428		asm volatile ("break" ::: "memory");
429
430	local_irq_disable();
431	/* Disable watchdog on this core. */
432	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
433	/* Spin in a low power mode. */
434	while (true)
435		asm volatile ("wait" ::: "memory");
436}
437
438
439/**
440 * Halt the system
441 */
442static void octeon_halt(void)
443{
444	smp_call_function(octeon_kill_core, NULL, 0);
445
446	switch (octeon_bootinfo->board_type) {
447	case CVMX_BOARD_TYPE_NAO38:
448		/* Driving a 1 to GPIO 12 shuts off this board */
449		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
450		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
451		break;
452	default:
453		octeon_write_lcd("PowerOff");
454		break;
455	}
456
457	octeon_kill_core(NULL);
458}
459
460static char __read_mostly octeon_system_type[80];
461
462static int __init init_octeon_system_type(void)
463{
464	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
465		cvmx_board_type_to_string(octeon_bootinfo->board_type),
466		octeon_model_get_string(read_c0_prid()));
467
468	return 0;
469}
470early_initcall(init_octeon_system_type);
471
472/**
473 * Return a string representing the system type
474 *
475 * Returns
476 */
477const char *octeon_board_type_string(void)
478{
479	return octeon_system_type;
480}
481
482const char *get_system_type(void)
483	__attribute__ ((alias("octeon_board_type_string")));
484
485void octeon_user_io_init(void)
486{
487	union octeon_cvmemctl cvmmemctl;
488	union cvmx_iob_fau_timeout fau_timeout;
489	union cvmx_pow_nw_tim nm_tim;
490
491	/* Get the current settings for CP0_CVMMEMCTL_REG */
492	cvmmemctl.u64 = read_c0_cvmmemctl();
493	/* R/W If set, marked write-buffer entries time out the same
494	 * as as other entries; if clear, marked write-buffer entries
495	 * use the maximum timeout. */
496	cvmmemctl.s.dismarkwblongto = 1;
497	/* R/W If set, a merged store does not clear the write-buffer
498	 * entry timeout state. */
499	cvmmemctl.s.dismrgclrwbto = 0;
500	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
501	 * word location for an IOBDMA. The other 8 bits come from the
502	 * SCRADDR field of the IOBDMA. */
503	cvmmemctl.s.iobdmascrmsb = 0;
504	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
505	 * clear, SYNCWS and SYNCS only order unmarked
506	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
507	 * set. */
508	cvmmemctl.s.syncwsmarked = 0;
509	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
510	cvmmemctl.s.dissyncws = 0;
511	/* R/W If set, no stall happens on write buffer full. */
512	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
513		cvmmemctl.s.diswbfst = 1;
514	else
515		cvmmemctl.s.diswbfst = 0;
516	/* R/W If set (and SX set), supervisor-level loads/stores can
517	 * use XKPHYS addresses with <48>==0 */
518	cvmmemctl.s.xkmemenas = 0;
519
520	/* R/W If set (and UX set), user-level loads/stores can use
521	 * XKPHYS addresses with VA<48>==0 */
522	cvmmemctl.s.xkmemenau = 0;
523
524	/* R/W If set (and SX set), supervisor-level loads/stores can
525	 * use XKPHYS addresses with VA<48>==1 */
526	cvmmemctl.s.xkioenas = 0;
527
528	/* R/W If set (and UX set), user-level loads/stores can use
529	 * XKPHYS addresses with VA<48>==1 */
530	cvmmemctl.s.xkioenau = 0;
531
532	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
533	 * when this is set) RW, reset to 0. */
534	cvmmemctl.s.allsyncw = 0;
535
536	/* R/W If set, no stores merge, and all stores reach the
537	 * coherent bus in order. */
538	cvmmemctl.s.nomerge = 0;
539	/* R/W Selects the bit in the counter used for DID time-outs 0
540	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
541	 * between 1x and 2x this interval. For example, with
542	 * DIDTTO=3, expiration interval is between 16K and 32K. */
543	cvmmemctl.s.didtto = 0;
544	/* R/W If set, the (mem) CSR clock never turns off. */
545	cvmmemctl.s.csrckalwys = 0;
546	/* R/W If set, mclk never turns off. */
547	cvmmemctl.s.mclkalwys = 0;
548	/* R/W Selects the bit in the counter used for write buffer
549	 * flush time-outs (WBFLT+11) is the bit position in an
550	 * internal counter used to determine expiration. The write
551	 * buffer expires between 1x and 2x this interval. For
552	 * example, with WBFLT = 0, a write buffer expires between 2K
553	 * and 4K cycles after the write buffer entry is allocated. */
554	cvmmemctl.s.wbfltime = 0;
555	/* R/W If set, do not put Istream in the L2 cache. */
556	cvmmemctl.s.istrnol2 = 0;
557
558	/*
559	 * R/W The write buffer threshold. As per erratum Core-14752
560	 * for CN63XX, a sc/scd might fail if the write buffer is
561	 * full.  Lowering WBTHRESH greatly lowers the chances of the
562	 * write buffer ever being full and triggering the erratum.
563	 */
564	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
565		cvmmemctl.s.wbthresh = 4;
566	else
567		cvmmemctl.s.wbthresh = 10;
568
569	/* R/W If set, CVMSEG is available for loads/stores in
570	 * kernel/debug mode. */
571#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
572	cvmmemctl.s.cvmsegenak = 1;
573#else
574	cvmmemctl.s.cvmsegenak = 0;
575#endif
576	/* R/W If set, CVMSEG is available for loads/stores in
577	 * supervisor mode. */
578	cvmmemctl.s.cvmsegenas = 0;
579	/* R/W If set, CVMSEG is available for loads/stores in user
580	 * mode. */
581	cvmmemctl.s.cvmsegenau = 0;
582	/* R/W Size of local memory in cache blocks, 54 (6912 bytes)
583	 * is max legal value. */
584	cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
585
586	write_c0_cvmmemctl(cvmmemctl.u64);
587
588	if (smp_processor_id() == 0)
589		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
590			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
591			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
592
593	/* Set a default for the hardware timeouts */
594	fau_timeout.u64 = 0;
595	fau_timeout.s.tout_val = 0xfff;
596	/* Disable tagwait FAU timeout */
597	fau_timeout.s.tout_enb = 0;
598	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
599
600	nm_tim.u64 = 0;
601	/* 4096 cycles */
602	nm_tim.s.nw_tim = 3;
603	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
604
605	write_octeon_c0_icacheerr(0);
606	write_c0_derraddr1(0);
607}
608
609/**
610 * Early entry point for arch setup
611 */
612void __init prom_init(void)
613{
614	struct cvmx_sysinfo *sysinfo;
615	const char *arg;
616	char *p;
617	int i;
618	int argc;
619#ifdef CONFIG_CAVIUM_RESERVE32
620	int64_t addr = -1;
621#endif
622	/*
623	 * The bootloader passes a pointer to the boot descriptor in
624	 * $a3, this is available as fw_arg3.
625	 */
626	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
627	octeon_bootinfo =
628		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
629	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
630
631	sysinfo = cvmx_sysinfo_get();
632	memset(sysinfo, 0, sizeof(*sysinfo));
633	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
634	sysinfo->phy_mem_desc_ptr =
635		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
636	sysinfo->core_mask = octeon_bootinfo->core_mask;
637	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
638	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
639	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
640	sysinfo->board_type = octeon_bootinfo->board_type;
641	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
642	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
643	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
644	       sizeof(sysinfo->mac_addr_base));
645	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
646	memcpy(sysinfo->board_serial_number,
647	       octeon_bootinfo->board_serial_number,
648	       sizeof(sysinfo->board_serial_number));
649	sysinfo->compact_flash_common_base_addr =
650		octeon_bootinfo->compact_flash_common_base_addr;
651	sysinfo->compact_flash_attribute_base_addr =
652		octeon_bootinfo->compact_flash_attribute_base_addr;
653	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
654	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
655	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
656
657	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
658		/* I/O clock runs at a different rate than the CPU. */
659		union cvmx_mio_rst_boot rst_boot;
660		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
661		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
662	} else {
663		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
664	}
665
666	/*
667	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
668	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
669	 */
670	if (!octeon_is_simulation() &&
671	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
672		cvmx_write_csr(CVMX_LED_EN, 0);
673		cvmx_write_csr(CVMX_LED_PRT, 0);
674		cvmx_write_csr(CVMX_LED_DBG, 0);
675		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
676		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
677		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
678		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
679		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
680		cvmx_write_csr(CVMX_LED_EN, 1);
681	}
682#ifdef CONFIG_CAVIUM_RESERVE32
683	/*
684	 * We need to temporarily allocate all memory in the reserve32
685	 * region. This makes sure the kernel doesn't allocate this
686	 * memory when it is getting memory from the
687	 * bootloader. Later, after the memory allocations are
688	 * complete, the reserve32 will be freed.
689	 *
690	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
691	 * is in case we later use hugetlb entries with it.
692	 */
693	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
694						0, 0, 2 << 20,
695						"CAVIUM_RESERVE32", 0);
696	if (addr < 0)
697		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
698	else
699		octeon_reserve32_memory = addr;
700#endif
701
702#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
703	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
704		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
705	} else {
706		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
707#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
708		/* TLB refill */
709		cvmx_l2c_lock_mem_region(ebase, 0x100);
710#endif
711#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
712		/* General exception */
713		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
714#endif
715#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
716		/* Interrupt handler */
717		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
718#endif
719#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
720		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
721		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
722#endif
723#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
724		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
725#endif
726	}
727#endif
728
729	octeon_check_cpu_bist();
730
731	octeon_uart = octeon_get_boot_uart();
732
733#ifdef CONFIG_SMP
734	octeon_write_lcd("LinuxSMP");
735#else
736	octeon_write_lcd("Linux");
737#endif
738
739	octeon_setup_delays();
740
741	/*
742	 * BIST should always be enabled when doing a soft reset. L2
743	 * Cache locking for instance is not cleared unless BIST is
744	 * enabled.  Unfortunately due to a chip errata G-200 for
745	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
746	 */
747	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
748	    OCTEON_IS_MODEL(OCTEON_CN31XX))
749		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
750	else
751		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
752
753	/* Default to 64MB in the simulator to speed things up */
754	if (octeon_is_simulation())
755		MAX_MEMORY = 64ull << 20;
756
757	arg = strstr(arcs_cmdline, "mem=");
758	if (arg) {
759		MAX_MEMORY = memparse(arg + 4, &p);
760		if (MAX_MEMORY == 0)
761			MAX_MEMORY = 32ull << 30;
762		if (*p == '@')
763			RESERVE_LOW_MEM = memparse(p + 1, &p);
764	}
765
766	arcs_cmdline[0] = 0;
767	argc = octeon_boot_desc_ptr->argc;
768	for (i = 0; i < argc; i++) {
769		const char *arg =
770			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
771		if ((strncmp(arg, "MEM=", 4) == 0) ||
772		    (strncmp(arg, "mem=", 4) == 0)) {
773			MAX_MEMORY = memparse(arg + 4, &p);
774			if (MAX_MEMORY == 0)
775				MAX_MEMORY = 32ull << 30;
776			if (*p == '@')
777				RESERVE_LOW_MEM = memparse(p + 1, &p);
778#ifdef CONFIG_KEXEC
779		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
780			crashk_size = memparse(arg+12, &p);
781			if (*p == '@')
782				crashk_base = memparse(p+1, &p);
783			strcat(arcs_cmdline, " ");
784			strcat(arcs_cmdline, arg);
785			/*
786			 * To do: switch parsing to new style, something like:
787			 * parse_crashkernel(arg, sysinfo->system_dram_size,
788			 *		  &crashk_size, &crashk_base);
789			 */
790#endif
791		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
792			   sizeof(arcs_cmdline) - 1) {
793			strcat(arcs_cmdline, " ");
794			strcat(arcs_cmdline, arg);
795		}
796	}
797
798	if (strstr(arcs_cmdline, "console=") == NULL) {
799#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
800		strcat(arcs_cmdline, " console=ttyS0,115200");
801#else
802		if (octeon_uart == 1)
803			strcat(arcs_cmdline, " console=ttyS1,115200");
804		else
805			strcat(arcs_cmdline, " console=ttyS0,115200");
806#endif
807	}
808
809	mips_hpt_frequency = octeon_get_clock_rate();
810
811	octeon_init_cvmcount();
812
813	_machine_restart = octeon_restart;
814	_machine_halt = octeon_halt;
815
816#ifdef CONFIG_KEXEC
817	_machine_kexec_shutdown = octeon_shutdown;
818	_machine_crash_shutdown = octeon_crash_shutdown;
819	_machine_kexec_prepare = octeon_kexec_prepare;
820#endif
821
822	octeon_user_io_init();
823	register_smp_ops(&octeon_smp_ops);
824}
825
826/* Exclude a single page from the regions obtained in plat_mem_setup. */
827#ifndef CONFIG_CRASH_DUMP
828static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
829{
830	if (addr > *mem && addr < *mem + *size) {
831		u64 inc = addr - *mem;
832		add_memory_region(*mem, inc, BOOT_MEM_RAM);
833		*mem += inc;
834		*size -= inc;
835	}
836
837	if (addr == *mem && *size > PAGE_SIZE) {
838		*mem += PAGE_SIZE;
839		*size -= PAGE_SIZE;
840	}
841}
842#endif /* CONFIG_CRASH_DUMP */
843
844void __init plat_mem_setup(void)
845{
846	uint64_t mem_alloc_size;
847	uint64_t total;
848	uint64_t crashk_end;
849#ifndef CONFIG_CRASH_DUMP
850	int64_t memory;
851	uint64_t kernel_start;
852	uint64_t kernel_size;
853#endif
854
855	total = 0;
856	crashk_end = 0;
857
858	/*
859	 * The Mips memory init uses the first memory location for
860	 * some memory vectors. When SPARSEMEM is in use, it doesn't
861	 * verify that the size is big enough for the final
862	 * vectors. Making the smallest chuck 4MB seems to be enough
863	 * to consistently work.
864	 */
865	mem_alloc_size = 4 << 20;
866	if (mem_alloc_size > MAX_MEMORY)
867		mem_alloc_size = MAX_MEMORY;
868
869/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
870#ifdef CONFIG_CRASH_DUMP
871	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
872	total += MAX_MEMORY;
873#else
874#ifdef CONFIG_KEXEC
875	if (crashk_size > 0) {
876		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
877		crashk_end = crashk_base + crashk_size;
878	}
879#endif
880	/*
881	 * When allocating memory, we want incrementing addresses from
882	 * bootmem_alloc so the code in add_memory_region can merge
883	 * regions next to each other.
884	 */
885	cvmx_bootmem_lock();
886	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
887		&& (total < MAX_MEMORY)) {
888		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
889						__pa_symbol(&__init_end), -1,
890						0x100000,
891						CVMX_BOOTMEM_FLAG_NO_LOCKING);
892		if (memory >= 0) {
893			u64 size = mem_alloc_size;
894#ifdef CONFIG_KEXEC
895			uint64_t end;
896#endif
897
898			/*
899			 * exclude a page at the beginning and end of
900			 * the 256MB PCIe 'hole' so the kernel will not
901			 * try to allocate multi-page buffers that
902			 * span the discontinuity.
903			 */
904			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
905					    &memory, &size);
906			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
907					    CVMX_PCIE_BAR1_PHYS_SIZE,
908					    &memory, &size);
909#ifdef CONFIG_KEXEC
910			end = memory + mem_alloc_size;
911
912			/*
913			 * This function automatically merges address regions
914			 * next to each other if they are received in
915			 * incrementing order
916			 */
917			if (memory < crashk_base && end >  crashk_end) {
918				/* region is fully in */
919				add_memory_region(memory,
920						  crashk_base - memory,
921						  BOOT_MEM_RAM);
922				total += crashk_base - memory;
923				add_memory_region(crashk_end,
924						  end - crashk_end,
925						  BOOT_MEM_RAM);
926				total += end - crashk_end;
927				continue;
928			}
929
930			if (memory >= crashk_base && end <= crashk_end)
931				/*
932				 * Entire memory region is within the new
933				 *  kernel's memory, ignore it.
934				 */
935				continue;
936
937			if (memory > crashk_base && memory < crashk_end &&
938			    end > crashk_end) {
939				/*
940				 * Overlap with the beginning of the region,
941				 * reserve the beginning.
942				  */
943				mem_alloc_size -= crashk_end - memory;
944				memory = crashk_end;
945			} else if (memory < crashk_base && end > crashk_base &&
946				   end < crashk_end)
947				/*
948				 * Overlap with the beginning of the region,
949				 * chop of end.
950				 */
951				mem_alloc_size -= end - crashk_base;
952#endif
953			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
954			total += mem_alloc_size;
955			/* Recovering mem_alloc_size */
956			mem_alloc_size = 4 << 20;
957		} else {
958			break;
959		}
960	}
961	cvmx_bootmem_unlock();
962	/* Add the memory region for the kernel. */
963	kernel_start = (unsigned long) _text;
964	kernel_size = _end - _text;
965
966	/* Adjust for physical offset. */
967	kernel_start &= ~0xffffffff80000000ULL;
968	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
969#endif /* CONFIG_CRASH_DUMP */
970
971#ifdef CONFIG_CAVIUM_RESERVE32
972	/*
973	 * Now that we've allocated the kernel memory it is safe to
974	 * free the reserved region. We free it here so that builtin
975	 * drivers can use the memory.
976	 */
977	if (octeon_reserve32_memory)
978		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
979#endif /* CONFIG_CAVIUM_RESERVE32 */
980
981	if (total == 0)
982		panic("Unable to allocate memory from "
983		      "cvmx_bootmem_phy_alloc");
984}
985
986/*
987 * Emit one character to the boot UART.	 Exported for use by the
988 * watchdog timer.
989 */
990int prom_putchar(char c)
991{
992	uint64_t lsrval;
993
994	/* Spin until there is room */
995	do {
996		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
997	} while ((lsrval & 0x20) == 0);
998
999	/* Write the byte */
1000	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1001	return 1;
1002}
1003EXPORT_SYMBOL(prom_putchar);
1004
1005void prom_free_prom_memory(void)
1006{
1007	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
1008		/* Check for presence of Core-14449 fix.  */
1009		u32 insn;
1010		u32 *foo;
1011
1012		foo = &insn;
1013
1014		asm volatile("# before" : : : "memory");
1015		prefetch(foo);
1016		asm volatile(
1017			".set push\n\t"
1018			".set noreorder\n\t"
1019			"bal 1f\n\t"
1020			"nop\n"
1021			"1:\tlw %0,-12($31)\n\t"
1022			".set pop\n\t"
1023			: "=r" (insn) : : "$31", "memory");
1024
1025		if ((insn >> 26) != 0x33)
1026			panic("No PREF instruction at Core-14449 probe point.");
1027
1028		if (((insn >> 16) & 0x1f) != 28)
1029			panic("Core-14449 WAR not in place (%04x).\n"
1030			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
1031	}
1032}
1033
1034int octeon_prune_device_tree(void);
1035
1036extern const char __dtb_octeon_3xxx_begin;
1037extern const char __dtb_octeon_68xx_begin;
1038void __init device_tree_init(void)
1039{
1040	const void *fdt;
1041	bool do_prune;
1042
1043	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1044		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1045		if (fdt_check_header(fdt))
1046			panic("Corrupt Device Tree passed to kernel.");
1047		do_prune = false;
1048	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1049		fdt = &__dtb_octeon_68xx_begin;
1050		do_prune = true;
1051	} else {
1052		fdt = &__dtb_octeon_3xxx_begin;
1053		do_prune = true;
1054	}
1055
1056	initial_boot_params = (void *)fdt;
1057
1058	if (do_prune) {
1059		octeon_prune_device_tree();
1060		pr_info("Using internal Device Tree.\n");
1061	} else {
1062		pr_info("Using passed Device Tree.\n");
1063	}
1064	unflatten_and_copy_device_tree();
1065}
1066
1067static int __initdata disable_octeon_edac_p;
1068
1069static int __init disable_octeon_edac(char *str)
1070{
1071	disable_octeon_edac_p = 1;
1072	return 0;
1073}
1074early_param("disable_octeon_edac", disable_octeon_edac);
1075
1076static char *edac_device_names[] = {
1077	"octeon_l2c_edac",
1078	"octeon_pc_edac",
1079};
1080
1081static int __init edac_devinit(void)
1082{
1083	struct platform_device *dev;
1084	int i, err = 0;
1085	int num_lmc;
1086	char *name;
1087
1088	if (disable_octeon_edac_p)
1089		return 0;
1090
1091	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1092		name = edac_device_names[i];
1093		dev = platform_device_register_simple(name, -1, NULL, 0);
1094		if (IS_ERR(dev)) {
1095			pr_err("Registation of %s failed!\n", name);
1096			err = PTR_ERR(dev);
1097		}
1098	}
1099
1100	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1101		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1102	for (i = 0; i < num_lmc; i++) {
1103		dev = platform_device_register_simple("octeon_lmc_edac",
1104						      i, NULL, 0);
1105		if (IS_ERR(dev)) {
1106			pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
1107			err = PTR_ERR(dev);
1108		}
1109	}
1110
1111	return err;
1112}
1113device_initcall(edac_devinit);
1114
1115static void __initdata *octeon_dummy_iospace;
1116
1117static int __init octeon_no_pci_init(void)
1118{
1119	/*
1120	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1121	 * later re-initialize these to correct values if they are present.
1122	 */
1123	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1124	set_io_port_base((unsigned long)octeon_dummy_iospace);
1125	ioport_resource.start = MAX_RESOURCE;
1126	ioport_resource.end = 0;
1127	return 0;
1128}
1129core_initcall(octeon_no_pci_init);
1130
1131static int __init octeon_no_pci_release(void)
1132{
1133	/*
1134	 * Release the allocated memory if a real IO space is there.
1135	 */
1136	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1137		vfree(octeon_dummy_iospace);
1138	return 0;
1139}
1140late_initcall(octeon_no_pci_release);
1141