1/*
2 * The file intends to implement the functions needed by EEH, which is
3 * built on IODA compliant chip. Actually, lots of functions related
4 * to EEH would be built based on the OPAL APIs.
5 *
6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/bootmem.h>
15#include <linux/debugfs.h>
16#include <linux/delay.h>
17#include <linux/io.h>
18#include <linux/irq.h>
19#include <linux/kernel.h>
20#include <linux/msi.h>
21#include <linux/notifier.h>
22#include <linux/pci.h>
23#include <linux/string.h>
24
25#include <asm/eeh.h>
26#include <asm/eeh_event.h>
27#include <asm/io.h>
28#include <asm/iommu.h>
29#include <asm/msi_bitmap.h>
30#include <asm/opal.h>
31#include <asm/pci-bridge.h>
32#include <asm/ppc-pci.h>
33#include <asm/tce.h>
34
35#include "powernv.h"
36#include "pci.h"
37
38static int ioda_eeh_nb_init = 0;
39
40static int ioda_eeh_event(struct notifier_block *nb,
41			  unsigned long events, void *change)
42{
43	uint64_t changed_evts = (uint64_t)change;
44
45	/*
46	 * We simply send special EEH event if EEH has
47	 * been enabled, or clear pending events in
48	 * case that we enable EEH soon
49	 */
50	if (!(changed_evts & OPAL_EVENT_PCI_ERROR) ||
51	    !(events & OPAL_EVENT_PCI_ERROR))
52		return 0;
53
54	if (eeh_enabled())
55		eeh_send_failure_event(NULL);
56	else
57		opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
58
59	return 0;
60}
61
62static struct notifier_block ioda_eeh_nb = {
63	.notifier_call	= ioda_eeh_event,
64	.next		= NULL,
65	.priority	= 0
66};
67
68#ifdef CONFIG_DEBUG_FS
69static ssize_t ioda_eeh_ei_write(struct file *filp,
70				 const char __user *user_buf,
71				 size_t count, loff_t *ppos)
72{
73	struct pci_controller *hose = filp->private_data;
74	struct pnv_phb *phb = hose->private_data;
75	struct eeh_dev *edev;
76	struct eeh_pe *pe;
77	int pe_no, type, func;
78	unsigned long addr, mask;
79	char buf[50];
80	int ret;
81
82	if (!phb->eeh_ops || !phb->eeh_ops->err_inject)
83		return -ENXIO;
84
85	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
86	if (!ret)
87		return -EFAULT;
88
89	/* Retrieve parameters */
90	ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
91		     &pe_no, &type, &func, &addr, &mask);
92	if (ret != 5)
93		return -EINVAL;
94
95	/* Retrieve PE */
96	edev = kzalloc(sizeof(*edev), GFP_KERNEL);
97	if (!edev)
98		return -ENOMEM;
99	edev->phb = hose;
100	edev->pe_config_addr = pe_no;
101	pe = eeh_pe_get(edev);
102	kfree(edev);
103	if (!pe)
104		return -ENODEV;
105
106	/* Do error injection */
107	ret = phb->eeh_ops->err_inject(pe, type, func, addr, mask);
108	return ret < 0 ? ret : count;
109}
110
111static const struct file_operations ioda_eeh_ei_fops = {
112	.open   = simple_open,
113	.llseek = no_llseek,
114	.write  = ioda_eeh_ei_write,
115};
116
117static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val)
118{
119	struct pci_controller *hose = data;
120	struct pnv_phb *phb = hose->private_data;
121
122	out_be64(phb->regs + offset, val);
123	return 0;
124}
125
126static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val)
127{
128	struct pci_controller *hose = data;
129	struct pnv_phb *phb = hose->private_data;
130
131	*val = in_be64(phb->regs + offset);
132	return 0;
133}
134
135static int ioda_eeh_outb_dbgfs_set(void *data, u64 val)
136{
137	return ioda_eeh_dbgfs_set(data, 0xD10, val);
138}
139
140static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val)
141{
142	return ioda_eeh_dbgfs_get(data, 0xD10, val);
143}
144
145static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val)
146{
147	return ioda_eeh_dbgfs_set(data, 0xD90, val);
148}
149
150static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val)
151{
152	return ioda_eeh_dbgfs_get(data, 0xD90, val);
153}
154
155static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val)
156{
157	return ioda_eeh_dbgfs_set(data, 0xE10, val);
158}
159
160static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val)
161{
162	return ioda_eeh_dbgfs_get(data, 0xE10, val);
163}
164
165DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get,
166			ioda_eeh_outb_dbgfs_set, "0x%llx\n");
167DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get,
168			ioda_eeh_inbA_dbgfs_set, "0x%llx\n");
169DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get,
170			ioda_eeh_inbB_dbgfs_set, "0x%llx\n");
171#endif /* CONFIG_DEBUG_FS */
172
173
174/**
175 * ioda_eeh_post_init - Chip dependent post initialization
176 * @hose: PCI controller
177 *
178 * The function will be called after eeh PEs and devices
179 * have been built. That means the EEH is ready to supply
180 * service with I/O cache.
181 */
182static int ioda_eeh_post_init(struct pci_controller *hose)
183{
184	struct pnv_phb *phb = hose->private_data;
185	int ret;
186
187	/* Register OPAL event notifier */
188	if (!ioda_eeh_nb_init) {
189		ret = opal_notifier_register(&ioda_eeh_nb);
190		if (ret) {
191			pr_err("%s: Can't register OPAL event notifier (%d)\n",
192			       __func__, ret);
193			return ret;
194		}
195
196		ioda_eeh_nb_init = 1;
197	}
198
199#ifdef CONFIG_DEBUG_FS
200	if (!phb->has_dbgfs && phb->dbgfs) {
201		phb->has_dbgfs = 1;
202
203		debugfs_create_file("err_injct", 0200,
204				    phb->dbgfs, hose,
205				    &ioda_eeh_ei_fops);
206
207		debugfs_create_file("err_injct_outbound", 0600,
208				    phb->dbgfs, hose,
209				    &ioda_eeh_outb_dbgfs_ops);
210		debugfs_create_file("err_injct_inboundA", 0600,
211				    phb->dbgfs, hose,
212				    &ioda_eeh_inbA_dbgfs_ops);
213		debugfs_create_file("err_injct_inboundB", 0600,
214				    phb->dbgfs, hose,
215				    &ioda_eeh_inbB_dbgfs_ops);
216	}
217#endif
218
219	/* If EEH is enabled, we're going to rely on that.
220	 * Otherwise, we restore to conventional mechanism
221	 * to clear frozen PE during PCI config access.
222	 */
223	if (eeh_enabled())
224		phb->flags |= PNV_PHB_FLAG_EEH;
225	else
226		phb->flags &= ~PNV_PHB_FLAG_EEH;
227
228	return 0;
229}
230
231/**
232 * ioda_eeh_set_option - Set EEH operation or I/O setting
233 * @pe: EEH PE
234 * @option: options
235 *
236 * Enable or disable EEH option for the indicated PE. The
237 * function also can be used to enable I/O or DMA for the
238 * PE.
239 */
240static int ioda_eeh_set_option(struct eeh_pe *pe, int option)
241{
242	struct pci_controller *hose = pe->phb;
243	struct pnv_phb *phb = hose->private_data;
244	bool freeze_pe = false;
245	int enable, ret = 0;
246	s64 rc;
247
248	/* Check on PE number */
249	if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
250		pr_err("%s: PE address %x out of range [0, %x] "
251		       "on PHB#%x\n",
252			__func__, pe->addr, phb->ioda.total_pe,
253			hose->global_number);
254		return -EINVAL;
255	}
256
257	switch (option) {
258	case EEH_OPT_DISABLE:
259		return -EPERM;
260	case EEH_OPT_ENABLE:
261		return 0;
262	case EEH_OPT_THAW_MMIO:
263		enable = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
264		break;
265	case EEH_OPT_THAW_DMA:
266		enable = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
267		break;
268	case EEH_OPT_FREEZE_PE:
269		freeze_pe = true;
270		enable = OPAL_EEH_ACTION_SET_FREEZE_ALL;
271		break;
272	default:
273		pr_warn("%s: Invalid option %d\n",
274			__func__, option);
275		return -EINVAL;
276	}
277
278	/* If PHB supports compound PE, to handle it */
279	if (freeze_pe) {
280		if (phb->freeze_pe) {
281			phb->freeze_pe(phb, pe->addr);
282		} else {
283			rc = opal_pci_eeh_freeze_set(phb->opal_id,
284						     pe->addr,
285						     enable);
286			if (rc != OPAL_SUCCESS) {
287				pr_warn("%s: Failure %lld freezing "
288					"PHB#%x-PE#%x\n",
289					__func__, rc,
290					phb->hose->global_number, pe->addr);
291				ret = -EIO;
292			}
293		}
294	} else {
295		if (phb->unfreeze_pe) {
296			ret = phb->unfreeze_pe(phb, pe->addr, enable);
297		} else {
298			rc = opal_pci_eeh_freeze_clear(phb->opal_id,
299						       pe->addr,
300						       enable);
301			if (rc != OPAL_SUCCESS) {
302				pr_warn("%s: Failure %lld enable %d "
303					"for PHB#%x-PE#%x\n",
304					__func__, rc, option,
305					phb->hose->global_number, pe->addr);
306				ret = -EIO;
307			}
308		}
309	}
310
311	return ret;
312}
313
314static void ioda_eeh_phb_diag(struct eeh_pe *pe)
315{
316	struct pnv_phb *phb = pe->phb->private_data;
317	long rc;
318
319	rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
320					 PNV_PCI_DIAG_BUF_SIZE);
321	if (rc != OPAL_SUCCESS)
322		pr_warn("%s: Failed to get diag-data for PHB#%x (%ld)\n",
323			__func__, pe->phb->global_number, rc);
324}
325
326static int ioda_eeh_get_phb_state(struct eeh_pe *pe)
327{
328	struct pnv_phb *phb = pe->phb->private_data;
329	u8 fstate;
330	__be16 pcierr;
331	s64 rc;
332	int result = 0;
333
334	rc = opal_pci_eeh_freeze_status(phb->opal_id,
335					pe->addr,
336					&fstate,
337					&pcierr,
338					NULL);
339	if (rc != OPAL_SUCCESS) {
340		pr_warn("%s: Failure %lld getting PHB#%x state\n",
341			__func__, rc, phb->hose->global_number);
342		return EEH_STATE_NOT_SUPPORT;
343	}
344
345	/*
346	 * Check PHB state. If the PHB is frozen for the
347	 * first time, to dump the PHB diag-data.
348	 */
349	if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
350		result = (EEH_STATE_MMIO_ACTIVE  |
351			  EEH_STATE_DMA_ACTIVE   |
352			  EEH_STATE_MMIO_ENABLED |
353			  EEH_STATE_DMA_ENABLED);
354	} else if (!(pe->state & EEH_PE_ISOLATED)) {
355		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
356		ioda_eeh_phb_diag(pe);
357	}
358
359	return result;
360}
361
362static int ioda_eeh_get_pe_state(struct eeh_pe *pe)
363{
364	struct pnv_phb *phb = pe->phb->private_data;
365	u8 fstate;
366	__be16 pcierr;
367	s64 rc;
368	int result;
369
370	/*
371	 * We don't clobber hardware frozen state until PE
372	 * reset is completed. In order to keep EEH core
373	 * moving forward, we have to return operational
374	 * state during PE reset.
375	 */
376	if (pe->state & EEH_PE_CFG_BLOCKED) {
377		result = (EEH_STATE_MMIO_ACTIVE  |
378			  EEH_STATE_DMA_ACTIVE   |
379			  EEH_STATE_MMIO_ENABLED |
380			  EEH_STATE_DMA_ENABLED);
381		return result;
382	}
383
384	/*
385	 * Fetch PE state from hardware. If the PHB
386	 * supports compound PE, let it handle that.
387	 */
388	if (phb->get_pe_state) {
389		fstate = phb->get_pe_state(phb, pe->addr);
390	} else {
391		rc = opal_pci_eeh_freeze_status(phb->opal_id,
392						pe->addr,
393						&fstate,
394						&pcierr,
395						NULL);
396		if (rc != OPAL_SUCCESS) {
397			pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
398				__func__, rc, phb->hose->global_number, pe->addr);
399			return EEH_STATE_NOT_SUPPORT;
400		}
401	}
402
403	/* Figure out state */
404	switch (fstate) {
405	case OPAL_EEH_STOPPED_NOT_FROZEN:
406		result = (EEH_STATE_MMIO_ACTIVE  |
407			  EEH_STATE_DMA_ACTIVE   |
408			  EEH_STATE_MMIO_ENABLED |
409			  EEH_STATE_DMA_ENABLED);
410		break;
411	case OPAL_EEH_STOPPED_MMIO_FREEZE:
412		result = (EEH_STATE_DMA_ACTIVE |
413			  EEH_STATE_DMA_ENABLED);
414		break;
415	case OPAL_EEH_STOPPED_DMA_FREEZE:
416		result = (EEH_STATE_MMIO_ACTIVE |
417			  EEH_STATE_MMIO_ENABLED);
418		break;
419	case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
420		result = 0;
421		break;
422	case OPAL_EEH_STOPPED_RESET:
423		result = EEH_STATE_RESET_ACTIVE;
424		break;
425	case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
426		result = EEH_STATE_UNAVAILABLE;
427		break;
428	case OPAL_EEH_STOPPED_PERM_UNAVAIL:
429		result = EEH_STATE_NOT_SUPPORT;
430		break;
431	default:
432		result = EEH_STATE_NOT_SUPPORT;
433		pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
434			__func__, phb->hose->global_number,
435			pe->addr, fstate);
436	}
437
438	/*
439	 * If PHB supports compound PE, to freeze all
440	 * slave PEs for consistency.
441	 *
442	 * If the PE is switching to frozen state for the
443	 * first time, to dump the PHB diag-data.
444	 */
445	if (!(result & EEH_STATE_NOT_SUPPORT) &&
446	    !(result & EEH_STATE_UNAVAILABLE) &&
447	    !(result & EEH_STATE_MMIO_ACTIVE) &&
448	    !(result & EEH_STATE_DMA_ACTIVE)  &&
449	    !(pe->state & EEH_PE_ISOLATED)) {
450		if (phb->freeze_pe)
451			phb->freeze_pe(phb, pe->addr);
452
453		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
454		ioda_eeh_phb_diag(pe);
455	}
456
457	return result;
458}
459
460/**
461 * ioda_eeh_get_state - Retrieve the state of PE
462 * @pe: EEH PE
463 *
464 * The PE's state should be retrieved from the PEEV, PEST
465 * IODA tables. Since the OPAL has exported the function
466 * to do it, it'd better to use that.
467 */
468static int ioda_eeh_get_state(struct eeh_pe *pe)
469{
470	struct pnv_phb *phb = pe->phb->private_data;
471
472	/* Sanity check on PE number. PHB PE should have 0 */
473	if (pe->addr < 0 ||
474	    pe->addr >= phb->ioda.total_pe) {
475		pr_warn("%s: PHB#%x-PE#%x out of range [0, %x]\n",
476			__func__, phb->hose->global_number,
477			pe->addr, phb->ioda.total_pe);
478		return EEH_STATE_NOT_SUPPORT;
479	}
480
481	if (pe->type & EEH_PE_PHB)
482		return ioda_eeh_get_phb_state(pe);
483
484	return ioda_eeh_get_pe_state(pe);
485}
486
487static s64 ioda_eeh_phb_poll(struct pnv_phb *phb)
488{
489	s64 rc = OPAL_HARDWARE;
490
491	while (1) {
492		rc = opal_pci_poll(phb->opal_id);
493		if (rc <= 0)
494			break;
495
496		if (system_state < SYSTEM_RUNNING)
497			udelay(1000 * rc);
498		else
499			msleep(rc);
500	}
501
502	return rc;
503}
504
505int ioda_eeh_phb_reset(struct pci_controller *hose, int option)
506{
507	struct pnv_phb *phb = hose->private_data;
508	s64 rc = OPAL_HARDWARE;
509
510	pr_debug("%s: Reset PHB#%x, option=%d\n",
511		 __func__, hose->global_number, option);
512
513	/* Issue PHB complete reset request */
514	if (option == EEH_RESET_FUNDAMENTAL ||
515	    option == EEH_RESET_HOT)
516		rc = opal_pci_reset(phb->opal_id,
517				OPAL_RESET_PHB_COMPLETE,
518				OPAL_ASSERT_RESET);
519	else if (option == EEH_RESET_DEACTIVATE)
520		rc = opal_pci_reset(phb->opal_id,
521				OPAL_RESET_PHB_COMPLETE,
522				OPAL_DEASSERT_RESET);
523	if (rc < 0)
524		goto out;
525
526	/*
527	 * Poll state of the PHB until the request is done
528	 * successfully. The PHB reset is usually PHB complete
529	 * reset followed by hot reset on root bus. So we also
530	 * need the PCI bus settlement delay.
531	 */
532	rc = ioda_eeh_phb_poll(phb);
533	if (option == EEH_RESET_DEACTIVATE) {
534		if (system_state < SYSTEM_RUNNING)
535			udelay(1000 * EEH_PE_RST_SETTLE_TIME);
536		else
537			msleep(EEH_PE_RST_SETTLE_TIME);
538	}
539out:
540	if (rc != OPAL_SUCCESS)
541		return -EIO;
542
543	return 0;
544}
545
546static int ioda_eeh_root_reset(struct pci_controller *hose, int option)
547{
548	struct pnv_phb *phb = hose->private_data;
549	s64 rc = OPAL_SUCCESS;
550
551	pr_debug("%s: Reset PHB#%x, option=%d\n",
552		 __func__, hose->global_number, option);
553
554	/*
555	 * During the reset deassert time, we needn't care
556	 * the reset scope because the firmware does nothing
557	 * for fundamental or hot reset during deassert phase.
558	 */
559	if (option == EEH_RESET_FUNDAMENTAL)
560		rc = opal_pci_reset(phb->opal_id,
561				OPAL_RESET_PCI_FUNDAMENTAL,
562				OPAL_ASSERT_RESET);
563	else if (option == EEH_RESET_HOT)
564		rc = opal_pci_reset(phb->opal_id,
565				OPAL_RESET_PCI_HOT,
566				OPAL_ASSERT_RESET);
567	else if (option == EEH_RESET_DEACTIVATE)
568		rc = opal_pci_reset(phb->opal_id,
569				OPAL_RESET_PCI_HOT,
570				OPAL_DEASSERT_RESET);
571	if (rc < 0)
572		goto out;
573
574	/* Poll state of the PHB until the request is done */
575	rc = ioda_eeh_phb_poll(phb);
576	if (option == EEH_RESET_DEACTIVATE)
577		msleep(EEH_PE_RST_SETTLE_TIME);
578out:
579	if (rc != OPAL_SUCCESS)
580		return -EIO;
581
582	return 0;
583}
584
585static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option)
586
587{
588	struct device_node *dn = pci_device_to_OF_node(dev);
589	struct eeh_dev *edev = of_node_to_eeh_dev(dn);
590	int aer = edev ? edev->aer_cap : 0;
591	u32 ctrl;
592
593	pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
594		 __func__, pci_domain_nr(dev->bus),
595		 dev->bus->number, option);
596
597	switch (option) {
598	case EEH_RESET_FUNDAMENTAL:
599	case EEH_RESET_HOT:
600		/* Don't report linkDown event */
601		if (aer) {
602			eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
603					     4, &ctrl);
604			ctrl |= PCI_ERR_UNC_SURPDN;
605                        eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
606					      4, ctrl);
607                }
608
609		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
610		ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
611		eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
612		msleep(EEH_PE_RST_HOLD_TIME);
613
614		break;
615	case EEH_RESET_DEACTIVATE:
616		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl);
617		ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
618		eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl);
619		msleep(EEH_PE_RST_SETTLE_TIME);
620
621		/* Continue reporting linkDown event */
622		if (aer) {
623			eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK,
624					     4, &ctrl);
625			ctrl &= ~PCI_ERR_UNC_SURPDN;
626			eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK,
627					      4, ctrl);
628		}
629
630		break;
631	}
632
633	return 0;
634}
635
636void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
637{
638	struct pci_controller *hose;
639
640	if (pci_is_root_bus(dev->bus)) {
641		hose = pci_bus_to_host(dev->bus);
642		ioda_eeh_root_reset(hose, EEH_RESET_HOT);
643		ioda_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
644	} else {
645		ioda_eeh_bridge_reset(dev, EEH_RESET_HOT);
646		ioda_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
647	}
648}
649
650/**
651 * ioda_eeh_reset - Reset the indicated PE
652 * @pe: EEH PE
653 * @option: reset option
654 *
655 * Do reset on the indicated PE. For PCI bus sensitive PE,
656 * we need to reset the parent p2p bridge. The PHB has to
657 * be reinitialized if the p2p bridge is root bridge. For
658 * PCI device sensitive PE, we will try to reset the device
659 * through FLR. For now, we don't have OPAL APIs to do HARD
660 * reset yet, so all reset would be SOFT (HOT) reset.
661 */
662static int ioda_eeh_reset(struct eeh_pe *pe, int option)
663{
664	struct pci_controller *hose = pe->phb;
665	struct pci_bus *bus;
666	int ret;
667
668	/*
669	 * For PHB reset, we always have complete reset. For those PEs whose
670	 * primary bus derived from root complex (root bus) or root port
671	 * (usually bus#1), we apply hot or fundamental reset on the root port.
672	 * For other PEs, we always have hot reset on the PE primary bus.
673	 *
674	 * Here, we have different design to pHyp, which always clear the
675	 * frozen state during PE reset. However, the good idea here from
676	 * benh is to keep frozen state before we get PE reset done completely
677	 * (until BAR restore). With the frozen state, HW drops illegal IO
678	 * or MMIO access, which can incur recrusive frozen PE during PE
679	 * reset. The side effect is that EEH core has to clear the frozen
680	 * state explicitly after BAR restore.
681	 */
682	if (pe->type & EEH_PE_PHB) {
683		ret = ioda_eeh_phb_reset(hose, option);
684	} else {
685		struct pnv_phb *phb;
686		s64 rc;
687
688		/*
689		 * The frozen PE might be caused by PAPR error injection
690		 * registers, which are expected to be cleared after hitting
691		 * frozen PE as stated in the hardware spec. Unfortunately,
692		 * that's not true on P7IOC. So we have to clear it manually
693		 * to avoid recursive EEH errors during recovery.
694		 */
695		phb = hose->private_data;
696		if (phb->model == PNV_PHB_MODEL_P7IOC &&
697		    (option == EEH_RESET_HOT ||
698		    option == EEH_RESET_FUNDAMENTAL)) {
699			rc = opal_pci_reset(phb->opal_id,
700					    OPAL_RESET_PHB_ERROR,
701					    OPAL_ASSERT_RESET);
702			if (rc != OPAL_SUCCESS) {
703				pr_warn("%s: Failure %lld clearing "
704					"error injection registers\n",
705					__func__, rc);
706				return -EIO;
707			}
708		}
709
710		bus = eeh_pe_bus_get(pe);
711		if (pci_is_root_bus(bus) ||
712		    pci_is_root_bus(bus->parent))
713			ret = ioda_eeh_root_reset(hose, option);
714		else
715			ret = ioda_eeh_bridge_reset(bus->self, option);
716	}
717
718	return ret;
719}
720
721/**
722 * ioda_eeh_get_log - Retrieve error log
723 * @pe: frozen PE
724 * @severity: permanent or temporary error
725 * @drv_log: device driver log
726 * @len: length of device driver log
727 *
728 * Retrieve error log, which contains log from device driver
729 * and firmware.
730 */
731static int ioda_eeh_get_log(struct eeh_pe *pe, int severity,
732			    char *drv_log, unsigned long len)
733{
734	pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
735
736	return 0;
737}
738
739/**
740 * ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE
741 * @pe: EEH PE
742 *
743 * For particular PE, it might have included PCI bridges. In order
744 * to make the PE work properly, those PCI bridges should be configured
745 * correctly. However, we need do nothing on P7IOC since the reset
746 * function will do everything that should be covered by the function.
747 */
748static int ioda_eeh_configure_bridge(struct eeh_pe *pe)
749{
750	return 0;
751}
752
753static int ioda_eeh_err_inject(struct eeh_pe *pe, int type, int func,
754			       unsigned long addr, unsigned long mask)
755{
756	struct pci_controller *hose = pe->phb;
757	struct pnv_phb *phb = hose->private_data;
758	s64 ret;
759
760	/* Sanity check on error type */
761	if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
762	    type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
763		pr_warn("%s: Invalid error type %d\n",
764			__func__, type);
765		return -ERANGE;
766	}
767
768	if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
769	    func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
770		pr_warn("%s: Invalid error function %d\n",
771			__func__, func);
772		return -ERANGE;
773	}
774
775	/* Firmware supports error injection ? */
776	if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
777		pr_warn("%s: Firmware doesn't support error injection\n",
778			__func__);
779		return -ENXIO;
780	}
781
782	/* Do error injection */
783	ret = opal_pci_err_inject(phb->opal_id, pe->addr,
784				  type, func, addr, mask);
785	if (ret != OPAL_SUCCESS) {
786		pr_warn("%s: Failure %lld injecting error "
787			"%d-%d to PHB#%x-PE#%x\n",
788			__func__, ret, type, func,
789			hose->global_number, pe->addr);
790		return -EIO;
791	}
792
793	return 0;
794}
795
796static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data)
797{
798	/* GEM */
799	if (data->gemXfir || data->gemRfir ||
800	    data->gemRirqfir || data->gemMask || data->gemRwof)
801		pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n",
802			be64_to_cpu(data->gemXfir),
803			be64_to_cpu(data->gemRfir),
804			be64_to_cpu(data->gemRirqfir),
805			be64_to_cpu(data->gemMask),
806			be64_to_cpu(data->gemRwof));
807
808	/* LEM */
809	if (data->lemFir || data->lemErrMask ||
810	    data->lemAction0 || data->lemAction1 || data->lemWof)
811		pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n",
812			be64_to_cpu(data->lemFir),
813			be64_to_cpu(data->lemErrMask),
814			be64_to_cpu(data->lemAction0),
815			be64_to_cpu(data->lemAction1),
816			be64_to_cpu(data->lemWof));
817}
818
819static void ioda_eeh_hub_diag(struct pci_controller *hose)
820{
821	struct pnv_phb *phb = hose->private_data;
822	struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
823	long rc;
824
825	rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
826	if (rc != OPAL_SUCCESS) {
827		pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
828			__func__, phb->hub_id, rc);
829		return;
830	}
831
832	switch (data->type) {
833	case OPAL_P7IOC_DIAG_TYPE_RGC:
834		pr_info("P7IOC diag-data for RGC\n\n");
835		ioda_eeh_hub_diag_common(data);
836		if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
837			pr_info("  RGC: %016llx %016llx\n",
838				be64_to_cpu(data->rgc.rgcStatus),
839				be64_to_cpu(data->rgc.rgcLdcp));
840		break;
841	case OPAL_P7IOC_DIAG_TYPE_BI:
842		pr_info("P7IOC diag-data for BI %s\n\n",
843			data->bi.biDownbound ? "Downbound" : "Upbound");
844		ioda_eeh_hub_diag_common(data);
845		if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
846		    data->bi.biLdcp2 || data->bi.biFenceStatus)
847			pr_info("  BI:  %016llx %016llx %016llx %016llx\n",
848				be64_to_cpu(data->bi.biLdcp0),
849				be64_to_cpu(data->bi.biLdcp1),
850				be64_to_cpu(data->bi.biLdcp2),
851				be64_to_cpu(data->bi.biFenceStatus));
852		break;
853	case OPAL_P7IOC_DIAG_TYPE_CI:
854		pr_info("P7IOC diag-data for CI Port %d\n\n",
855			data->ci.ciPort);
856		ioda_eeh_hub_diag_common(data);
857		if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
858			pr_info("  CI:  %016llx %016llx\n",
859				be64_to_cpu(data->ci.ciPortStatus),
860				be64_to_cpu(data->ci.ciPortLdcp));
861		break;
862	case OPAL_P7IOC_DIAG_TYPE_MISC:
863		pr_info("P7IOC diag-data for MISC\n\n");
864		ioda_eeh_hub_diag_common(data);
865		break;
866	case OPAL_P7IOC_DIAG_TYPE_I2C:
867		pr_info("P7IOC diag-data for I2C\n\n");
868		ioda_eeh_hub_diag_common(data);
869		break;
870	default:
871		pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
872			__func__, phb->hub_id, data->type);
873	}
874}
875
876static int ioda_eeh_get_pe(struct pci_controller *hose,
877			   u16 pe_no, struct eeh_pe **pe)
878{
879	struct pnv_phb *phb = hose->private_data;
880	struct pnv_ioda_pe *pnv_pe;
881	struct eeh_pe *dev_pe;
882	struct eeh_dev edev;
883
884	/*
885	 * If PHB supports compound PE, to fetch
886	 * the master PE because slave PE is invisible
887	 * to EEH core.
888	 */
889	pnv_pe = &phb->ioda.pe_array[pe_no];
890	if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
891		pnv_pe = pnv_pe->master;
892		WARN_ON(!pnv_pe ||
893			!(pnv_pe->flags & PNV_IODA_PE_MASTER));
894		pe_no = pnv_pe->pe_number;
895	}
896
897	/* Find the PE according to PE# */
898	memset(&edev, 0, sizeof(struct eeh_dev));
899	edev.phb = hose;
900	edev.pe_config_addr = pe_no;
901	dev_pe = eeh_pe_get(&edev);
902	if (!dev_pe)
903		return -EEXIST;
904
905	/* Freeze the (compound) PE */
906	*pe = dev_pe;
907	if (!(dev_pe->state & EEH_PE_ISOLATED))
908		phb->freeze_pe(phb, pe_no);
909
910	/*
911	 * At this point, we're sure the (compound) PE should
912	 * have been frozen. However, we still need poke until
913	 * hitting the frozen PE on top level.
914	 */
915	dev_pe = dev_pe->parent;
916	while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
917		int ret;
918		int active_flags = (EEH_STATE_MMIO_ACTIVE |
919				    EEH_STATE_DMA_ACTIVE);
920
921		ret = eeh_ops->get_state(dev_pe, NULL);
922		if (ret <= 0 || (ret & active_flags) == active_flags) {
923			dev_pe = dev_pe->parent;
924			continue;
925		}
926
927		/* Frozen parent PE */
928		*pe = dev_pe;
929		if (!(dev_pe->state & EEH_PE_ISOLATED))
930			phb->freeze_pe(phb, dev_pe->addr);
931
932		/* Next one */
933		dev_pe = dev_pe->parent;
934	}
935
936	return 0;
937}
938
939/**
940 * ioda_eeh_next_error - Retrieve next error for EEH core to handle
941 * @pe: The affected PE
942 *
943 * The function is expected to be called by EEH core while it gets
944 * special EEH event (without binding PE). The function calls to
945 * OPAL APIs for next error to handle. The informational error is
946 * handled internally by platform. However, the dead IOC, dead PHB,
947 * fenced PHB and frozen PE should be handled by EEH core eventually.
948 */
949static int ioda_eeh_next_error(struct eeh_pe **pe)
950{
951	struct pci_controller *hose;
952	struct pnv_phb *phb;
953	struct eeh_pe *phb_pe, *parent_pe;
954	__be64 frozen_pe_no;
955	__be16 err_type, severity;
956	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
957	long rc;
958	int state, ret = EEH_NEXT_ERR_NONE;
959
960	/*
961	 * While running here, it's safe to purge the event queue.
962	 * And we should keep the cached OPAL notifier event sychronized
963	 * between the kernel and firmware.
964	 */
965	eeh_remove_event(NULL, false);
966	opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul);
967
968	list_for_each_entry(hose, &hose_list, list_node) {
969		/*
970		 * If the subordinate PCI buses of the PHB has been
971		 * removed or is exactly under error recovery, we
972		 * needn't take care of it any more.
973		 */
974		phb = hose->private_data;
975		phb_pe = eeh_phb_pe_get(hose);
976		if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
977			continue;
978
979		rc = opal_pci_next_error(phb->opal_id,
980				&frozen_pe_no, &err_type, &severity);
981
982		/* If OPAL API returns error, we needn't proceed */
983		if (rc != OPAL_SUCCESS) {
984			pr_devel("%s: Invalid return value on "
985				 "PHB#%x (0x%lx) from opal_pci_next_error",
986				 __func__, hose->global_number, rc);
987			continue;
988		}
989
990		/* If the PHB doesn't have error, stop processing */
991		if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
992		    be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
993			pr_devel("%s: No error found on PHB#%x\n",
994				 __func__, hose->global_number);
995			continue;
996		}
997
998		/*
999		 * Processing the error. We're expecting the error with
1000		 * highest priority reported upon multiple errors on the
1001		 * specific PHB.
1002		 */
1003		pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1004			 __func__, be16_to_cpu(err_type), be16_to_cpu(severity),
1005			 be64_to_cpu(frozen_pe_no), hose->global_number);
1006		switch (be16_to_cpu(err_type)) {
1007		case OPAL_EEH_IOC_ERROR:
1008			if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1009				pr_err("EEH: dead IOC detected\n");
1010				ret = EEH_NEXT_ERR_DEAD_IOC;
1011			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1012				pr_info("EEH: IOC informative error "
1013					"detected\n");
1014				ioda_eeh_hub_diag(hose);
1015				ret = EEH_NEXT_ERR_NONE;
1016			}
1017
1018			break;
1019		case OPAL_EEH_PHB_ERROR:
1020			if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1021				*pe = phb_pe;
1022				pr_err("EEH: dead PHB#%x detected, "
1023				       "location: %s\n",
1024				       hose->global_number,
1025				       eeh_pe_loc_get(phb_pe));
1026				ret = EEH_NEXT_ERR_DEAD_PHB;
1027			} else if (be16_to_cpu(severity) ==
1028						OPAL_EEH_SEV_PHB_FENCED) {
1029				*pe = phb_pe;
1030				pr_err("EEH: Fenced PHB#%x detected, "
1031				       "location: %s\n",
1032				       hose->global_number,
1033				       eeh_pe_loc_get(phb_pe));
1034				ret = EEH_NEXT_ERR_FENCED_PHB;
1035			} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1036				pr_info("EEH: PHB#%x informative error "
1037					"detected, location: %s\n",
1038					hose->global_number,
1039					eeh_pe_loc_get(phb_pe));
1040				ioda_eeh_phb_diag(phb_pe);
1041				pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1042				ret = EEH_NEXT_ERR_NONE;
1043			}
1044
1045			break;
1046		case OPAL_EEH_PE_ERROR:
1047			/*
1048			 * If we can't find the corresponding PE, we
1049			 * just try to unfreeze.
1050			 */
1051			if (ioda_eeh_get_pe(hose,
1052					    be64_to_cpu(frozen_pe_no), pe)) {
1053				/* Try best to clear it */
1054				pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1055					hose->global_number, frozen_pe_no);
1056				pr_info("EEH: PHB location: %s\n",
1057					eeh_pe_loc_get(phb_pe));
1058				opal_pci_eeh_freeze_clear(phb->opal_id, frozen_pe_no,
1059					OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1060				ret = EEH_NEXT_ERR_NONE;
1061			} else if ((*pe)->state & EEH_PE_ISOLATED ||
1062				   eeh_pe_passed(*pe)) {
1063				ret = EEH_NEXT_ERR_NONE;
1064			} else {
1065				pr_err("EEH: Frozen PE#%x on PHB#%x detected\n",
1066					(*pe)->addr, (*pe)->phb->global_number);
1067				pr_err("EEH: PE location: %s, PHB location: %s\n",
1068					eeh_pe_loc_get(*pe), eeh_pe_loc_get(phb_pe));
1069				ret = EEH_NEXT_ERR_FROZEN_PE;
1070			}
1071
1072			break;
1073		default:
1074			pr_warn("%s: Unexpected error type %d\n",
1075				__func__, be16_to_cpu(err_type));
1076		}
1077
1078		/*
1079		 * EEH core will try recover from fenced PHB or
1080		 * frozen PE. In the time for frozen PE, EEH core
1081		 * enable IO path for that before collecting logs,
1082		 * but it ruins the site. So we have to dump the
1083		 * log in advance here.
1084		 */
1085		if ((ret == EEH_NEXT_ERR_FROZEN_PE  ||
1086		    ret == EEH_NEXT_ERR_FENCED_PHB) &&
1087		    !((*pe)->state & EEH_PE_ISOLATED)) {
1088			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1089			ioda_eeh_phb_diag(*pe);
1090		}
1091
1092		/*
1093		 * We probably have the frozen parent PE out there and
1094		 * we need have to handle frozen parent PE firstly.
1095		 */
1096		if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1097			parent_pe = (*pe)->parent;
1098			while (parent_pe) {
1099				/* Hit the ceiling ? */
1100				if (parent_pe->type & EEH_PE_PHB)
1101					break;
1102
1103				/* Frozen parent PE ? */
1104				state = ioda_eeh_get_state(parent_pe);
1105				if (state > 0 &&
1106				    (state & active_flags) != active_flags)
1107					*pe = parent_pe;
1108
1109				/* Next parent level */
1110				parent_pe = parent_pe->parent;
1111			}
1112
1113			/* We possibly migrate to another PE */
1114			eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
1115		}
1116
1117		/*
1118		 * If we have no errors on the specific PHB or only
1119		 * informative error there, we continue poking it.
1120		 * Otherwise, we need actions to be taken by upper
1121		 * layer.
1122		 */
1123		if (ret > EEH_NEXT_ERR_INF)
1124			break;
1125	}
1126
1127	return ret;
1128}
1129
1130struct pnv_eeh_ops ioda_eeh_ops = {
1131	.post_init		= ioda_eeh_post_init,
1132	.set_option		= ioda_eeh_set_option,
1133	.get_state		= ioda_eeh_get_state,
1134	.reset			= ioda_eeh_reset,
1135	.get_log		= ioda_eeh_get_log,
1136	.configure_bridge	= ioda_eeh_configure_bridge,
1137	.err_inject		= ioda_eeh_err_inject,
1138	.next_error		= ioda_eeh_next_error
1139};
1140