1/*
2 *  This file contains ioremap and related functions for 64-bit machines.
3 *
4 *  Derived from arch/ppc64/mm/init.c
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 *    Copyright (C) 1996 Paul Mackerras
10 *
11 *  Derived from "arch/i386/mm/init.c"
12 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13 *
14 *  Dave Engebretsen <engebret@us.ibm.com>
15 *      Rework for PPC64 port.
16 *
17 *  This program is free software; you can redistribute it and/or
18 *  modify it under the terms of the GNU General Public License
19 *  as published by the Free Software Foundation; either version
20 *  2 of the License, or (at your option) any later version.
21 *
22 */
23
24#include <linux/signal.h>
25#include <linux/sched.h>
26#include <linux/kernel.h>
27#include <linux/errno.h>
28#include <linux/string.h>
29#include <linux/export.h>
30#include <linux/types.h>
31#include <linux/mman.h>
32#include <linux/mm.h>
33#include <linux/swap.h>
34#include <linux/stddef.h>
35#include <linux/vmalloc.h>
36#include <linux/bootmem.h>
37#include <linux/memblock.h>
38#include <linux/slab.h>
39
40#include <asm/pgalloc.h>
41#include <asm/page.h>
42#include <asm/prom.h>
43#include <asm/io.h>
44#include <asm/mmu_context.h>
45#include <asm/pgtable.h>
46#include <asm/mmu.h>
47#include <asm/smp.h>
48#include <asm/machdep.h>
49#include <asm/tlb.h>
50#include <asm/processor.h>
51#include <asm/cputable.h>
52#include <asm/sections.h>
53#include <asm/firmware.h>
54
55#include "mmu_decl.h"
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/thp.h>
59
60/* Some sanity checking */
61#if TASK_SIZE_USER64 > PGTABLE_RANGE
62#error TASK_SIZE_USER64 exceeds pagetable range
63#endif
64
65#ifdef CONFIG_PPC_STD_MMU_64
66#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
67#error TASK_SIZE_USER64 exceeds user VSID range
68#endif
69#endif
70
71unsigned long ioremap_bot = IOREMAP_BASE;
72
73#ifdef CONFIG_PPC_MMU_NOHASH
74static __ref void *early_alloc_pgtable(unsigned long size)
75{
76	void *pt;
77
78	if (init_bootmem_done)
79		pt = __alloc_bootmem(size, size, __pa(MAX_DMA_ADDRESS));
80	else
81		pt = __va(memblock_alloc_base(size, size,
82					 __pa(MAX_DMA_ADDRESS)));
83	memset(pt, 0, size);
84
85	return pt;
86}
87#endif /* CONFIG_PPC_MMU_NOHASH */
88
89/*
90 * map_kernel_page currently only called by __ioremap
91 * map_kernel_page adds an entry to the ioremap page table
92 * and adds an entry to the HPT, possibly bolting it
93 */
94int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
95{
96	pgd_t *pgdp;
97	pud_t *pudp;
98	pmd_t *pmdp;
99	pte_t *ptep;
100
101	if (slab_is_available()) {
102		pgdp = pgd_offset_k(ea);
103		pudp = pud_alloc(&init_mm, pgdp, ea);
104		if (!pudp)
105			return -ENOMEM;
106		pmdp = pmd_alloc(&init_mm, pudp, ea);
107		if (!pmdp)
108			return -ENOMEM;
109		ptep = pte_alloc_kernel(pmdp, ea);
110		if (!ptep)
111			return -ENOMEM;
112		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
113							  __pgprot(flags)));
114	} else {
115#ifdef CONFIG_PPC_MMU_NOHASH
116		/* Warning ! This will blow up if bootmem is not initialized
117		 * which our ppc64 code is keen to do that, we'll need to
118		 * fix it and/or be more careful
119		 */
120		pgdp = pgd_offset_k(ea);
121#ifdef PUD_TABLE_SIZE
122		if (pgd_none(*pgdp)) {
123			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
124			BUG_ON(pudp == NULL);
125			pgd_populate(&init_mm, pgdp, pudp);
126		}
127#endif /* PUD_TABLE_SIZE */
128		pudp = pud_offset(pgdp, ea);
129		if (pud_none(*pudp)) {
130			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
131			BUG_ON(pmdp == NULL);
132			pud_populate(&init_mm, pudp, pmdp);
133		}
134		pmdp = pmd_offset(pudp, ea);
135		if (!pmd_present(*pmdp)) {
136			ptep = early_alloc_pgtable(PAGE_SIZE);
137			BUG_ON(ptep == NULL);
138			pmd_populate_kernel(&init_mm, pmdp, ptep);
139		}
140		ptep = pte_offset_kernel(pmdp, ea);
141		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
142							  __pgprot(flags)));
143#else /* CONFIG_PPC_MMU_NOHASH */
144		/*
145		 * If the mm subsystem is not fully up, we cannot create a
146		 * linux page table entry for this mapping.  Simply bolt an
147		 * entry in the hardware page table.
148		 *
149		 */
150		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
151				      mmu_io_psize, mmu_kernel_ssize)) {
152			printk(KERN_ERR "Failed to do bolted mapping IO "
153			       "memory at %016lx !\n", pa);
154			return -ENOMEM;
155		}
156#endif /* !CONFIG_PPC_MMU_NOHASH */
157	}
158
159#ifdef CONFIG_PPC_BOOK3E_64
160	/*
161	 * With hardware tablewalk, a sync is needed to ensure that
162	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
163	 * mappings, we can't tolerate spurious faults, so make sure
164	 * the new PTE will be seen the first time.
165	 */
166	mb();
167#else
168	smp_wmb();
169#endif
170	return 0;
171}
172
173
174/**
175 * __ioremap_at - Low level function to establish the page tables
176 *                for an IO mapping
177 */
178void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
179			    unsigned long flags)
180{
181	unsigned long i;
182
183	/* Make sure we have the base flags */
184	if ((flags & _PAGE_PRESENT) == 0)
185		flags |= pgprot_val(PAGE_KERNEL);
186
187	/* Non-cacheable page cannot be coherent */
188	if (flags & _PAGE_NO_CACHE)
189		flags &= ~_PAGE_COHERENT;
190
191	/* We don't support the 4K PFN hack with ioremap */
192	if (flags & _PAGE_4K_PFN)
193		return NULL;
194
195	WARN_ON(pa & ~PAGE_MASK);
196	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
197	WARN_ON(size & ~PAGE_MASK);
198
199	for (i = 0; i < size; i += PAGE_SIZE)
200		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
201			return NULL;
202
203	return (void __iomem *)ea;
204}
205
206/**
207 * __iounmap_from - Low level function to tear down the page tables
208 *                  for an IO mapping. This is used for mappings that
209 *                  are manipulated manually, like partial unmapping of
210 *                  PCI IOs or ISA space.
211 */
212void __iounmap_at(void *ea, unsigned long size)
213{
214	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
215	WARN_ON(size & ~PAGE_MASK);
216
217	unmap_kernel_range((unsigned long)ea, size);
218}
219
220void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
221				unsigned long flags, void *caller)
222{
223	phys_addr_t paligned;
224	void __iomem *ret;
225
226	/*
227	 * Choose an address to map it to.
228	 * Once the imalloc system is running, we use it.
229	 * Before that, we map using addresses going
230	 * up from ioremap_bot.  imalloc will use
231	 * the addresses from ioremap_bot through
232	 * IMALLOC_END
233	 *
234	 */
235	paligned = addr & PAGE_MASK;
236	size = PAGE_ALIGN(addr + size) - paligned;
237
238	if ((size == 0) || (paligned == 0))
239		return NULL;
240
241	if (mem_init_done) {
242		struct vm_struct *area;
243
244		area = __get_vm_area_caller(size, VM_IOREMAP,
245					    ioremap_bot, IOREMAP_END,
246					    caller);
247		if (area == NULL)
248			return NULL;
249
250		area->phys_addr = paligned;
251		ret = __ioremap_at(paligned, area->addr, size, flags);
252		if (!ret)
253			vunmap(area->addr);
254	} else {
255		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
256		if (ret)
257			ioremap_bot += size;
258	}
259
260	if (ret)
261		ret += addr & ~PAGE_MASK;
262	return ret;
263}
264
265void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
266			 unsigned long flags)
267{
268	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
269}
270
271void __iomem * ioremap(phys_addr_t addr, unsigned long size)
272{
273	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
274	void *caller = __builtin_return_address(0);
275
276	if (ppc_md.ioremap)
277		return ppc_md.ioremap(addr, size, flags, caller);
278	return __ioremap_caller(addr, size, flags, caller);
279}
280
281void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
282{
283	unsigned long flags = _PAGE_NO_CACHE;
284	void *caller = __builtin_return_address(0);
285
286	if (ppc_md.ioremap)
287		return ppc_md.ioremap(addr, size, flags, caller);
288	return __ioremap_caller(addr, size, flags, caller);
289}
290
291void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
292			     unsigned long flags)
293{
294	void *caller = __builtin_return_address(0);
295
296	/* writeable implies dirty for kernel addresses */
297	if (flags & _PAGE_RW)
298		flags |= _PAGE_DIRTY;
299
300	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
301	flags &= ~(_PAGE_USER | _PAGE_EXEC);
302
303#ifdef _PAGE_BAP_SR
304	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
305	 * which means that we just cleared supervisor access... oops ;-) This
306	 * restores it
307	 */
308	flags |= _PAGE_BAP_SR;
309#endif
310
311	if (ppc_md.ioremap)
312		return ppc_md.ioremap(addr, size, flags, caller);
313	return __ioremap_caller(addr, size, flags, caller);
314}
315
316
317/*
318 * Unmap an IO region and remove it from imalloc'd list.
319 * Access to IO memory should be serialized by driver.
320 */
321void __iounmap(volatile void __iomem *token)
322{
323	void *addr;
324
325	if (!mem_init_done)
326		return;
327
328	addr = (void *) ((unsigned long __force)
329			 PCI_FIX_ADDR(token) & PAGE_MASK);
330	if ((unsigned long)addr < ioremap_bot) {
331		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
332		       " at 0x%p\n", addr);
333		return;
334	}
335	vunmap(addr);
336}
337
338void iounmap(volatile void __iomem *token)
339{
340	if (ppc_md.iounmap)
341		ppc_md.iounmap(token);
342	else
343		__iounmap(token);
344}
345
346EXPORT_SYMBOL(ioremap);
347EXPORT_SYMBOL(ioremap_wc);
348EXPORT_SYMBOL(ioremap_prot);
349EXPORT_SYMBOL(__ioremap);
350EXPORT_SYMBOL(__ioremap_at);
351EXPORT_SYMBOL(iounmap);
352EXPORT_SYMBOL(__iounmap);
353EXPORT_SYMBOL(__iounmap_at);
354
355/*
356 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
357 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
358 */
359struct page *pmd_page(pmd_t pmd)
360{
361#ifdef CONFIG_TRANSPARENT_HUGEPAGE
362	if (pmd_trans_huge(pmd))
363		return pfn_to_page(pmd_pfn(pmd));
364#endif
365	return virt_to_page(pmd_page_vaddr(pmd));
366}
367
368#ifdef CONFIG_PPC_64K_PAGES
369static pte_t *get_from_cache(struct mm_struct *mm)
370{
371	void *pte_frag, *ret;
372
373	spin_lock(&mm->page_table_lock);
374	ret = mm->context.pte_frag;
375	if (ret) {
376		pte_frag = ret + PTE_FRAG_SIZE;
377		/*
378		 * If we have taken up all the fragments mark PTE page NULL
379		 */
380		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
381			pte_frag = NULL;
382		mm->context.pte_frag = pte_frag;
383	}
384	spin_unlock(&mm->page_table_lock);
385	return (pte_t *)ret;
386}
387
388static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
389{
390	void *ret = NULL;
391	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
392				       __GFP_REPEAT | __GFP_ZERO);
393	if (!page)
394		return NULL;
395	if (!kernel && !pgtable_page_ctor(page)) {
396		__free_page(page);
397		return NULL;
398	}
399
400	ret = page_address(page);
401	spin_lock(&mm->page_table_lock);
402	/*
403	 * If we find pgtable_page set, we return
404	 * the allocated page with single fragement
405	 * count.
406	 */
407	if (likely(!mm->context.pte_frag)) {
408		atomic_set(&page->_count, PTE_FRAG_NR);
409		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
410	}
411	spin_unlock(&mm->page_table_lock);
412
413	return (pte_t *)ret;
414}
415
416pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
417{
418	pte_t *pte;
419
420	pte = get_from_cache(mm);
421	if (pte)
422		return pte;
423
424	return __alloc_for_cache(mm, kernel);
425}
426
427void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
428{
429	struct page *page = virt_to_page(table);
430	if (put_page_testzero(page)) {
431		if (!kernel)
432			pgtable_page_dtor(page);
433		free_hot_cold_page(page, 0);
434	}
435}
436
437#ifdef CONFIG_SMP
438static void page_table_free_rcu(void *table)
439{
440	struct page *page = virt_to_page(table);
441	if (put_page_testzero(page)) {
442		pgtable_page_dtor(page);
443		free_hot_cold_page(page, 0);
444	}
445}
446
447void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
448{
449	unsigned long pgf = (unsigned long)table;
450
451	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
452	pgf |= shift;
453	tlb_remove_table(tlb, (void *)pgf);
454}
455
456void __tlb_remove_table(void *_table)
457{
458	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
459	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
460
461	if (!shift)
462		/* PTE page needs special handling */
463		page_table_free_rcu(table);
464	else {
465		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
466		kmem_cache_free(PGT_CACHE(shift), table);
467	}
468}
469#else
470void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
471{
472	if (!shift) {
473		/* PTE page needs special handling */
474		struct page *page = virt_to_page(table);
475		if (put_page_testzero(page)) {
476			pgtable_page_dtor(page);
477			free_hot_cold_page(page, 0);
478		}
479	} else {
480		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
481		kmem_cache_free(PGT_CACHE(shift), table);
482	}
483}
484#endif
485#endif /* CONFIG_PPC_64K_PAGES */
486
487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
488
489/*
490 * This is called when relaxing access to a hugepage. It's also called in the page
491 * fault path when we don't hit any of the major fault cases, ie, a minor
492 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
493 * handled those two for us, we additionally deal with missing execute
494 * permission here on some processors
495 */
496int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
497			  pmd_t *pmdp, pmd_t entry, int dirty)
498{
499	int changed;
500#ifdef CONFIG_DEBUG_VM
501	WARN_ON(!pmd_trans_huge(*pmdp));
502	assert_spin_locked(&vma->vm_mm->page_table_lock);
503#endif
504	changed = !pmd_same(*(pmdp), entry);
505	if (changed) {
506		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
507		/*
508		 * Since we are not supporting SW TLB systems, we don't
509		 * have any thing similar to flush_tlb_page_nohash()
510		 */
511	}
512	return changed;
513}
514
515unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
516				  pmd_t *pmdp, unsigned long clr,
517				  unsigned long set)
518{
519
520	unsigned long old, tmp;
521
522#ifdef CONFIG_DEBUG_VM
523	WARN_ON(!pmd_trans_huge(*pmdp));
524	assert_spin_locked(&mm->page_table_lock);
525#endif
526
527#ifdef PTE_ATOMIC_UPDATES
528	__asm__ __volatile__(
529	"1:	ldarx	%0,0,%3\n\
530		andi.	%1,%0,%6\n\
531		bne-	1b \n\
532		andc	%1,%0,%4 \n\
533		or	%1,%1,%7\n\
534		stdcx.	%1,0,%3 \n\
535		bne-	1b"
536	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
537	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
538	: "cc" );
539#else
540	old = pmd_val(*pmdp);
541	*pmdp = __pmd((old & ~clr) | set);
542#endif
543	trace_hugepage_update(addr, old, clr, set);
544	if (old & _PAGE_HASHPTE)
545		hpte_do_hugepage_flush(mm, addr, pmdp, old);
546	return old;
547}
548
549pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
550		       pmd_t *pmdp)
551{
552	pmd_t pmd;
553
554	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
555	if (pmd_trans_huge(*pmdp)) {
556		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
557	} else {
558		/*
559		 * khugepaged calls this for normal pmd
560		 */
561		pmd = *pmdp;
562		pmd_clear(pmdp);
563		/*
564		 * Wait for all pending hash_page to finish. This is needed
565		 * in case of subpage collapse. When we collapse normal pages
566		 * to hugepage, we first clear the pmd, then invalidate all
567		 * the PTE entries. The assumption here is that any low level
568		 * page fault will see a none pmd and take the slow path that
569		 * will wait on mmap_sem. But we could very well be in a
570		 * hash_page with local ptep pointer value. Such a hash page
571		 * can result in adding new HPTE entries for normal subpages.
572		 * That means we could be modifying the page content as we
573		 * copy them to a huge page. So wait for parallel hash_page
574		 * to finish before invalidating HPTE entries. We can do this
575		 * by sending an IPI to all the cpus and executing a dummy
576		 * function there.
577		 */
578		kick_all_cpus_sync();
579		/*
580		 * Now invalidate the hpte entries in the range
581		 * covered by pmd. This make sure we take a
582		 * fault and will find the pmd as none, which will
583		 * result in a major fault which takes mmap_sem and
584		 * hence wait for collapse to complete. Without this
585		 * the __collapse_huge_page_copy can result in copying
586		 * the old content.
587		 */
588		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
589	}
590	return pmd;
591}
592
593int pmdp_test_and_clear_young(struct vm_area_struct *vma,
594			      unsigned long address, pmd_t *pmdp)
595{
596	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
597}
598
599/*
600 * We currently remove entries from the hashtable regardless of whether
601 * the entry was young or dirty. The generic routines only flush if the
602 * entry was young or dirty which is not good enough.
603 *
604 * We should be more intelligent about this but for the moment we override
605 * these functions and force a tlb flush unconditionally
606 */
607int pmdp_clear_flush_young(struct vm_area_struct *vma,
608				  unsigned long address, pmd_t *pmdp)
609{
610	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
611}
612
613/*
614 * We mark the pmd splitting and invalidate all the hpte
615 * entries for this hugepage.
616 */
617void pmdp_splitting_flush(struct vm_area_struct *vma,
618			  unsigned long address, pmd_t *pmdp)
619{
620	unsigned long old, tmp;
621
622	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
623
624#ifdef CONFIG_DEBUG_VM
625	WARN_ON(!pmd_trans_huge(*pmdp));
626	assert_spin_locked(&vma->vm_mm->page_table_lock);
627#endif
628
629#ifdef PTE_ATOMIC_UPDATES
630
631	__asm__ __volatile__(
632	"1:	ldarx	%0,0,%3\n\
633		andi.	%1,%0,%6\n\
634		bne-	1b \n\
635		ori	%1,%0,%4 \n\
636		stdcx.	%1,0,%3 \n\
637		bne-	1b"
638	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
639	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
640	: "cc" );
641#else
642	old = pmd_val(*pmdp);
643	*pmdp = __pmd(old | _PAGE_SPLITTING);
644#endif
645	/*
646	 * If we didn't had the splitting flag set, go and flush the
647	 * HPTE entries.
648	 */
649	trace_hugepage_splitting(address, old);
650	if (!(old & _PAGE_SPLITTING)) {
651		/* We need to flush the hpte */
652		if (old & _PAGE_HASHPTE)
653			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
654	}
655	/*
656	 * This ensures that generic code that rely on IRQ disabling
657	 * to prevent a parallel THP split work as expected.
658	 */
659	kick_all_cpus_sync();
660}
661
662/*
663 * We want to put the pgtable in pmd and use pgtable for tracking
664 * the base page size hptes
665 */
666void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
667				pgtable_t pgtable)
668{
669	pgtable_t *pgtable_slot;
670	assert_spin_locked(&mm->page_table_lock);
671	/*
672	 * we store the pgtable in the second half of PMD
673	 */
674	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
675	*pgtable_slot = pgtable;
676	/*
677	 * expose the deposited pgtable to other cpus.
678	 * before we set the hugepage PTE at pmd level
679	 * hash fault code looks at the deposted pgtable
680	 * to store hash index values.
681	 */
682	smp_wmb();
683}
684
685pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
686{
687	pgtable_t pgtable;
688	pgtable_t *pgtable_slot;
689
690	assert_spin_locked(&mm->page_table_lock);
691	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
692	pgtable = *pgtable_slot;
693	/*
694	 * Once we withdraw, mark the entry NULL.
695	 */
696	*pgtable_slot = NULL;
697	/*
698	 * We store HPTE information in the deposited PTE fragment.
699	 * zero out the content on withdraw.
700	 */
701	memset(pgtable, 0, PTE_FRAG_SIZE);
702	return pgtable;
703}
704
705/*
706 * set a new huge pmd. We should not be called for updating
707 * an existing pmd entry. That should go via pmd_hugepage_update.
708 */
709void set_pmd_at(struct mm_struct *mm, unsigned long addr,
710		pmd_t *pmdp, pmd_t pmd)
711{
712#ifdef CONFIG_DEBUG_VM
713	WARN_ON(pmd_val(*pmdp) & _PAGE_PRESENT);
714	assert_spin_locked(&mm->page_table_lock);
715	WARN_ON(!pmd_trans_huge(pmd));
716#endif
717	trace_hugepage_set_pmd(addr, pmd);
718	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
719}
720
721void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
722		     pmd_t *pmdp)
723{
724	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
725}
726
727/*
728 * A linux hugepage PMD was changed and the corresponding hash table entries
729 * neesd to be flushed.
730 */
731void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
732			    pmd_t *pmdp, unsigned long old_pmd)
733{
734	int ssize, i;
735	unsigned long s_addr;
736	int max_hpte_count;
737	unsigned int psize, valid;
738	unsigned char *hpte_slot_array;
739	unsigned long hidx, vpn, vsid, hash, shift, slot;
740
741	/*
742	 * Flush all the hptes mapping this hugepage
743	 */
744	s_addr = addr & HPAGE_PMD_MASK;
745	hpte_slot_array = get_hpte_slot_array(pmdp);
746	/*
747	 * IF we try to do a HUGE PTE update after a withdraw is done.
748	 * we will find the below NULL. This happens when we do
749	 * split_huge_page_pmd
750	 */
751	if (!hpte_slot_array)
752		return;
753
754	/* get the base page size,vsid and segment size */
755#ifdef CONFIG_DEBUG_VM
756	psize = get_slice_psize(mm, s_addr);
757	BUG_ON(psize == MMU_PAGE_16M);
758#endif
759	if (old_pmd & _PAGE_COMBO)
760		psize = MMU_PAGE_4K;
761	else
762		psize = MMU_PAGE_64K;
763
764	if (!is_kernel_addr(s_addr)) {
765		ssize = user_segment_size(s_addr);
766		vsid = get_vsid(mm->context.id, s_addr, ssize);
767		WARN_ON(vsid == 0);
768	} else {
769		vsid = get_kernel_vsid(s_addr, mmu_kernel_ssize);
770		ssize = mmu_kernel_ssize;
771	}
772
773	if (ppc_md.hugepage_invalidate)
774		return ppc_md.hugepage_invalidate(vsid, s_addr,
775						  hpte_slot_array,
776						  psize, ssize);
777	/*
778	 * No bluk hpte removal support, invalidate each entry
779	 */
780	shift = mmu_psize_defs[psize].shift;
781	max_hpte_count = HPAGE_PMD_SIZE >> shift;
782	for (i = 0; i < max_hpte_count; i++) {
783		/*
784		 * 8 bits per each hpte entries
785		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
786		 */
787		valid = hpte_valid(hpte_slot_array, i);
788		if (!valid)
789			continue;
790		hidx =  hpte_hash_index(hpte_slot_array, i);
791
792		/* get the vpn */
793		addr = s_addr + (i * (1ul << shift));
794		vpn = hpt_vpn(addr, vsid, ssize);
795		hash = hpt_hash(vpn, shift, ssize);
796		if (hidx & _PTEIDX_SECONDARY)
797			hash = ~hash;
798
799		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
800		slot += hidx & _PTEIDX_GROUP_IX;
801		ppc_md.hpte_invalidate(slot, vpn, psize,
802				       MMU_PAGE_16M, ssize, 0);
803	}
804}
805
806static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
807{
808	pmd_val(pmd) |= pgprot_val(pgprot);
809	return pmd;
810}
811
812pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
813{
814	pmd_t pmd;
815	/*
816	 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
817	 * set. We use this to check THP page at pmd level.
818	 * leaf pte for huge page, bottom two bits != 00
819	 */
820	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
821	pmd_val(pmd) |= _PAGE_THP_HUGE;
822	pmd = pmd_set_protbits(pmd, pgprot);
823	return pmd;
824}
825
826pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
827{
828	return pfn_pmd(page_to_pfn(page), pgprot);
829}
830
831pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
832{
833
834	pmd_val(pmd) &= _HPAGE_CHG_MASK;
835	pmd = pmd_set_protbits(pmd, newprot);
836	return pmd;
837}
838
839/*
840 * This is called at the end of handling a user page fault, when the
841 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
842 * We use it to preload an HPTE into the hash table corresponding to
843 * the updated linux HUGE PMD entry.
844 */
845void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
846			  pmd_t *pmd)
847{
848	return;
849}
850
851pmd_t pmdp_get_and_clear(struct mm_struct *mm,
852			 unsigned long addr, pmd_t *pmdp)
853{
854	pmd_t old_pmd;
855	pgtable_t pgtable;
856	unsigned long old;
857	pgtable_t *pgtable_slot;
858
859	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
860	old_pmd = __pmd(old);
861	/*
862	 * We have pmd == none and we are holding page_table_lock.
863	 * So we can safely go and clear the pgtable hash
864	 * index info.
865	 */
866	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
867	pgtable = *pgtable_slot;
868	/*
869	 * Let's zero out old valid and hash index details
870	 * hash fault look at them.
871	 */
872	memset(pgtable, 0, PTE_FRAG_SIZE);
873	return old_pmd;
874}
875
876int has_transparent_hugepage(void)
877{
878	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
879		return 0;
880	/*
881	 * We support THP only if PMD_SIZE is 16MB.
882	 */
883	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
884		return 0;
885	/*
886	 * We need to make sure that we support 16MB hugepage in a segement
887	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
888	 * of 64K.
889	 */
890	/*
891	 * If we have 64K HPTE, we will be using that by default
892	 */
893	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
894	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
895		return 0;
896	/*
897	 * Ok we only have 4K HPTE
898	 */
899	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
900		return 0;
901
902	return 1;
903}
904#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
905