1/*
2 * S390 kdump implementation
3 *
4 * Copyright IBM Corp. 2011
5 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6 */
7
8#include <linux/crash_dump.h>
9#include <asm/lowcore.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/gfp.h>
13#include <linux/slab.h>
14#include <linux/bootmem.h>
15#include <linux/elf.h>
16#include <linux/memblock.h>
17#include <asm/os_info.h>
18#include <asm/elf.h>
19#include <asm/ipl.h>
20#include <asm/sclp.h>
21
22#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
23#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
24#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
25
26static struct memblock_region oldmem_region;
27
28static struct memblock_type oldmem_type = {
29	.cnt = 1,
30	.max = 1,
31	.total_size = 0,
32	.regions = &oldmem_region,
33};
34
35#define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid)		\
36	for (i = 0, __next_mem_range(&i, nid, &memblock.physmem,	\
37				     &oldmem_type, p_start,		\
38				     p_end, p_nid);			\
39	     i != (u64)ULLONG_MAX;					\
40	     __next_mem_range(&i, nid, &memblock.physmem,		\
41			      &oldmem_type,				\
42			      p_start, p_end, p_nid))
43
44struct dump_save_areas dump_save_areas;
45
46/*
47 * Allocate and add a save area for a CPU
48 */
49struct save_area_ext *dump_save_area_create(int cpu)
50{
51	struct save_area_ext **save_areas, *save_area;
52
53	save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
54	if (!save_area)
55		return NULL;
56	if (cpu + 1 > dump_save_areas.count) {
57		dump_save_areas.count = cpu + 1;
58		save_areas = krealloc(dump_save_areas.areas,
59				      dump_save_areas.count * sizeof(void *),
60				      GFP_KERNEL | __GFP_ZERO);
61		if (!save_areas) {
62			kfree(save_area);
63			return NULL;
64		}
65		dump_save_areas.areas = save_areas;
66	}
67	dump_save_areas.areas[cpu] = save_area;
68	return save_area;
69}
70
71/*
72 * Return physical address for virtual address
73 */
74static inline void *load_real_addr(void *addr)
75{
76	unsigned long real_addr;
77
78	asm volatile(
79		   "	lra     %0,0(%1)\n"
80		   "	jz	0f\n"
81		   "	la	%0,0\n"
82		   "0:"
83		   : "=a" (real_addr) : "a" (addr) : "cc");
84	return (void *)real_addr;
85}
86
87/*
88 * Copy real to virtual or real memory
89 */
90static int copy_from_realmem(void *dest, void *src, size_t count)
91{
92	unsigned long size;
93
94	if (!count)
95		return 0;
96	if (!is_vmalloc_or_module_addr(dest))
97		return memcpy_real(dest, src, count);
98	do {
99		size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
100		if (memcpy_real(load_real_addr(dest), src, size))
101			return -EFAULT;
102		count -= size;
103		dest += size;
104		src += size;
105	} while (count);
106	return 0;
107}
108
109/*
110 * Pointer to ELF header in new kernel
111 */
112static void *elfcorehdr_newmem;
113
114/*
115 * Copy one page from zfcpdump "oldmem"
116 *
117 * For pages below HSA size memory from the HSA is copied. Otherwise
118 * real memory copy is used.
119 */
120static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
121					 unsigned long src, int userbuf)
122{
123	int rc;
124
125	if (src < sclp_get_hsa_size()) {
126		rc = memcpy_hsa(buf, src, csize, userbuf);
127	} else {
128		if (userbuf)
129			rc = copy_to_user_real((void __force __user *) buf,
130					       (void *) src, csize);
131		else
132			rc = memcpy_real(buf, (void *) src, csize);
133	}
134	return rc ? rc : csize;
135}
136
137/*
138 * Copy one page from kdump "oldmem"
139 *
140 * For the kdump reserved memory this functions performs a swap operation:
141 *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
142 *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
143 */
144static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
145				      unsigned long src, int userbuf)
146
147{
148	int rc;
149
150	if (src < OLDMEM_SIZE)
151		src += OLDMEM_BASE;
152	else if (src > OLDMEM_BASE &&
153		 src < OLDMEM_BASE + OLDMEM_SIZE)
154		src -= OLDMEM_BASE;
155	if (userbuf)
156		rc = copy_to_user_real((void __force __user *) buf,
157				       (void *) src, csize);
158	else
159		rc = copy_from_realmem(buf, (void *) src, csize);
160	return (rc == 0) ? rc : csize;
161}
162
163/*
164 * Copy one page from "oldmem"
165 */
166ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
167			 unsigned long offset, int userbuf)
168{
169	unsigned long src;
170
171	if (!csize)
172		return 0;
173	src = (pfn << PAGE_SHIFT) + offset;
174	if (OLDMEM_BASE)
175		return copy_oldmem_page_kdump(buf, csize, src, userbuf);
176	else
177		return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
178}
179
180/*
181 * Remap "oldmem" for kdump
182 *
183 * For the kdump reserved memory this functions performs a swap operation:
184 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
185 */
186static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
187					unsigned long from, unsigned long pfn,
188					unsigned long size, pgprot_t prot)
189{
190	unsigned long size_old;
191	int rc;
192
193	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
194		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
195		rc = remap_pfn_range(vma, from,
196				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
197				     size_old, prot);
198		if (rc || size == size_old)
199			return rc;
200		size -= size_old;
201		from += size_old;
202		pfn += size_old >> PAGE_SHIFT;
203	}
204	return remap_pfn_range(vma, from, pfn, size, prot);
205}
206
207/*
208 * Remap "oldmem" for zfcpdump
209 *
210 * We only map available memory above HSA size. Memory below HSA size
211 * is read on demand using the copy_oldmem_page() function.
212 */
213static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
214					   unsigned long from,
215					   unsigned long pfn,
216					   unsigned long size, pgprot_t prot)
217{
218	unsigned long hsa_end = sclp_get_hsa_size();
219	unsigned long size_hsa;
220
221	if (pfn < hsa_end >> PAGE_SHIFT) {
222		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
223		if (size == size_hsa)
224			return 0;
225		size -= size_hsa;
226		from += size_hsa;
227		pfn += size_hsa >> PAGE_SHIFT;
228	}
229	return remap_pfn_range(vma, from, pfn, size, prot);
230}
231
232/*
233 * Remap "oldmem" for kdump or zfcpdump
234 */
235int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
236			   unsigned long pfn, unsigned long size, pgprot_t prot)
237{
238	if (OLDMEM_BASE)
239		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
240	else
241		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
242						       prot);
243}
244
245/*
246 * Copy memory from old kernel
247 */
248int copy_from_oldmem(void *dest, void *src, size_t count)
249{
250	unsigned long copied = 0;
251	int rc;
252
253	if (OLDMEM_BASE) {
254		if ((unsigned long) src < OLDMEM_SIZE) {
255			copied = min(count, OLDMEM_SIZE - (unsigned long) src);
256			rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
257			if (rc)
258				return rc;
259		}
260	} else {
261		unsigned long hsa_end = sclp_get_hsa_size();
262		if ((unsigned long) src < hsa_end) {
263			copied = min(count, hsa_end - (unsigned long) src);
264			rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
265			if (rc)
266				return rc;
267		}
268	}
269	return copy_from_realmem(dest + copied, src + copied, count - copied);
270}
271
272/*
273 * Alloc memory and panic in case of ENOMEM
274 */
275static void *kzalloc_panic(int len)
276{
277	void *rc;
278
279	rc = kzalloc(len, GFP_KERNEL);
280	if (!rc)
281		panic("s390 kdump kzalloc (%d) failed", len);
282	return rc;
283}
284
285/*
286 * Initialize ELF note
287 */
288static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
289		     const char *name)
290{
291	Elf64_Nhdr *note;
292	u64 len;
293
294	note = (Elf64_Nhdr *)buf;
295	note->n_namesz = strlen(name) + 1;
296	note->n_descsz = d_len;
297	note->n_type = type;
298	len = sizeof(Elf64_Nhdr);
299
300	memcpy(buf + len, name, note->n_namesz);
301	len = roundup(len + note->n_namesz, 4);
302
303	memcpy(buf + len, desc, note->n_descsz);
304	len = roundup(len + note->n_descsz, 4);
305
306	return PTR_ADD(buf, len);
307}
308
309/*
310 * Initialize prstatus note
311 */
312static void *nt_prstatus(void *ptr, struct save_area *sa)
313{
314	struct elf_prstatus nt_prstatus;
315	static int cpu_nr = 1;
316
317	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
318	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
319	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
320	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
321	nt_prstatus.pr_pid = cpu_nr;
322	cpu_nr++;
323
324	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
325			 "CORE");
326}
327
328/*
329 * Initialize fpregset (floating point) note
330 */
331static void *nt_fpregset(void *ptr, struct save_area *sa)
332{
333	elf_fpregset_t nt_fpregset;
334
335	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
336	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
337	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
338
339	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
340		       "CORE");
341}
342
343/*
344 * Initialize timer note
345 */
346static void *nt_s390_timer(void *ptr, struct save_area *sa)
347{
348	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
349			 KEXEC_CORE_NOTE_NAME);
350}
351
352/*
353 * Initialize TOD clock comparator note
354 */
355static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
356{
357	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
358		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
359}
360
361/*
362 * Initialize TOD programmable register note
363 */
364static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
365{
366	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
367		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
368}
369
370/*
371 * Initialize control register note
372 */
373static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
374{
375	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
376		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
377}
378
379/*
380 * Initialize prefix register note
381 */
382static void *nt_s390_prefix(void *ptr, struct save_area *sa)
383{
384	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
385			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
386}
387
388/*
389 * Initialize vxrs high note (full 128 bit VX registers 16-31)
390 */
391static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
392{
393	return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
394		       16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
395}
396
397/*
398 * Initialize vxrs low note (lower halves of VX registers 0-15)
399 */
400static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
401{
402	Elf64_Nhdr *note;
403	u64 len;
404	int i;
405
406	note = (Elf64_Nhdr *)ptr;
407	note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
408	note->n_descsz = 16 * 8;
409	note->n_type = NT_S390_VXRS_LOW;
410	len = sizeof(Elf64_Nhdr);
411
412	memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
413	len = roundup(len + note->n_namesz, 4);
414
415	ptr += len;
416	/* Copy lower halves of SIMD registers 0-15 */
417	for (i = 0; i < 16; i++) {
418		memcpy(ptr, &vx_regs[i], 8);
419		ptr += 8;
420	}
421	return ptr;
422}
423
424/*
425 * Fill ELF notes for one CPU with save area registers
426 */
427void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
428{
429	ptr = nt_prstatus(ptr, sa);
430	ptr = nt_fpregset(ptr, sa);
431	ptr = nt_s390_timer(ptr, sa);
432	ptr = nt_s390_tod_cmp(ptr, sa);
433	ptr = nt_s390_tod_preg(ptr, sa);
434	ptr = nt_s390_ctrs(ptr, sa);
435	ptr = nt_s390_prefix(ptr, sa);
436	if (MACHINE_HAS_VX && vx_regs) {
437		ptr = nt_s390_vx_low(ptr, vx_regs);
438		ptr = nt_s390_vx_high(ptr, vx_regs);
439	}
440	return ptr;
441}
442
443/*
444 * Initialize prpsinfo note (new kernel)
445 */
446static void *nt_prpsinfo(void *ptr)
447{
448	struct elf_prpsinfo prpsinfo;
449
450	memset(&prpsinfo, 0, sizeof(prpsinfo));
451	prpsinfo.pr_sname = 'R';
452	strcpy(prpsinfo.pr_fname, "vmlinux");
453	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
454		       KEXEC_CORE_NOTE_NAME);
455}
456
457/*
458 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
459 */
460static void *get_vmcoreinfo_old(unsigned long *size)
461{
462	char nt_name[11], *vmcoreinfo;
463	Elf64_Nhdr note;
464	void *addr;
465
466	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
467		return NULL;
468	memset(nt_name, 0, sizeof(nt_name));
469	if (copy_from_oldmem(&note, addr, sizeof(note)))
470		return NULL;
471	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
472		return NULL;
473	if (strcmp(nt_name, "VMCOREINFO") != 0)
474		return NULL;
475	vmcoreinfo = kzalloc_panic(note.n_descsz);
476	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
477		return NULL;
478	*size = note.n_descsz;
479	return vmcoreinfo;
480}
481
482/*
483 * Initialize vmcoreinfo note (new kernel)
484 */
485static void *nt_vmcoreinfo(void *ptr)
486{
487	unsigned long size;
488	void *vmcoreinfo;
489
490	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
491	if (!vmcoreinfo)
492		vmcoreinfo = get_vmcoreinfo_old(&size);
493	if (!vmcoreinfo)
494		return ptr;
495	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
496}
497
498/*
499 * Initialize ELF header (new kernel)
500 */
501static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
502{
503	memset(ehdr, 0, sizeof(*ehdr));
504	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
505	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
506	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
507	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
508	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
509	ehdr->e_type = ET_CORE;
510	ehdr->e_machine = EM_S390;
511	ehdr->e_version = EV_CURRENT;
512	ehdr->e_phoff = sizeof(Elf64_Ehdr);
513	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
514	ehdr->e_phentsize = sizeof(Elf64_Phdr);
515	ehdr->e_phnum = mem_chunk_cnt + 1;
516	return ehdr + 1;
517}
518
519/*
520 * Return CPU count for ELF header (new kernel)
521 */
522static int get_cpu_cnt(void)
523{
524	int i, cpus = 0;
525
526	for (i = 0; i < dump_save_areas.count; i++) {
527		if (dump_save_areas.areas[i]->sa.pref_reg == 0)
528			continue;
529		cpus++;
530	}
531	return cpus;
532}
533
534/*
535 * Return memory chunk count for ELF header (new kernel)
536 */
537static int get_mem_chunk_cnt(void)
538{
539	int cnt = 0;
540	u64 idx;
541
542	for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
543		cnt++;
544	return cnt;
545}
546
547/*
548 * Initialize ELF loads (new kernel)
549 */
550static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
551{
552	phys_addr_t start, end;
553	u64 idx;
554
555	for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
556		phdr->p_filesz = end - start;
557		phdr->p_type = PT_LOAD;
558		phdr->p_offset = start;
559		phdr->p_vaddr = start;
560		phdr->p_paddr = start;
561		phdr->p_memsz = end - start;
562		phdr->p_flags = PF_R | PF_W | PF_X;
563		phdr->p_align = PAGE_SIZE;
564		phdr++;
565	}
566}
567
568/*
569 * Initialize notes (new kernel)
570 */
571static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
572{
573	struct save_area_ext *sa_ext;
574	void *ptr_start = ptr;
575	int i;
576
577	ptr = nt_prpsinfo(ptr);
578
579	for (i = 0; i < dump_save_areas.count; i++) {
580		sa_ext = dump_save_areas.areas[i];
581		if (sa_ext->sa.pref_reg == 0)
582			continue;
583		ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
584	}
585	ptr = nt_vmcoreinfo(ptr);
586	memset(phdr, 0, sizeof(*phdr));
587	phdr->p_type = PT_NOTE;
588	phdr->p_offset = notes_offset;
589	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
590	phdr->p_memsz = phdr->p_filesz;
591	return ptr;
592}
593
594/*
595 * Create ELF core header (new kernel)
596 */
597int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
598{
599	Elf64_Phdr *phdr_notes, *phdr_loads;
600	int mem_chunk_cnt;
601	void *ptr, *hdr;
602	u32 alloc_size;
603	u64 hdr_off;
604
605	/* If we are not in kdump or zfcpdump mode return */
606	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
607		return 0;
608	/* If elfcorehdr= has been passed via cmdline, we use that one */
609	if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
610		return 0;
611	/* If we cannot get HSA size for zfcpdump return error */
612	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp_get_hsa_size())
613		return -ENODEV;
614
615	/* For kdump, exclude previous crashkernel memory */
616	if (OLDMEM_BASE) {
617		oldmem_region.base = OLDMEM_BASE;
618		oldmem_region.size = OLDMEM_SIZE;
619		oldmem_type.total_size = OLDMEM_SIZE;
620	}
621
622	mem_chunk_cnt = get_mem_chunk_cnt();
623
624	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
625		mem_chunk_cnt * sizeof(Elf64_Phdr);
626	hdr = kzalloc_panic(alloc_size);
627	/* Init elf header */
628	ptr = ehdr_init(hdr, mem_chunk_cnt);
629	/* Init program headers */
630	phdr_notes = ptr;
631	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
632	phdr_loads = ptr;
633	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
634	/* Init notes */
635	hdr_off = PTR_DIFF(ptr, hdr);
636	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
637	/* Init loads */
638	hdr_off = PTR_DIFF(ptr, hdr);
639	loads_init(phdr_loads, hdr_off);
640	*addr = (unsigned long long) hdr;
641	elfcorehdr_newmem = hdr;
642	*size = (unsigned long long) hdr_off;
643	BUG_ON(elfcorehdr_size > alloc_size);
644	return 0;
645}
646
647/*
648 * Free ELF core header (new kernel)
649 */
650void elfcorehdr_free(unsigned long long addr)
651{
652	if (!elfcorehdr_newmem)
653		return;
654	kfree((void *)(unsigned long)addr);
655}
656
657/*
658 * Read from ELF header
659 */
660ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
661{
662	void *src = (void *)(unsigned long)*ppos;
663
664	src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
665	memcpy(buf, src, count);
666	*ppos += count;
667	return count;
668}
669
670/*
671 * Read from ELF notes data
672 */
673ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
674{
675	void *src = (void *)(unsigned long)*ppos;
676	int rc;
677
678	if (elfcorehdr_newmem) {
679		memcpy(buf, src, count);
680	} else {
681		rc = copy_from_oldmem(buf, src, count);
682		if (rc)
683			return rc;
684	}
685	*ppos += count;
686	return count;
687}
688