1/*
2 *    Copyright IBM Corp. 2007, 2011
3 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4 */
5
6#include <linux/sched.h>
7#include <linux/kernel.h>
8#include <linux/errno.h>
9#include <linux/gfp.h>
10#include <linux/mm.h>
11#include <linux/swap.h>
12#include <linux/smp.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h>
15#include <linux/spinlock.h>
16#include <linux/module.h>
17#include <linux/quicklist.h>
18#include <linux/rcupdate.h>
19#include <linux/slab.h>
20#include <linux/swapops.h>
21
22#include <asm/pgtable.h>
23#include <asm/pgalloc.h>
24#include <asm/tlb.h>
25#include <asm/tlbflush.h>
26#include <asm/mmu_context.h>
27
28#ifndef CONFIG_64BIT
29#define ALLOC_ORDER	1
30#define FRAG_MASK	0x0f
31#else
32#define ALLOC_ORDER	2
33#define FRAG_MASK	0x03
34#endif
35
36
37unsigned long *crst_table_alloc(struct mm_struct *mm)
38{
39	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
40
41	if (!page)
42		return NULL;
43	return (unsigned long *) page_to_phys(page);
44}
45
46void crst_table_free(struct mm_struct *mm, unsigned long *table)
47{
48	free_pages((unsigned long) table, ALLOC_ORDER);
49}
50
51#ifdef CONFIG_64BIT
52static void __crst_table_upgrade(void *arg)
53{
54	struct mm_struct *mm = arg;
55
56	if (current->active_mm == mm) {
57		clear_user_asce();
58		set_user_asce(mm);
59	}
60	__tlb_flush_local();
61}
62
63int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
64{
65	unsigned long *table, *pgd;
66	unsigned long entry;
67	int flush;
68
69	BUG_ON(limit > (1UL << 53));
70	flush = 0;
71repeat:
72	table = crst_table_alloc(mm);
73	if (!table)
74		return -ENOMEM;
75	spin_lock_bh(&mm->page_table_lock);
76	if (mm->context.asce_limit < limit) {
77		pgd = (unsigned long *) mm->pgd;
78		if (mm->context.asce_limit <= (1UL << 31)) {
79			entry = _REGION3_ENTRY_EMPTY;
80			mm->context.asce_limit = 1UL << 42;
81			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
82						_ASCE_USER_BITS |
83						_ASCE_TYPE_REGION3;
84		} else {
85			entry = _REGION2_ENTRY_EMPTY;
86			mm->context.asce_limit = 1UL << 53;
87			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
88						_ASCE_USER_BITS |
89						_ASCE_TYPE_REGION2;
90		}
91		crst_table_init(table, entry);
92		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
93		mm->pgd = (pgd_t *) table;
94		mm->task_size = mm->context.asce_limit;
95		table = NULL;
96		flush = 1;
97	}
98	spin_unlock_bh(&mm->page_table_lock);
99	if (table)
100		crst_table_free(mm, table);
101	if (mm->context.asce_limit < limit)
102		goto repeat;
103	if (flush)
104		on_each_cpu(__crst_table_upgrade, mm, 0);
105	return 0;
106}
107
108void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
109{
110	pgd_t *pgd;
111
112	if (current->active_mm == mm) {
113		clear_user_asce();
114		__tlb_flush_mm(mm);
115	}
116	while (mm->context.asce_limit > limit) {
117		pgd = mm->pgd;
118		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
119		case _REGION_ENTRY_TYPE_R2:
120			mm->context.asce_limit = 1UL << 42;
121			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
122						_ASCE_USER_BITS |
123						_ASCE_TYPE_REGION3;
124			break;
125		case _REGION_ENTRY_TYPE_R3:
126			mm->context.asce_limit = 1UL << 31;
127			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
128						_ASCE_USER_BITS |
129						_ASCE_TYPE_SEGMENT;
130			break;
131		default:
132			BUG();
133		}
134		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
135		mm->task_size = mm->context.asce_limit;
136		crst_table_free(mm, (unsigned long *) pgd);
137	}
138	if (current->active_mm == mm)
139		set_user_asce(mm);
140}
141#endif
142
143#ifdef CONFIG_PGSTE
144
145/**
146 * gmap_alloc - allocate a guest address space
147 * @mm: pointer to the parent mm_struct
148 * @limit: maximum size of the gmap address space
149 *
150 * Returns a guest address space structure.
151 */
152struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
153{
154	struct gmap *gmap;
155	struct page *page;
156	unsigned long *table;
157	unsigned long etype, atype;
158
159	if (limit < (1UL << 31)) {
160		limit = (1UL << 31) - 1;
161		atype = _ASCE_TYPE_SEGMENT;
162		etype = _SEGMENT_ENTRY_EMPTY;
163	} else if (limit < (1UL << 42)) {
164		limit = (1UL << 42) - 1;
165		atype = _ASCE_TYPE_REGION3;
166		etype = _REGION3_ENTRY_EMPTY;
167	} else if (limit < (1UL << 53)) {
168		limit = (1UL << 53) - 1;
169		atype = _ASCE_TYPE_REGION2;
170		etype = _REGION2_ENTRY_EMPTY;
171	} else {
172		limit = -1UL;
173		atype = _ASCE_TYPE_REGION1;
174		etype = _REGION1_ENTRY_EMPTY;
175	}
176	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
177	if (!gmap)
178		goto out;
179	INIT_LIST_HEAD(&gmap->crst_list);
180	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
181	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
182	spin_lock_init(&gmap->guest_table_lock);
183	gmap->mm = mm;
184	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
185	if (!page)
186		goto out_free;
187	page->index = 0;
188	list_add(&page->lru, &gmap->crst_list);
189	table = (unsigned long *) page_to_phys(page);
190	crst_table_init(table, etype);
191	gmap->table = table;
192	gmap->asce = atype | _ASCE_TABLE_LENGTH |
193		_ASCE_USER_BITS | __pa(table);
194	gmap->asce_end = limit;
195	down_write(&mm->mmap_sem);
196	list_add(&gmap->list, &mm->context.gmap_list);
197	up_write(&mm->mmap_sem);
198	return gmap;
199
200out_free:
201	kfree(gmap);
202out:
203	return NULL;
204}
205EXPORT_SYMBOL_GPL(gmap_alloc);
206
207static void gmap_flush_tlb(struct gmap *gmap)
208{
209	if (MACHINE_HAS_IDTE)
210		__tlb_flush_asce(gmap->mm, gmap->asce);
211	else
212		__tlb_flush_global();
213}
214
215static void gmap_radix_tree_free(struct radix_tree_root *root)
216{
217	struct radix_tree_iter iter;
218	unsigned long indices[16];
219	unsigned long index;
220	void **slot;
221	int i, nr;
222
223	/* A radix tree is freed by deleting all of its entries */
224	index = 0;
225	do {
226		nr = 0;
227		radix_tree_for_each_slot(slot, root, &iter, index) {
228			indices[nr] = iter.index;
229			if (++nr == 16)
230				break;
231		}
232		for (i = 0; i < nr; i++) {
233			index = indices[i];
234			radix_tree_delete(root, index);
235		}
236	} while (nr > 0);
237}
238
239/**
240 * gmap_free - free a guest address space
241 * @gmap: pointer to the guest address space structure
242 */
243void gmap_free(struct gmap *gmap)
244{
245	struct page *page, *next;
246
247	/* Flush tlb. */
248	if (MACHINE_HAS_IDTE)
249		__tlb_flush_asce(gmap->mm, gmap->asce);
250	else
251		__tlb_flush_global();
252
253	/* Free all segment & region tables. */
254	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
255		__free_pages(page, ALLOC_ORDER);
256	gmap_radix_tree_free(&gmap->guest_to_host);
257	gmap_radix_tree_free(&gmap->host_to_guest);
258	down_write(&gmap->mm->mmap_sem);
259	list_del(&gmap->list);
260	up_write(&gmap->mm->mmap_sem);
261	kfree(gmap);
262}
263EXPORT_SYMBOL_GPL(gmap_free);
264
265/**
266 * gmap_enable - switch primary space to the guest address space
267 * @gmap: pointer to the guest address space structure
268 */
269void gmap_enable(struct gmap *gmap)
270{
271	S390_lowcore.gmap = (unsigned long) gmap;
272}
273EXPORT_SYMBOL_GPL(gmap_enable);
274
275/**
276 * gmap_disable - switch back to the standard primary address space
277 * @gmap: pointer to the guest address space structure
278 */
279void gmap_disable(struct gmap *gmap)
280{
281	S390_lowcore.gmap = 0UL;
282}
283EXPORT_SYMBOL_GPL(gmap_disable);
284
285/*
286 * gmap_alloc_table is assumed to be called with mmap_sem held
287 */
288static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
289			    unsigned long init, unsigned long gaddr)
290{
291	struct page *page;
292	unsigned long *new;
293
294	/* since we dont free the gmap table until gmap_free we can unlock */
295	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
296	if (!page)
297		return -ENOMEM;
298	new = (unsigned long *) page_to_phys(page);
299	crst_table_init(new, init);
300	spin_lock(&gmap->mm->page_table_lock);
301	if (*table & _REGION_ENTRY_INVALID) {
302		list_add(&page->lru, &gmap->crst_list);
303		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
304			(*table & _REGION_ENTRY_TYPE_MASK);
305		page->index = gaddr;
306		page = NULL;
307	}
308	spin_unlock(&gmap->mm->page_table_lock);
309	if (page)
310		__free_pages(page, ALLOC_ORDER);
311	return 0;
312}
313
314/**
315 * __gmap_segment_gaddr - find virtual address from segment pointer
316 * @entry: pointer to a segment table entry in the guest address space
317 *
318 * Returns the virtual address in the guest address space for the segment
319 */
320static unsigned long __gmap_segment_gaddr(unsigned long *entry)
321{
322	struct page *page;
323	unsigned long offset;
324
325	offset = (unsigned long) entry / sizeof(unsigned long);
326	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
327	page = pmd_to_page((pmd_t *) entry);
328	return page->index + offset;
329}
330
331/**
332 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
333 * @gmap: pointer to the guest address space structure
334 * @vmaddr: address in the host process address space
335 *
336 * Returns 1 if a TLB flush is required
337 */
338static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
339{
340	unsigned long *entry;
341	int flush = 0;
342
343	spin_lock(&gmap->guest_table_lock);
344	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
345	if (entry) {
346		flush = (*entry != _SEGMENT_ENTRY_INVALID);
347		*entry = _SEGMENT_ENTRY_INVALID;
348	}
349	spin_unlock(&gmap->guest_table_lock);
350	return flush;
351}
352
353/**
354 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
355 * @gmap: pointer to the guest address space structure
356 * @gaddr: address in the guest address space
357 *
358 * Returns 1 if a TLB flush is required
359 */
360static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
361{
362	unsigned long vmaddr;
363
364	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
365						   gaddr >> PMD_SHIFT);
366	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
367}
368
369/**
370 * gmap_unmap_segment - unmap segment from the guest address space
371 * @gmap: pointer to the guest address space structure
372 * @to: address in the guest address space
373 * @len: length of the memory area to unmap
374 *
375 * Returns 0 if the unmap succeeded, -EINVAL if not.
376 */
377int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
378{
379	unsigned long off;
380	int flush;
381
382	if ((to | len) & (PMD_SIZE - 1))
383		return -EINVAL;
384	if (len == 0 || to + len < to)
385		return -EINVAL;
386
387	flush = 0;
388	down_write(&gmap->mm->mmap_sem);
389	for (off = 0; off < len; off += PMD_SIZE)
390		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
391	up_write(&gmap->mm->mmap_sem);
392	if (flush)
393		gmap_flush_tlb(gmap);
394	return 0;
395}
396EXPORT_SYMBOL_GPL(gmap_unmap_segment);
397
398/**
399 * gmap_mmap_segment - map a segment to the guest address space
400 * @gmap: pointer to the guest address space structure
401 * @from: source address in the parent address space
402 * @to: target address in the guest address space
403 * @len: length of the memory area to map
404 *
405 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
406 */
407int gmap_map_segment(struct gmap *gmap, unsigned long from,
408		     unsigned long to, unsigned long len)
409{
410	unsigned long off;
411	int flush;
412
413	if ((from | to | len) & (PMD_SIZE - 1))
414		return -EINVAL;
415	if (len == 0 || from + len < from || to + len < to ||
416	    from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
417		return -EINVAL;
418
419	flush = 0;
420	down_write(&gmap->mm->mmap_sem);
421	for (off = 0; off < len; off += PMD_SIZE) {
422		/* Remove old translation */
423		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
424		/* Store new translation */
425		if (radix_tree_insert(&gmap->guest_to_host,
426				      (to + off) >> PMD_SHIFT,
427				      (void *) from + off))
428			break;
429	}
430	up_write(&gmap->mm->mmap_sem);
431	if (flush)
432		gmap_flush_tlb(gmap);
433	if (off >= len)
434		return 0;
435	gmap_unmap_segment(gmap, to, len);
436	return -ENOMEM;
437}
438EXPORT_SYMBOL_GPL(gmap_map_segment);
439
440/**
441 * __gmap_translate - translate a guest address to a user space address
442 * @gmap: pointer to guest mapping meta data structure
443 * @gaddr: guest address
444 *
445 * Returns user space address which corresponds to the guest address or
446 * -EFAULT if no such mapping exists.
447 * This function does not establish potentially missing page table entries.
448 * The mmap_sem of the mm that belongs to the address space must be held
449 * when this function gets called.
450 */
451unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
452{
453	unsigned long vmaddr;
454
455	vmaddr = (unsigned long)
456		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
457	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
458}
459EXPORT_SYMBOL_GPL(__gmap_translate);
460
461/**
462 * gmap_translate - translate a guest address to a user space address
463 * @gmap: pointer to guest mapping meta data structure
464 * @gaddr: guest address
465 *
466 * Returns user space address which corresponds to the guest address or
467 * -EFAULT if no such mapping exists.
468 * This function does not establish potentially missing page table entries.
469 */
470unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
471{
472	unsigned long rc;
473
474	down_read(&gmap->mm->mmap_sem);
475	rc = __gmap_translate(gmap, gaddr);
476	up_read(&gmap->mm->mmap_sem);
477	return rc;
478}
479EXPORT_SYMBOL_GPL(gmap_translate);
480
481/**
482 * gmap_unlink - disconnect a page table from the gmap shadow tables
483 * @gmap: pointer to guest mapping meta data structure
484 * @table: pointer to the host page table
485 * @vmaddr: vm address associated with the host page table
486 */
487static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
488			unsigned long vmaddr)
489{
490	struct gmap *gmap;
491	int flush;
492
493	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
494		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
495		if (flush)
496			gmap_flush_tlb(gmap);
497	}
498}
499
500/**
501 * gmap_link - set up shadow page tables to connect a host to a guest address
502 * @gmap: pointer to guest mapping meta data structure
503 * @gaddr: guest address
504 * @vmaddr: vm address
505 *
506 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
507 * if the vm address is already mapped to a different guest segment.
508 * The mmap_sem of the mm that belongs to the address space must be held
509 * when this function gets called.
510 */
511int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
512{
513	struct mm_struct *mm;
514	unsigned long *table;
515	spinlock_t *ptl;
516	pgd_t *pgd;
517	pud_t *pud;
518	pmd_t *pmd;
519	int rc;
520
521	/* Create higher level tables in the gmap page table */
522	table = gmap->table;
523	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
524		table += (gaddr >> 53) & 0x7ff;
525		if ((*table & _REGION_ENTRY_INVALID) &&
526		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
527				     gaddr & 0xffe0000000000000))
528			return -ENOMEM;
529		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
530	}
531	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
532		table += (gaddr >> 42) & 0x7ff;
533		if ((*table & _REGION_ENTRY_INVALID) &&
534		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
535				     gaddr & 0xfffffc0000000000))
536			return -ENOMEM;
537		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
538	}
539	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
540		table += (gaddr >> 31) & 0x7ff;
541		if ((*table & _REGION_ENTRY_INVALID) &&
542		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
543				     gaddr & 0xffffffff80000000))
544			return -ENOMEM;
545		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
546	}
547	table += (gaddr >> 20) & 0x7ff;
548	/* Walk the parent mm page table */
549	mm = gmap->mm;
550	pgd = pgd_offset(mm, vmaddr);
551	VM_BUG_ON(pgd_none(*pgd));
552	pud = pud_offset(pgd, vmaddr);
553	VM_BUG_ON(pud_none(*pud));
554	pmd = pmd_offset(pud, vmaddr);
555	VM_BUG_ON(pmd_none(*pmd));
556	/* large pmds cannot yet be handled */
557	if (pmd_large(*pmd))
558		return -EFAULT;
559	/* Link gmap segment table entry location to page table. */
560	rc = radix_tree_preload(GFP_KERNEL);
561	if (rc)
562		return rc;
563	ptl = pmd_lock(mm, pmd);
564	spin_lock(&gmap->guest_table_lock);
565	if (*table == _SEGMENT_ENTRY_INVALID) {
566		rc = radix_tree_insert(&gmap->host_to_guest,
567				       vmaddr >> PMD_SHIFT, table);
568		if (!rc)
569			*table = pmd_val(*pmd);
570	} else
571		rc = 0;
572	spin_unlock(&gmap->guest_table_lock);
573	spin_unlock(ptl);
574	radix_tree_preload_end();
575	return rc;
576}
577
578/**
579 * gmap_fault - resolve a fault on a guest address
580 * @gmap: pointer to guest mapping meta data structure
581 * @gaddr: guest address
582 * @fault_flags: flags to pass down to handle_mm_fault()
583 *
584 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
585 * if the vm address is already mapped to a different guest segment.
586 */
587int gmap_fault(struct gmap *gmap, unsigned long gaddr,
588	       unsigned int fault_flags)
589{
590	unsigned long vmaddr;
591	int rc;
592
593	down_read(&gmap->mm->mmap_sem);
594	vmaddr = __gmap_translate(gmap, gaddr);
595	if (IS_ERR_VALUE(vmaddr)) {
596		rc = vmaddr;
597		goto out_up;
598	}
599	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
600		rc = -EFAULT;
601		goto out_up;
602	}
603	rc = __gmap_link(gmap, gaddr, vmaddr);
604out_up:
605	up_read(&gmap->mm->mmap_sem);
606	return rc;
607}
608EXPORT_SYMBOL_GPL(gmap_fault);
609
610static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
611{
612	if (!non_swap_entry(entry))
613		dec_mm_counter(mm, MM_SWAPENTS);
614	else if (is_migration_entry(entry)) {
615		struct page *page = migration_entry_to_page(entry);
616
617		if (PageAnon(page))
618			dec_mm_counter(mm, MM_ANONPAGES);
619		else
620			dec_mm_counter(mm, MM_FILEPAGES);
621	}
622	free_swap_and_cache(entry);
623}
624
625/*
626 * this function is assumed to be called with mmap_sem held
627 */
628void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
629{
630	unsigned long vmaddr, ptev, pgstev;
631	pte_t *ptep, pte;
632	spinlock_t *ptl;
633	pgste_t pgste;
634
635	/* Find the vm address for the guest address */
636	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
637						   gaddr >> PMD_SHIFT);
638	if (!vmaddr)
639		return;
640	vmaddr |= gaddr & ~PMD_MASK;
641	/* Get pointer to the page table entry */
642	ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
643	if (unlikely(!ptep))
644		return;
645	pte = *ptep;
646	if (!pte_swap(pte))
647		goto out_pte;
648	/* Zap unused and logically-zero pages */
649	pgste = pgste_get_lock(ptep);
650	pgstev = pgste_val(pgste);
651	ptev = pte_val(pte);
652	if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
653	    ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
654		gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
655		pte_clear(gmap->mm, vmaddr, ptep);
656	}
657	pgste_set_unlock(ptep, pgste);
658out_pte:
659	pte_unmap_unlock(ptep, ptl);
660}
661EXPORT_SYMBOL_GPL(__gmap_zap);
662
663void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
664{
665	unsigned long gaddr, vmaddr, size;
666	struct vm_area_struct *vma;
667
668	down_read(&gmap->mm->mmap_sem);
669	for (gaddr = from; gaddr < to;
670	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
671		/* Find the vm address for the guest address */
672		vmaddr = (unsigned long)
673			radix_tree_lookup(&gmap->guest_to_host,
674					  gaddr >> PMD_SHIFT);
675		if (!vmaddr)
676			continue;
677		vmaddr |= gaddr & ~PMD_MASK;
678		/* Find vma in the parent mm */
679		vma = find_vma(gmap->mm, vmaddr);
680		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
681		zap_page_range(vma, vmaddr, size, NULL);
682	}
683	up_read(&gmap->mm->mmap_sem);
684}
685EXPORT_SYMBOL_GPL(gmap_discard);
686
687static LIST_HEAD(gmap_notifier_list);
688static DEFINE_SPINLOCK(gmap_notifier_lock);
689
690/**
691 * gmap_register_ipte_notifier - register a pte invalidation callback
692 * @nb: pointer to the gmap notifier block
693 */
694void gmap_register_ipte_notifier(struct gmap_notifier *nb)
695{
696	spin_lock(&gmap_notifier_lock);
697	list_add(&nb->list, &gmap_notifier_list);
698	spin_unlock(&gmap_notifier_lock);
699}
700EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
701
702/**
703 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
704 * @nb: pointer to the gmap notifier block
705 */
706void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
707{
708	spin_lock(&gmap_notifier_lock);
709	list_del_init(&nb->list);
710	spin_unlock(&gmap_notifier_lock);
711}
712EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
713
714/**
715 * gmap_ipte_notify - mark a range of ptes for invalidation notification
716 * @gmap: pointer to guest mapping meta data structure
717 * @gaddr: virtual address in the guest address space
718 * @len: size of area
719 *
720 * Returns 0 if for each page in the given range a gmap mapping exists and
721 * the invalidation notification could be set. If the gmap mapping is missing
722 * for one or more pages -EFAULT is returned. If no memory could be allocated
723 * -ENOMEM is returned. This function establishes missing page table entries.
724 */
725int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
726{
727	unsigned long addr;
728	spinlock_t *ptl;
729	pte_t *ptep, entry;
730	pgste_t pgste;
731	int rc = 0;
732
733	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
734		return -EINVAL;
735	down_read(&gmap->mm->mmap_sem);
736	while (len) {
737		/* Convert gmap address and connect the page tables */
738		addr = __gmap_translate(gmap, gaddr);
739		if (IS_ERR_VALUE(addr)) {
740			rc = addr;
741			break;
742		}
743		/* Get the page mapped */
744		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
745			rc = -EFAULT;
746			break;
747		}
748		rc = __gmap_link(gmap, gaddr, addr);
749		if (rc)
750			break;
751		/* Walk the process page table, lock and get pte pointer */
752		ptep = get_locked_pte(gmap->mm, addr, &ptl);
753		if (unlikely(!ptep))
754			continue;
755		/* Set notification bit in the pgste of the pte */
756		entry = *ptep;
757		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
758			pgste = pgste_get_lock(ptep);
759			pgste_val(pgste) |= PGSTE_IN_BIT;
760			pgste_set_unlock(ptep, pgste);
761			gaddr += PAGE_SIZE;
762			len -= PAGE_SIZE;
763		}
764		spin_unlock(ptl);
765	}
766	up_read(&gmap->mm->mmap_sem);
767	return rc;
768}
769EXPORT_SYMBOL_GPL(gmap_ipte_notify);
770
771/**
772 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
773 * @mm: pointer to the process mm_struct
774 * @addr: virtual address in the process address space
775 * @pte: pointer to the page table entry
776 *
777 * This function is assumed to be called with the page table lock held
778 * for the pte to notify.
779 */
780void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
781{
782	unsigned long offset, gaddr;
783	unsigned long *table;
784	struct gmap_notifier *nb;
785	struct gmap *gmap;
786
787	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
788	offset = offset * (4096 / sizeof(pte_t));
789	spin_lock(&gmap_notifier_lock);
790	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
791		table = radix_tree_lookup(&gmap->host_to_guest,
792					  vmaddr >> PMD_SHIFT);
793		if (!table)
794			continue;
795		gaddr = __gmap_segment_gaddr(table) + offset;
796		list_for_each_entry(nb, &gmap_notifier_list, list)
797			nb->notifier_call(gmap, gaddr);
798	}
799	spin_unlock(&gmap_notifier_lock);
800}
801EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
802
803static inline int page_table_with_pgste(struct page *page)
804{
805	return atomic_read(&page->_mapcount) == 0;
806}
807
808static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
809{
810	struct page *page;
811	unsigned long *table;
812
813	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
814	if (!page)
815		return NULL;
816	if (!pgtable_page_ctor(page)) {
817		__free_page(page);
818		return NULL;
819	}
820	atomic_set(&page->_mapcount, 0);
821	table = (unsigned long *) page_to_phys(page);
822	clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
823	clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
824	return table;
825}
826
827static inline void page_table_free_pgste(unsigned long *table)
828{
829	struct page *page;
830
831	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
832	pgtable_page_dtor(page);
833	atomic_set(&page->_mapcount, -1);
834	__free_page(page);
835}
836
837static inline unsigned long page_table_reset_pte(struct mm_struct *mm, pmd_t *pmd,
838			unsigned long addr, unsigned long end, bool init_skey)
839{
840	pte_t *start_pte, *pte;
841	spinlock_t *ptl;
842	pgste_t pgste;
843
844	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
845	pte = start_pte;
846	do {
847		pgste = pgste_get_lock(pte);
848		pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
849		if (init_skey) {
850			unsigned long address;
851
852			pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
853					      PGSTE_GR_BIT | PGSTE_GC_BIT);
854
855			/* skip invalid and not writable pages */
856			if (pte_val(*pte) & _PAGE_INVALID ||
857			    !(pte_val(*pte) & _PAGE_WRITE)) {
858				pgste_set_unlock(pte, pgste);
859				continue;
860			}
861
862			address = pte_val(*pte) & PAGE_MASK;
863			page_set_storage_key(address, PAGE_DEFAULT_KEY, 1);
864		}
865		pgste_set_unlock(pte, pgste);
866	} while (pte++, addr += PAGE_SIZE, addr != end);
867	pte_unmap_unlock(start_pte, ptl);
868
869	return addr;
870}
871
872static inline unsigned long page_table_reset_pmd(struct mm_struct *mm, pud_t *pud,
873			unsigned long addr, unsigned long end, bool init_skey)
874{
875	unsigned long next;
876	pmd_t *pmd;
877
878	pmd = pmd_offset(pud, addr);
879	do {
880		next = pmd_addr_end(addr, end);
881		if (pmd_none_or_clear_bad(pmd))
882			continue;
883		next = page_table_reset_pte(mm, pmd, addr, next, init_skey);
884	} while (pmd++, addr = next, addr != end);
885
886	return addr;
887}
888
889static inline unsigned long page_table_reset_pud(struct mm_struct *mm, pgd_t *pgd,
890			unsigned long addr, unsigned long end, bool init_skey)
891{
892	unsigned long next;
893	pud_t *pud;
894
895	pud = pud_offset(pgd, addr);
896	do {
897		next = pud_addr_end(addr, end);
898		if (pud_none_or_clear_bad(pud))
899			continue;
900		next = page_table_reset_pmd(mm, pud, addr, next, init_skey);
901	} while (pud++, addr = next, addr != end);
902
903	return addr;
904}
905
906void page_table_reset_pgste(struct mm_struct *mm, unsigned long start,
907			    unsigned long end, bool init_skey)
908{
909	unsigned long addr, next;
910	pgd_t *pgd;
911
912	down_write(&mm->mmap_sem);
913	if (init_skey && mm_use_skey(mm))
914		goto out_up;
915	addr = start;
916	pgd = pgd_offset(mm, addr);
917	do {
918		next = pgd_addr_end(addr, end);
919		if (pgd_none_or_clear_bad(pgd))
920			continue;
921		next = page_table_reset_pud(mm, pgd, addr, next, init_skey);
922	} while (pgd++, addr = next, addr != end);
923	if (init_skey)
924		current->mm->context.use_skey = 1;
925out_up:
926	up_write(&mm->mmap_sem);
927}
928EXPORT_SYMBOL(page_table_reset_pgste);
929
930int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
931			  unsigned long key, bool nq)
932{
933	spinlock_t *ptl;
934	pgste_t old, new;
935	pte_t *ptep;
936
937	down_read(&mm->mmap_sem);
938retry:
939	ptep = get_locked_pte(current->mm, addr, &ptl);
940	if (unlikely(!ptep)) {
941		up_read(&mm->mmap_sem);
942		return -EFAULT;
943	}
944	if (!(pte_val(*ptep) & _PAGE_INVALID) &&
945	     (pte_val(*ptep) & _PAGE_PROTECT)) {
946		pte_unmap_unlock(ptep, ptl);
947		if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
948			up_read(&mm->mmap_sem);
949			return -EFAULT;
950		}
951		goto retry;
952	}
953
954	new = old = pgste_get_lock(ptep);
955	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
956			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
957	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
958	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
959	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
960		unsigned long address, bits, skey;
961
962		address = pte_val(*ptep) & PAGE_MASK;
963		skey = (unsigned long) page_get_storage_key(address);
964		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
965		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
966		/* Set storage key ACC and FP */
967		page_set_storage_key(address, skey, !nq);
968		/* Merge host changed & referenced into pgste  */
969		pgste_val(new) |= bits << 52;
970	}
971	/* changing the guest storage key is considered a change of the page */
972	if ((pgste_val(new) ^ pgste_val(old)) &
973	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
974		pgste_val(new) |= PGSTE_UC_BIT;
975
976	pgste_set_unlock(ptep, new);
977	pte_unmap_unlock(ptep, ptl);
978	up_read(&mm->mmap_sem);
979	return 0;
980}
981EXPORT_SYMBOL(set_guest_storage_key);
982
983#else /* CONFIG_PGSTE */
984
985static inline int page_table_with_pgste(struct page *page)
986{
987	return 0;
988}
989
990static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
991{
992	return NULL;
993}
994
995void page_table_reset_pgste(struct mm_struct *mm, unsigned long start,
996			    unsigned long end, bool init_skey)
997{
998}
999
1000static inline void page_table_free_pgste(unsigned long *table)
1001{
1002}
1003
1004static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
1005			unsigned long vmaddr)
1006{
1007}
1008
1009#endif /* CONFIG_PGSTE */
1010
1011static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
1012{
1013	unsigned int old, new;
1014
1015	do {
1016		old = atomic_read(v);
1017		new = old ^ bits;
1018	} while (atomic_cmpxchg(v, old, new) != old);
1019	return new;
1020}
1021
1022/*
1023 * page table entry allocation/free routines.
1024 */
1025unsigned long *page_table_alloc(struct mm_struct *mm)
1026{
1027	unsigned long *uninitialized_var(table);
1028	struct page *uninitialized_var(page);
1029	unsigned int mask, bit;
1030
1031	if (mm_has_pgste(mm))
1032		return page_table_alloc_pgste(mm);
1033	/* Allocate fragments of a 4K page as 1K/2K page table */
1034	spin_lock_bh(&mm->context.list_lock);
1035	mask = FRAG_MASK;
1036	if (!list_empty(&mm->context.pgtable_list)) {
1037		page = list_first_entry(&mm->context.pgtable_list,
1038					struct page, lru);
1039		table = (unsigned long *) page_to_phys(page);
1040		mask = atomic_read(&page->_mapcount);
1041		mask = mask | (mask >> 4);
1042	}
1043	if ((mask & FRAG_MASK) == FRAG_MASK) {
1044		spin_unlock_bh(&mm->context.list_lock);
1045		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
1046		if (!page)
1047			return NULL;
1048		if (!pgtable_page_ctor(page)) {
1049			__free_page(page);
1050			return NULL;
1051		}
1052		atomic_set(&page->_mapcount, 1);
1053		table = (unsigned long *) page_to_phys(page);
1054		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1055		spin_lock_bh(&mm->context.list_lock);
1056		list_add(&page->lru, &mm->context.pgtable_list);
1057	} else {
1058		for (bit = 1; mask & bit; bit <<= 1)
1059			table += PTRS_PER_PTE;
1060		mask = atomic_xor_bits(&page->_mapcount, bit);
1061		if ((mask & FRAG_MASK) == FRAG_MASK)
1062			list_del(&page->lru);
1063	}
1064	spin_unlock_bh(&mm->context.list_lock);
1065	return table;
1066}
1067
1068void page_table_free(struct mm_struct *mm, unsigned long *table)
1069{
1070	struct page *page;
1071	unsigned int bit, mask;
1072
1073	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1074	if (page_table_with_pgste(page))
1075		return page_table_free_pgste(table);
1076	/* Free 1K/2K page table fragment of a 4K page */
1077	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1078	spin_lock_bh(&mm->context.list_lock);
1079	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1080		list_del(&page->lru);
1081	mask = atomic_xor_bits(&page->_mapcount, bit);
1082	if (mask & FRAG_MASK)
1083		list_add(&page->lru, &mm->context.pgtable_list);
1084	spin_unlock_bh(&mm->context.list_lock);
1085	if (mask == 0) {
1086		pgtable_page_dtor(page);
1087		atomic_set(&page->_mapcount, -1);
1088		__free_page(page);
1089	}
1090}
1091
1092static void __page_table_free_rcu(void *table, unsigned bit)
1093{
1094	struct page *page;
1095
1096	if (bit == FRAG_MASK)
1097		return page_table_free_pgste(table);
1098	/* Free 1K/2K page table fragment of a 4K page */
1099	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1100	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1101		pgtable_page_dtor(page);
1102		atomic_set(&page->_mapcount, -1);
1103		__free_page(page);
1104	}
1105}
1106
1107void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1108			 unsigned long vmaddr)
1109{
1110	struct mm_struct *mm;
1111	struct page *page;
1112	unsigned int bit, mask;
1113
1114	mm = tlb->mm;
1115	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1116	if (page_table_with_pgste(page)) {
1117		gmap_unlink(mm, table, vmaddr);
1118		table = (unsigned long *) (__pa(table) | FRAG_MASK);
1119		tlb_remove_table(tlb, table);
1120		return;
1121	}
1122	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1123	spin_lock_bh(&mm->context.list_lock);
1124	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1125		list_del(&page->lru);
1126	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1127	if (mask & FRAG_MASK)
1128		list_add_tail(&page->lru, &mm->context.pgtable_list);
1129	spin_unlock_bh(&mm->context.list_lock);
1130	table = (unsigned long *) (__pa(table) | (bit << 4));
1131	tlb_remove_table(tlb, table);
1132}
1133
1134static void __tlb_remove_table(void *_table)
1135{
1136	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1137	void *table = (void *)((unsigned long) _table & ~mask);
1138	unsigned type = (unsigned long) _table & mask;
1139
1140	if (type)
1141		__page_table_free_rcu(table, type);
1142	else
1143		free_pages((unsigned long) table, ALLOC_ORDER);
1144}
1145
1146static void tlb_remove_table_smp_sync(void *arg)
1147{
1148	/* Simply deliver the interrupt */
1149}
1150
1151static void tlb_remove_table_one(void *table)
1152{
1153	/*
1154	 * This isn't an RCU grace period and hence the page-tables cannot be
1155	 * assumed to be actually RCU-freed.
1156	 *
1157	 * It is however sufficient for software page-table walkers that rely
1158	 * on IRQ disabling. See the comment near struct mmu_table_batch.
1159	 */
1160	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1161	__tlb_remove_table(table);
1162}
1163
1164static void tlb_remove_table_rcu(struct rcu_head *head)
1165{
1166	struct mmu_table_batch *batch;
1167	int i;
1168
1169	batch = container_of(head, struct mmu_table_batch, rcu);
1170
1171	for (i = 0; i < batch->nr; i++)
1172		__tlb_remove_table(batch->tables[i]);
1173
1174	free_page((unsigned long)batch);
1175}
1176
1177void tlb_table_flush(struct mmu_gather *tlb)
1178{
1179	struct mmu_table_batch **batch = &tlb->batch;
1180
1181	if (*batch) {
1182		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1183		*batch = NULL;
1184	}
1185}
1186
1187void tlb_remove_table(struct mmu_gather *tlb, void *table)
1188{
1189	struct mmu_table_batch **batch = &tlb->batch;
1190
1191	tlb->mm->context.flush_mm = 1;
1192	if (*batch == NULL) {
1193		*batch = (struct mmu_table_batch *)
1194			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1195		if (*batch == NULL) {
1196			__tlb_flush_mm_lazy(tlb->mm);
1197			tlb_remove_table_one(table);
1198			return;
1199		}
1200		(*batch)->nr = 0;
1201	}
1202	(*batch)->tables[(*batch)->nr++] = table;
1203	if ((*batch)->nr == MAX_TABLE_BATCH)
1204		tlb_flush_mmu(tlb);
1205}
1206
1207#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208static inline void thp_split_vma(struct vm_area_struct *vma)
1209{
1210	unsigned long addr;
1211
1212	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1213		follow_page(vma, addr, FOLL_SPLIT);
1214}
1215
1216static inline void thp_split_mm(struct mm_struct *mm)
1217{
1218	struct vm_area_struct *vma;
1219
1220	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1221		thp_split_vma(vma);
1222		vma->vm_flags &= ~VM_HUGEPAGE;
1223		vma->vm_flags |= VM_NOHUGEPAGE;
1224	}
1225	mm->def_flags |= VM_NOHUGEPAGE;
1226}
1227#else
1228static inline void thp_split_mm(struct mm_struct *mm)
1229{
1230}
1231#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1232
1233static unsigned long page_table_realloc_pmd(struct mmu_gather *tlb,
1234				struct mm_struct *mm, pud_t *pud,
1235				unsigned long addr, unsigned long end)
1236{
1237	unsigned long next, *table, *new;
1238	struct page *page;
1239	spinlock_t *ptl;
1240	pmd_t *pmd;
1241
1242	pmd = pmd_offset(pud, addr);
1243	do {
1244		next = pmd_addr_end(addr, end);
1245again:
1246		if (pmd_none_or_clear_bad(pmd))
1247			continue;
1248		table = (unsigned long *) pmd_deref(*pmd);
1249		page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1250		if (page_table_with_pgste(page))
1251			continue;
1252		/* Allocate new page table with pgstes */
1253		new = page_table_alloc_pgste(mm);
1254		if (!new)
1255			return -ENOMEM;
1256
1257		ptl = pmd_lock(mm, pmd);
1258		if (likely((unsigned long *) pmd_deref(*pmd) == table)) {
1259			/* Nuke pmd entry pointing to the "short" page table */
1260			pmdp_flush_lazy(mm, addr, pmd);
1261			pmd_clear(pmd);
1262			/* Copy ptes from old table to new table */
1263			memcpy(new, table, PAGE_SIZE/2);
1264			clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1265			/* Establish new table */
1266			pmd_populate(mm, pmd, (pte_t *) new);
1267			/* Free old table with rcu, there might be a walker! */
1268			page_table_free_rcu(tlb, table, addr);
1269			new = NULL;
1270		}
1271		spin_unlock(ptl);
1272		if (new) {
1273			page_table_free_pgste(new);
1274			goto again;
1275		}
1276	} while (pmd++, addr = next, addr != end);
1277
1278	return addr;
1279}
1280
1281static unsigned long page_table_realloc_pud(struct mmu_gather *tlb,
1282				   struct mm_struct *mm, pgd_t *pgd,
1283				   unsigned long addr, unsigned long end)
1284{
1285	unsigned long next;
1286	pud_t *pud;
1287
1288	pud = pud_offset(pgd, addr);
1289	do {
1290		next = pud_addr_end(addr, end);
1291		if (pud_none_or_clear_bad(pud))
1292			continue;
1293		next = page_table_realloc_pmd(tlb, mm, pud, addr, next);
1294		if (unlikely(IS_ERR_VALUE(next)))
1295			return next;
1296	} while (pud++, addr = next, addr != end);
1297
1298	return addr;
1299}
1300
1301static unsigned long page_table_realloc(struct mmu_gather *tlb, struct mm_struct *mm,
1302					unsigned long addr, unsigned long end)
1303{
1304	unsigned long next;
1305	pgd_t *pgd;
1306
1307	pgd = pgd_offset(mm, addr);
1308	do {
1309		next = pgd_addr_end(addr, end);
1310		if (pgd_none_or_clear_bad(pgd))
1311			continue;
1312		next = page_table_realloc_pud(tlb, mm, pgd, addr, next);
1313		if (unlikely(IS_ERR_VALUE(next)))
1314			return next;
1315	} while (pgd++, addr = next, addr != end);
1316
1317	return 0;
1318}
1319
1320/*
1321 * switch on pgstes for its userspace process (for kvm)
1322 */
1323int s390_enable_sie(void)
1324{
1325	struct task_struct *tsk = current;
1326	struct mm_struct *mm = tsk->mm;
1327	struct mmu_gather tlb;
1328
1329	/* Do we have pgstes? if yes, we are done */
1330	if (mm_has_pgste(tsk->mm))
1331		return 0;
1332
1333	down_write(&mm->mmap_sem);
1334	/* split thp mappings and disable thp for future mappings */
1335	thp_split_mm(mm);
1336	/* Reallocate the page tables with pgstes */
1337	tlb_gather_mmu(&tlb, mm, 0, TASK_SIZE);
1338	if (!page_table_realloc(&tlb, mm, 0, TASK_SIZE))
1339		mm->context.has_pgste = 1;
1340	tlb_finish_mmu(&tlb, 0, TASK_SIZE);
1341	up_write(&mm->mmap_sem);
1342	return mm->context.has_pgste ? 0 : -ENOMEM;
1343}
1344EXPORT_SYMBOL_GPL(s390_enable_sie);
1345
1346/*
1347 * Enable storage key handling from now on and initialize the storage
1348 * keys with the default key.
1349 */
1350void s390_enable_skey(void)
1351{
1352	page_table_reset_pgste(current->mm, 0, TASK_SIZE, true);
1353}
1354EXPORT_SYMBOL_GPL(s390_enable_skey);
1355
1356/*
1357 * Test and reset if a guest page is dirty
1358 */
1359bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1360{
1361	pte_t *pte;
1362	spinlock_t *ptl;
1363	bool dirty = false;
1364
1365	pte = get_locked_pte(gmap->mm, address, &ptl);
1366	if (unlikely(!pte))
1367		return false;
1368
1369	if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1370		dirty = true;
1371
1372	spin_unlock(ptl);
1373	return dirty;
1374}
1375EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1376
1377#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1378int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1379			   pmd_t *pmdp)
1380{
1381	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1382	/* No need to flush TLB
1383	 * On s390 reference bits are in storage key and never in TLB */
1384	return pmdp_test_and_clear_young(vma, address, pmdp);
1385}
1386
1387int pmdp_set_access_flags(struct vm_area_struct *vma,
1388			  unsigned long address, pmd_t *pmdp,
1389			  pmd_t entry, int dirty)
1390{
1391	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1392
1393	entry = pmd_mkyoung(entry);
1394	if (dirty)
1395		entry = pmd_mkdirty(entry);
1396	if (pmd_same(*pmdp, entry))
1397		return 0;
1398	pmdp_invalidate(vma, address, pmdp);
1399	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1400	return 1;
1401}
1402
1403static void pmdp_splitting_flush_sync(void *arg)
1404{
1405	/* Simply deliver the interrupt */
1406}
1407
1408void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1409			  pmd_t *pmdp)
1410{
1411	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1412	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1413			      (unsigned long *) pmdp)) {
1414		/* need to serialize against gup-fast (IRQ disabled) */
1415		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1416	}
1417}
1418
1419void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1420				pgtable_t pgtable)
1421{
1422	struct list_head *lh = (struct list_head *) pgtable;
1423
1424	assert_spin_locked(pmd_lockptr(mm, pmdp));
1425
1426	/* FIFO */
1427	if (!pmd_huge_pte(mm, pmdp))
1428		INIT_LIST_HEAD(lh);
1429	else
1430		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1431	pmd_huge_pte(mm, pmdp) = pgtable;
1432}
1433
1434pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1435{
1436	struct list_head *lh;
1437	pgtable_t pgtable;
1438	pte_t *ptep;
1439
1440	assert_spin_locked(pmd_lockptr(mm, pmdp));
1441
1442	/* FIFO */
1443	pgtable = pmd_huge_pte(mm, pmdp);
1444	lh = (struct list_head *) pgtable;
1445	if (list_empty(lh))
1446		pmd_huge_pte(mm, pmdp) = NULL;
1447	else {
1448		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1449		list_del(lh);
1450	}
1451	ptep = (pte_t *) pgtable;
1452	pte_val(*ptep) = _PAGE_INVALID;
1453	ptep++;
1454	pte_val(*ptep) = _PAGE_INVALID;
1455	return pgtable;
1456}
1457#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1458