1/*
2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation;  either version 2 of the  License, or (at your
8 * option) any later version.
9 */
10
11#include <linux/init.h>
12#include <linux/percpu.h>
13#include <linux/slab.h>
14
15#include <asm/asm-offsets.h>
16#include <asm/cacheflush.h>
17#include <asm/cacheops.h>
18#include <asm/idle.h>
19#include <asm/mips-cm.h>
20#include <asm/mips-cpc.h>
21#include <asm/mipsmtregs.h>
22#include <asm/pm.h>
23#include <asm/pm-cps.h>
24#include <asm/smp-cps.h>
25#include <asm/uasm.h>
26
27/*
28 * cps_nc_entry_fn - type of a generated non-coherent state entry function
29 * @online: the count of online coupled VPEs
30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31 *
32 * The code entering & exiting non-coherent states is generated at runtime
33 * using uasm, in order to ensure that the compiler cannot insert a stray
34 * memory access at an unfortunate time and to allow the generation of optimal
35 * core-specific code particularly for cache routines. If coupled_coherence
36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37 * returns the number of VPEs that were in the wait state at the point this
38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39 * the entry function for CPS_PM_NC_WAIT.
40 */
41typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42
43/*
44 * The entry point of the generated non-coherent idle state entry/exit
45 * functions. Actually per-core rather than per-CPU.
46 */
47static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48				  nc_asm_enter);
49
50/* Bitmap indicating which states are supported by the system */
51DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52
53/*
54 * Indicates the number of coupled VPEs ready to operate in a non-coherent
55 * state. Actually per-core rather than per-CPU.
56 */
57static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
59
60/* Indicates online CPUs coupled with the current CPU */
61static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62
63/*
64 * Used to synchronize entry to deep idle states. Actually per-core rather
65 * than per-CPU.
66 */
67static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68
69/* Saved CPU state across the CPS_PM_POWER_GATED state */
70DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71
72/* A somewhat arbitrary number of labels & relocs for uasm */
73static struct uasm_label labels[32] __initdata;
74static struct uasm_reloc relocs[32] __initdata;
75
76/* CPU dependant sync types */
77static unsigned stype_intervention;
78static unsigned stype_memory;
79static unsigned stype_ordering;
80
81enum mips_reg {
82	zero, at, v0, v1, a0, a1, a2, a3,
83	t0, t1, t2, t3, t4, t5, t6, t7,
84	s0, s1, s2, s3, s4, s5, s6, s7,
85	t8, t9, k0, k1, gp, sp, fp, ra,
86};
87
88bool cps_pm_support_state(enum cps_pm_state state)
89{
90	return test_bit(state, state_support);
91}
92
93static void coupled_barrier(atomic_t *a, unsigned online)
94{
95	/*
96	 * This function is effectively the same as
97	 * cpuidle_coupled_parallel_barrier, which can't be used here since
98	 * there's no cpuidle device.
99	 */
100
101	if (!coupled_coherence)
102		return;
103
104	smp_mb__before_atomic();
105	atomic_inc(a);
106
107	while (atomic_read(a) < online)
108		cpu_relax();
109
110	if (atomic_inc_return(a) == online * 2) {
111		atomic_set(a, 0);
112		return;
113	}
114
115	while (atomic_read(a) > online)
116		cpu_relax();
117}
118
119int cps_pm_enter_state(enum cps_pm_state state)
120{
121	unsigned cpu = smp_processor_id();
122	unsigned core = current_cpu_data.core;
123	unsigned online, left;
124	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
125	u32 *core_ready_count, *nc_core_ready_count;
126	void *nc_addr;
127	cps_nc_entry_fn entry;
128	struct core_boot_config *core_cfg;
129	struct vpe_boot_config *vpe_cfg;
130
131	/* Check that there is an entry function for this state */
132	entry = per_cpu(nc_asm_enter, core)[state];
133	if (!entry)
134		return -EINVAL;
135
136	/* Calculate which coupled CPUs (VPEs) are online */
137#ifdef CONFIG_MIPS_MT
138	if (cpu_online(cpu)) {
139		cpumask_and(coupled_mask, cpu_online_mask,
140			    &cpu_sibling_map[cpu]);
141		online = cpumask_weight(coupled_mask);
142		cpumask_clear_cpu(cpu, coupled_mask);
143	} else
144#endif
145	{
146		cpumask_clear(coupled_mask);
147		online = 1;
148	}
149
150	/* Setup the VPE to run mips_cps_pm_restore when started again */
151	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
152		/* Power gating relies upon CPS SMP */
153		if (!mips_cps_smp_in_use())
154			return -EINVAL;
155
156		core_cfg = &mips_cps_core_bootcfg[core];
157		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
158		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
159		vpe_cfg->gp = (unsigned long)current_thread_info();
160		vpe_cfg->sp = 0;
161	}
162
163	/* Indicate that this CPU might not be coherent */
164	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
165	smp_mb__after_atomic();
166
167	/* Create a non-coherent mapping of the core ready_count */
168	core_ready_count = per_cpu(ready_count, core);
169	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
170				   (unsigned long)core_ready_count);
171	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
172	nc_core_ready_count = nc_addr;
173
174	/* Ensure ready_count is zero-initialised before the assembly runs */
175	ACCESS_ONCE(*nc_core_ready_count) = 0;
176	coupled_barrier(&per_cpu(pm_barrier, core), online);
177
178	/* Run the generated entry code */
179	left = entry(online, nc_core_ready_count);
180
181	/* Remove the non-coherent mapping of ready_count */
182	kunmap_noncoherent();
183
184	/* Indicate that this CPU is definitely coherent */
185	cpumask_set_cpu(cpu, &cpu_coherent_mask);
186
187	/*
188	 * If this VPE is the first to leave the non-coherent wait state then
189	 * it needs to wake up any coupled VPEs still running their wait
190	 * instruction so that they return to cpuidle, which can then complete
191	 * coordination between the coupled VPEs & provide the governor with
192	 * a chance to reflect on the length of time the VPEs were in the
193	 * idle state.
194	 */
195	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
196		arch_send_call_function_ipi_mask(coupled_mask);
197
198	return 0;
199}
200
201static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
202					 struct uasm_reloc **pr,
203					 const struct cache_desc *cache,
204					 unsigned op, int lbl)
205{
206	unsigned cache_size = cache->ways << cache->waybit;
207	unsigned i;
208	const unsigned unroll_lines = 32;
209
210	/* If the cache isn't present this function has it easy */
211	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
212		return;
213
214	/* Load base address */
215	UASM_i_LA(pp, t0, (long)CKSEG0);
216
217	/* Calculate end address */
218	if (cache_size < 0x8000)
219		uasm_i_addiu(pp, t1, t0, cache_size);
220	else
221		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
222
223	/* Start of cache op loop */
224	uasm_build_label(pl, *pp, lbl);
225
226	/* Generate the cache ops */
227	for (i = 0; i < unroll_lines; i++)
228		uasm_i_cache(pp, op, i * cache->linesz, t0);
229
230	/* Update the base address */
231	uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
232
233	/* Loop if we haven't reached the end address yet */
234	uasm_il_bne(pp, pr, t0, t1, lbl);
235	uasm_i_nop(pp);
236}
237
238static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
239				    struct uasm_reloc **pr,
240				    const struct cpuinfo_mips *cpu_info,
241				    int lbl)
242{
243	unsigned i, fsb_size = 8;
244	unsigned num_loads = (fsb_size * 3) / 2;
245	unsigned line_stride = 2;
246	unsigned line_size = cpu_info->dcache.linesz;
247	unsigned perf_counter, perf_event;
248	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
249
250	/*
251	 * Determine whether this CPU requires an FSB flush, and if so which
252	 * performance counter/event reflect stalls due to a full FSB.
253	 */
254	switch (__get_cpu_type(cpu_info->cputype)) {
255	case CPU_INTERAPTIV:
256		perf_counter = 1;
257		perf_event = 51;
258		break;
259
260	case CPU_PROAPTIV:
261		/* Newer proAptiv cores don't require this workaround */
262		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
263			return 0;
264
265		/* On older ones it's unavailable */
266		return -1;
267
268	/* CPUs which do not require the workaround */
269	case CPU_P5600:
270		return 0;
271
272	default:
273		WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
274		return -1;
275	}
276
277	/*
278	 * Ensure that the fill/store buffer (FSB) is not holding the results
279	 * of a prefetch, since if it is then the CPC sequencer may become
280	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
281	 */
282
283	/* Preserve perf counter setup */
284	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
285	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
286
287	/* Setup perf counter to count FSB full pipeline stalls */
288	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
289	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
290	uasm_i_ehb(pp);
291	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
292	uasm_i_ehb(pp);
293
294	/* Base address for loads */
295	UASM_i_LA(pp, t0, (long)CKSEG0);
296
297	/* Start of clear loop */
298	uasm_build_label(pl, *pp, lbl);
299
300	/* Perform some loads to fill the FSB */
301	for (i = 0; i < num_loads; i++)
302		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
303
304	/*
305	 * Invalidate the new D-cache entries so that the cache will need
306	 * refilling (via the FSB) if the loop is executed again.
307	 */
308	for (i = 0; i < num_loads; i++) {
309		uasm_i_cache(pp, Hit_Invalidate_D,
310			     i * line_size * line_stride, t0);
311		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
312			     i * line_size * line_stride, t0);
313	}
314
315	/* Completion barrier */
316	uasm_i_sync(pp, stype_memory);
317	uasm_i_ehb(pp);
318
319	/* Check whether the pipeline stalled due to the FSB being full */
320	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
321
322	/* Loop if it didn't */
323	uasm_il_beqz(pp, pr, t1, lbl);
324	uasm_i_nop(pp);
325
326	/* Restore perf counter 1. The count may well now be wrong... */
327	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
328	uasm_i_ehb(pp);
329	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
330	uasm_i_ehb(pp);
331
332	return 0;
333}
334
335static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
336				       struct uasm_reloc **pr,
337				       unsigned r_addr, int lbl)
338{
339	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
340	uasm_build_label(pl, *pp, lbl);
341	uasm_i_ll(pp, t1, 0, r_addr);
342	uasm_i_or(pp, t1, t1, t0);
343	uasm_i_sc(pp, t1, 0, r_addr);
344	uasm_il_beqz(pp, pr, t1, lbl);
345	uasm_i_nop(pp);
346}
347
348static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
349{
350	struct uasm_label *l = labels;
351	struct uasm_reloc *r = relocs;
352	u32 *buf, *p;
353	const unsigned r_online = a0;
354	const unsigned r_nc_count = a1;
355	const unsigned r_pcohctl = t7;
356	const unsigned max_instrs = 256;
357	unsigned cpc_cmd;
358	int err;
359	enum {
360		lbl_incready = 1,
361		lbl_poll_cont,
362		lbl_secondary_hang,
363		lbl_disable_coherence,
364		lbl_flush_fsb,
365		lbl_invicache,
366		lbl_flushdcache,
367		lbl_hang,
368		lbl_set_cont,
369		lbl_secondary_cont,
370		lbl_decready,
371	};
372
373	/* Allocate a buffer to hold the generated code */
374	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
375	if (!buf)
376		return NULL;
377
378	/* Clear labels & relocs ready for (re)use */
379	memset(labels, 0, sizeof(labels));
380	memset(relocs, 0, sizeof(relocs));
381
382	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
383		/* Power gating relies upon CPS SMP */
384		if (!mips_cps_smp_in_use())
385			goto out_err;
386
387		/*
388		 * Save CPU state. Note the non-standard calling convention
389		 * with the return address placed in v0 to avoid clobbering
390		 * the ra register before it is saved.
391		 */
392		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
393		uasm_i_jalr(&p, v0, t0);
394		uasm_i_nop(&p);
395	}
396
397	/*
398	 * Load addresses of required CM & CPC registers. This is done early
399	 * because they're needed in both the enable & disable coherence steps
400	 * but in the coupled case the enable step will only run on one VPE.
401	 */
402	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
403
404	if (coupled_coherence) {
405		/* Increment ready_count */
406		uasm_i_sync(&p, stype_ordering);
407		uasm_build_label(&l, p, lbl_incready);
408		uasm_i_ll(&p, t1, 0, r_nc_count);
409		uasm_i_addiu(&p, t2, t1, 1);
410		uasm_i_sc(&p, t2, 0, r_nc_count);
411		uasm_il_beqz(&p, &r, t2, lbl_incready);
412		uasm_i_addiu(&p, t1, t1, 1);
413
414		/* Ordering barrier */
415		uasm_i_sync(&p, stype_ordering);
416
417		/*
418		 * If this is the last VPE to become ready for non-coherence
419		 * then it should branch below.
420		 */
421		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
422		uasm_i_nop(&p);
423
424		if (state < CPS_PM_POWER_GATED) {
425			/*
426			 * Otherwise this is not the last VPE to become ready
427			 * for non-coherence. It needs to wait until coherence
428			 * has been disabled before proceeding, which it will do
429			 * by polling for the top bit of ready_count being set.
430			 */
431			uasm_i_addiu(&p, t1, zero, -1);
432			uasm_build_label(&l, p, lbl_poll_cont);
433			uasm_i_lw(&p, t0, 0, r_nc_count);
434			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
435			uasm_i_ehb(&p);
436			uasm_i_yield(&p, zero, t1);
437			uasm_il_b(&p, &r, lbl_poll_cont);
438			uasm_i_nop(&p);
439		} else {
440			/*
441			 * The core will lose power & this VPE will not continue
442			 * so it can simply halt here.
443			 */
444			uasm_i_addiu(&p, t0, zero, TCHALT_H);
445			uasm_i_mtc0(&p, t0, 2, 4);
446			uasm_build_label(&l, p, lbl_secondary_hang);
447			uasm_il_b(&p, &r, lbl_secondary_hang);
448			uasm_i_nop(&p);
449		}
450	}
451
452	/*
453	 * This is the point of no return - this VPE will now proceed to
454	 * disable coherence. At this point we *must* be sure that no other
455	 * VPE within the core will interfere with the L1 dcache.
456	 */
457	uasm_build_label(&l, p, lbl_disable_coherence);
458
459	/* Invalidate the L1 icache */
460	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
461			      Index_Invalidate_I, lbl_invicache);
462
463	/* Writeback & invalidate the L1 dcache */
464	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
465			      Index_Writeback_Inv_D, lbl_flushdcache);
466
467	/* Completion barrier */
468	uasm_i_sync(&p, stype_memory);
469	uasm_i_ehb(&p);
470
471	/*
472	 * Disable all but self interventions. The load from COHCTL is defined
473	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
474	 * resulting from the preceeding store is complete.
475	 */
476	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
477	uasm_i_sw(&p, t0, 0, r_pcohctl);
478	uasm_i_lw(&p, t0, 0, r_pcohctl);
479
480	/* Sync to ensure previous interventions are complete */
481	uasm_i_sync(&p, stype_intervention);
482	uasm_i_ehb(&p);
483
484	/* Disable coherence */
485	uasm_i_sw(&p, zero, 0, r_pcohctl);
486	uasm_i_lw(&p, t0, 0, r_pcohctl);
487
488	if (state >= CPS_PM_CLOCK_GATED) {
489		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
490					lbl_flush_fsb);
491		if (err)
492			goto out_err;
493
494		/* Determine the CPC command to issue */
495		switch (state) {
496		case CPS_PM_CLOCK_GATED:
497			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
498			break;
499		case CPS_PM_POWER_GATED:
500			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
501			break;
502		default:
503			BUG();
504			goto out_err;
505		}
506
507		/* Issue the CPC command */
508		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
509		uasm_i_addiu(&p, t1, zero, cpc_cmd);
510		uasm_i_sw(&p, t1, 0, t0);
511
512		if (state == CPS_PM_POWER_GATED) {
513			/* If anything goes wrong just hang */
514			uasm_build_label(&l, p, lbl_hang);
515			uasm_il_b(&p, &r, lbl_hang);
516			uasm_i_nop(&p);
517
518			/*
519			 * There's no point generating more code, the core is
520			 * powered down & if powered back up will run from the
521			 * reset vector not from here.
522			 */
523			goto gen_done;
524		}
525
526		/* Completion barrier */
527		uasm_i_sync(&p, stype_memory);
528		uasm_i_ehb(&p);
529	}
530
531	if (state == CPS_PM_NC_WAIT) {
532		/*
533		 * At this point it is safe for all VPEs to proceed with
534		 * execution. This VPE will set the top bit of ready_count
535		 * to indicate to the other VPEs that they may continue.
536		 */
537		if (coupled_coherence)
538			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
539					    lbl_set_cont);
540
541		/*
542		 * VPEs which did not disable coherence will continue
543		 * executing, after coherence has been disabled, from this
544		 * point.
545		 */
546		uasm_build_label(&l, p, lbl_secondary_cont);
547
548		/* Now perform our wait */
549		uasm_i_wait(&p, 0);
550	}
551
552	/*
553	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
554	 * will run this. The first will actually re-enable coherence & the
555	 * rest will just be performing a rather unusual nop.
556	 */
557	uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
558	uasm_i_sw(&p, t0, 0, r_pcohctl);
559	uasm_i_lw(&p, t0, 0, r_pcohctl);
560
561	/* Completion barrier */
562	uasm_i_sync(&p, stype_memory);
563	uasm_i_ehb(&p);
564
565	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
566		/* Decrement ready_count */
567		uasm_build_label(&l, p, lbl_decready);
568		uasm_i_sync(&p, stype_ordering);
569		uasm_i_ll(&p, t1, 0, r_nc_count);
570		uasm_i_addiu(&p, t2, t1, -1);
571		uasm_i_sc(&p, t2, 0, r_nc_count);
572		uasm_il_beqz(&p, &r, t2, lbl_decready);
573		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
574
575		/* Ordering barrier */
576		uasm_i_sync(&p, stype_ordering);
577	}
578
579	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
580		/*
581		 * At this point it is safe for all VPEs to proceed with
582		 * execution. This VPE will set the top bit of ready_count
583		 * to indicate to the other VPEs that they may continue.
584		 */
585		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
586
587		/*
588		 * This core will be reliant upon another core sending a
589		 * power-up command to the CPC in order to resume operation.
590		 * Thus an arbitrary VPE can't trigger the core leaving the
591		 * idle state and the one that disables coherence might as well
592		 * be the one to re-enable it. The rest will continue from here
593		 * after that has been done.
594		 */
595		uasm_build_label(&l, p, lbl_secondary_cont);
596
597		/* Ordering barrier */
598		uasm_i_sync(&p, stype_ordering);
599	}
600
601	/* The core is coherent, time to return to C code */
602	uasm_i_jr(&p, ra);
603	uasm_i_nop(&p);
604
605gen_done:
606	/* Ensure the code didn't exceed the resources allocated for it */
607	BUG_ON((p - buf) > max_instrs);
608	BUG_ON((l - labels) > ARRAY_SIZE(labels));
609	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
610
611	/* Patch branch offsets */
612	uasm_resolve_relocs(relocs, labels);
613
614	/* Flush the icache */
615	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
616
617	return buf;
618out_err:
619	kfree(buf);
620	return NULL;
621}
622
623static int __init cps_gen_core_entries(unsigned cpu)
624{
625	enum cps_pm_state state;
626	unsigned core = cpu_data[cpu].core;
627	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
628	void *entry_fn, *core_rc;
629
630	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
631		if (per_cpu(nc_asm_enter, core)[state])
632			continue;
633		if (!test_bit(state, state_support))
634			continue;
635
636		entry_fn = cps_gen_entry_code(cpu, state);
637		if (!entry_fn) {
638			pr_err("Failed to generate core %u state %u entry\n",
639			       core, state);
640			clear_bit(state, state_support);
641		}
642
643		per_cpu(nc_asm_enter, core)[state] = entry_fn;
644	}
645
646	if (!per_cpu(ready_count, core)) {
647		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
648		if (!core_rc) {
649			pr_err("Failed allocate core %u ready_count\n", core);
650			return -ENOMEM;
651		}
652		per_cpu(ready_count_alloc, core) = core_rc;
653
654		/* Ensure ready_count is aligned to a cacheline boundary */
655		core_rc += dlinesz - 1;
656		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
657		per_cpu(ready_count, core) = core_rc;
658	}
659
660	return 0;
661}
662
663static int __init cps_pm_init(void)
664{
665	unsigned cpu;
666	int err;
667
668	/* Detect appropriate sync types for the system */
669	switch (current_cpu_data.cputype) {
670	case CPU_INTERAPTIV:
671	case CPU_PROAPTIV:
672	case CPU_M5150:
673	case CPU_P5600:
674		stype_intervention = 0x2;
675		stype_memory = 0x3;
676		stype_ordering = 0x10;
677		break;
678
679	default:
680		pr_warn("Power management is using heavyweight sync 0\n");
681	}
682
683	/* A CM is required for all non-coherent states */
684	if (!mips_cm_present()) {
685		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
686		goto out;
687	}
688
689	/*
690	 * If interrupts were enabled whilst running a wait instruction on a
691	 * non-coherent core then the VPE may end up processing interrupts
692	 * whilst non-coherent. That would be bad.
693	 */
694	if (cpu_wait == r4k_wait_irqoff)
695		set_bit(CPS_PM_NC_WAIT, state_support);
696	else
697		pr_warn("pm-cps: non-coherent wait unavailable\n");
698
699	/* Detect whether a CPC is present */
700	if (mips_cpc_present()) {
701		/* Detect whether clock gating is implemented */
702		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
703			set_bit(CPS_PM_CLOCK_GATED, state_support);
704		else
705			pr_warn("pm-cps: CPC does not support clock gating\n");
706
707		/* Power gating is available with CPS SMP & any CPC */
708		if (mips_cps_smp_in_use())
709			set_bit(CPS_PM_POWER_GATED, state_support);
710		else
711			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
712	} else {
713		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
714	}
715
716	for_each_present_cpu(cpu) {
717		err = cps_gen_core_entries(cpu);
718		if (err)
719			return err;
720	}
721out:
722	return 0;
723}
724arch_initcall(cps_pm_init);
725