pgtable.c revision db70ccdfb9953b984f5b95d98c50d8da335bab59
1/*
2 *    Copyright IBM Corp. 2007, 2011
3 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4 */
5
6#include <linux/sched.h>
7#include <linux/kernel.h>
8#include <linux/errno.h>
9#include <linux/gfp.h>
10#include <linux/mm.h>
11#include <linux/swap.h>
12#include <linux/smp.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h>
15#include <linux/spinlock.h>
16#include <linux/module.h>
17#include <linux/quicklist.h>
18#include <linux/rcupdate.h>
19#include <linux/slab.h>
20
21#include <asm/pgtable.h>
22#include <asm/pgalloc.h>
23#include <asm/tlb.h>
24#include <asm/tlbflush.h>
25#include <asm/mmu_context.h>
26
27#ifndef CONFIG_64BIT
28#define ALLOC_ORDER	1
29#define FRAG_MASK	0x0f
30#else
31#define ALLOC_ORDER	2
32#define FRAG_MASK	0x03
33#endif
34
35
36unsigned long *crst_table_alloc(struct mm_struct *mm)
37{
38	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
39
40	if (!page)
41		return NULL;
42	return (unsigned long *) page_to_phys(page);
43}
44
45void crst_table_free(struct mm_struct *mm, unsigned long *table)
46{
47	free_pages((unsigned long) table, ALLOC_ORDER);
48}
49
50#ifdef CONFIG_64BIT
51int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
52{
53	unsigned long *table, *pgd;
54	unsigned long entry;
55
56	BUG_ON(limit > (1UL << 53));
57repeat:
58	table = crst_table_alloc(mm);
59	if (!table)
60		return -ENOMEM;
61	spin_lock_bh(&mm->page_table_lock);
62	if (mm->context.asce_limit < limit) {
63		pgd = (unsigned long *) mm->pgd;
64		if (mm->context.asce_limit <= (1UL << 31)) {
65			entry = _REGION3_ENTRY_EMPTY;
66			mm->context.asce_limit = 1UL << 42;
67			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
68						_ASCE_USER_BITS |
69						_ASCE_TYPE_REGION3;
70		} else {
71			entry = _REGION2_ENTRY_EMPTY;
72			mm->context.asce_limit = 1UL << 53;
73			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
74						_ASCE_USER_BITS |
75						_ASCE_TYPE_REGION2;
76		}
77		crst_table_init(table, entry);
78		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
79		mm->pgd = (pgd_t *) table;
80		mm->task_size = mm->context.asce_limit;
81		table = NULL;
82	}
83	spin_unlock_bh(&mm->page_table_lock);
84	if (table)
85		crst_table_free(mm, table);
86	if (mm->context.asce_limit < limit)
87		goto repeat;
88	return 0;
89}
90
91void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
92{
93	pgd_t *pgd;
94
95	while (mm->context.asce_limit > limit) {
96		pgd = mm->pgd;
97		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
98		case _REGION_ENTRY_TYPE_R2:
99			mm->context.asce_limit = 1UL << 42;
100			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
101						_ASCE_USER_BITS |
102						_ASCE_TYPE_REGION3;
103			break;
104		case _REGION_ENTRY_TYPE_R3:
105			mm->context.asce_limit = 1UL << 31;
106			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
107						_ASCE_USER_BITS |
108						_ASCE_TYPE_SEGMENT;
109			break;
110		default:
111			BUG();
112		}
113		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
114		mm->task_size = mm->context.asce_limit;
115		crst_table_free(mm, (unsigned long *) pgd);
116	}
117}
118#endif
119
120#ifdef CONFIG_PGSTE
121
122/**
123 * gmap_alloc - allocate a guest address space
124 * @mm: pointer to the parent mm_struct
125 *
126 * Returns a guest address space structure.
127 */
128struct gmap *gmap_alloc(struct mm_struct *mm)
129{
130	struct gmap *gmap;
131	struct page *page;
132	unsigned long *table;
133
134	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
135	if (!gmap)
136		goto out;
137	INIT_LIST_HEAD(&gmap->crst_list);
138	gmap->mm = mm;
139	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
140	if (!page)
141		goto out_free;
142	list_add(&page->lru, &gmap->crst_list);
143	table = (unsigned long *) page_to_phys(page);
144	crst_table_init(table, _REGION1_ENTRY_EMPTY);
145	gmap->table = table;
146	gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
147		     _ASCE_USER_BITS | __pa(table);
148	list_add(&gmap->list, &mm->context.gmap_list);
149	return gmap;
150
151out_free:
152	kfree(gmap);
153out:
154	return NULL;
155}
156EXPORT_SYMBOL_GPL(gmap_alloc);
157
158static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
159{
160	struct gmap_pgtable *mp;
161	struct gmap_rmap *rmap;
162	struct page *page;
163
164	if (*table & _SEGMENT_ENTRY_INV)
165		return 0;
166	page = pfn_to_page(*table >> PAGE_SHIFT);
167	mp = (struct gmap_pgtable *) page->index;
168	list_for_each_entry(rmap, &mp->mapper, list) {
169		if (rmap->entry != table)
170			continue;
171		list_del(&rmap->list);
172		kfree(rmap);
173		break;
174	}
175	*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
176	return 1;
177}
178
179static void gmap_flush_tlb(struct gmap *gmap)
180{
181	if (MACHINE_HAS_IDTE)
182		__tlb_flush_idte((unsigned long) gmap->table |
183				 _ASCE_TYPE_REGION1);
184	else
185		__tlb_flush_global();
186}
187
188/**
189 * gmap_free - free a guest address space
190 * @gmap: pointer to the guest address space structure
191 */
192void gmap_free(struct gmap *gmap)
193{
194	struct page *page, *next;
195	unsigned long *table;
196	int i;
197
198
199	/* Flush tlb. */
200	if (MACHINE_HAS_IDTE)
201		__tlb_flush_idte((unsigned long) gmap->table |
202				 _ASCE_TYPE_REGION1);
203	else
204		__tlb_flush_global();
205
206	/* Free all segment & region tables. */
207	down_read(&gmap->mm->mmap_sem);
208	spin_lock(&gmap->mm->page_table_lock);
209	list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
210		table = (unsigned long *) page_to_phys(page);
211		if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
212			/* Remove gmap rmap structures for segment table. */
213			for (i = 0; i < PTRS_PER_PMD; i++, table++)
214				gmap_unlink_segment(gmap, table);
215		__free_pages(page, ALLOC_ORDER);
216	}
217	spin_unlock(&gmap->mm->page_table_lock);
218	up_read(&gmap->mm->mmap_sem);
219	list_del(&gmap->list);
220	kfree(gmap);
221}
222EXPORT_SYMBOL_GPL(gmap_free);
223
224/**
225 * gmap_enable - switch primary space to the guest address space
226 * @gmap: pointer to the guest address space structure
227 */
228void gmap_enable(struct gmap *gmap)
229{
230	S390_lowcore.gmap = (unsigned long) gmap;
231}
232EXPORT_SYMBOL_GPL(gmap_enable);
233
234/**
235 * gmap_disable - switch back to the standard primary address space
236 * @gmap: pointer to the guest address space structure
237 */
238void gmap_disable(struct gmap *gmap)
239{
240	S390_lowcore.gmap = 0UL;
241}
242EXPORT_SYMBOL_GPL(gmap_disable);
243
244/*
245 * gmap_alloc_table is assumed to be called with mmap_sem held
246 */
247static int gmap_alloc_table(struct gmap *gmap,
248			       unsigned long *table, unsigned long init)
249{
250	struct page *page;
251	unsigned long *new;
252
253	/* since we dont free the gmap table until gmap_free we can unlock */
254	spin_unlock(&gmap->mm->page_table_lock);
255	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
256	spin_lock(&gmap->mm->page_table_lock);
257	if (!page)
258		return -ENOMEM;
259	new = (unsigned long *) page_to_phys(page);
260	crst_table_init(new, init);
261	if (*table & _REGION_ENTRY_INV) {
262		list_add(&page->lru, &gmap->crst_list);
263		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
264			(*table & _REGION_ENTRY_TYPE_MASK);
265	} else
266		__free_pages(page, ALLOC_ORDER);
267	return 0;
268}
269
270/**
271 * gmap_unmap_segment - unmap segment from the guest address space
272 * @gmap: pointer to the guest address space structure
273 * @addr: address in the guest address space
274 * @len: length of the memory area to unmap
275 *
276 * Returns 0 if the unmap succeded, -EINVAL if not.
277 */
278int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
279{
280	unsigned long *table;
281	unsigned long off;
282	int flush;
283
284	if ((to | len) & (PMD_SIZE - 1))
285		return -EINVAL;
286	if (len == 0 || to + len < to)
287		return -EINVAL;
288
289	flush = 0;
290	down_read(&gmap->mm->mmap_sem);
291	spin_lock(&gmap->mm->page_table_lock);
292	for (off = 0; off < len; off += PMD_SIZE) {
293		/* Walk the guest addr space page table */
294		table = gmap->table + (((to + off) >> 53) & 0x7ff);
295		if (*table & _REGION_ENTRY_INV)
296			goto out;
297		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
298		table = table + (((to + off) >> 42) & 0x7ff);
299		if (*table & _REGION_ENTRY_INV)
300			goto out;
301		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
302		table = table + (((to + off) >> 31) & 0x7ff);
303		if (*table & _REGION_ENTRY_INV)
304			goto out;
305		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
306		table = table + (((to + off) >> 20) & 0x7ff);
307
308		/* Clear segment table entry in guest address space. */
309		flush |= gmap_unlink_segment(gmap, table);
310		*table = _SEGMENT_ENTRY_INV;
311	}
312out:
313	spin_unlock(&gmap->mm->page_table_lock);
314	up_read(&gmap->mm->mmap_sem);
315	if (flush)
316		gmap_flush_tlb(gmap);
317	return 0;
318}
319EXPORT_SYMBOL_GPL(gmap_unmap_segment);
320
321/**
322 * gmap_mmap_segment - map a segment to the guest address space
323 * @gmap: pointer to the guest address space structure
324 * @from: source address in the parent address space
325 * @to: target address in the guest address space
326 *
327 * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
328 */
329int gmap_map_segment(struct gmap *gmap, unsigned long from,
330		     unsigned long to, unsigned long len)
331{
332	unsigned long *table;
333	unsigned long off;
334	int flush;
335
336	if ((from | to | len) & (PMD_SIZE - 1))
337		return -EINVAL;
338	if (len == 0 || from + len > PGDIR_SIZE ||
339	    from + len < from || to + len < to)
340		return -EINVAL;
341
342	flush = 0;
343	down_read(&gmap->mm->mmap_sem);
344	spin_lock(&gmap->mm->page_table_lock);
345	for (off = 0; off < len; off += PMD_SIZE) {
346		/* Walk the gmap address space page table */
347		table = gmap->table + (((to + off) >> 53) & 0x7ff);
348		if ((*table & _REGION_ENTRY_INV) &&
349		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
350			goto out_unmap;
351		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
352		table = table + (((to + off) >> 42) & 0x7ff);
353		if ((*table & _REGION_ENTRY_INV) &&
354		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
355			goto out_unmap;
356		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
357		table = table + (((to + off) >> 31) & 0x7ff);
358		if ((*table & _REGION_ENTRY_INV) &&
359		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
360			goto out_unmap;
361		table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
362		table = table + (((to + off) >> 20) & 0x7ff);
363
364		/* Store 'from' address in an invalid segment table entry. */
365		flush |= gmap_unlink_segment(gmap, table);
366		*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | (from + off);
367	}
368	spin_unlock(&gmap->mm->page_table_lock);
369	up_read(&gmap->mm->mmap_sem);
370	if (flush)
371		gmap_flush_tlb(gmap);
372	return 0;
373
374out_unmap:
375	spin_unlock(&gmap->mm->page_table_lock);
376	up_read(&gmap->mm->mmap_sem);
377	gmap_unmap_segment(gmap, to, len);
378	return -ENOMEM;
379}
380EXPORT_SYMBOL_GPL(gmap_map_segment);
381
382static unsigned long *gmap_table_walk(unsigned long address, struct gmap *gmap)
383{
384	unsigned long *table;
385
386	table = gmap->table + ((address >> 53) & 0x7ff);
387	if (unlikely(*table & _REGION_ENTRY_INV))
388		return ERR_PTR(-EFAULT);
389	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
390	table = table + ((address >> 42) & 0x7ff);
391	if (unlikely(*table & _REGION_ENTRY_INV))
392		return ERR_PTR(-EFAULT);
393	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
394	table = table + ((address >> 31) & 0x7ff);
395	if (unlikely(*table & _REGION_ENTRY_INV))
396		return ERR_PTR(-EFAULT);
397	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
398	table = table + ((address >> 20) & 0x7ff);
399	return table;
400}
401
402/**
403 * __gmap_translate - translate a guest address to a user space address
404 * @address: guest address
405 * @gmap: pointer to guest mapping meta data structure
406 *
407 * Returns user space address which corresponds to the guest address or
408 * -EFAULT if no such mapping exists.
409 * This function does not establish potentially missing page table entries.
410 * The mmap_sem of the mm that belongs to the address space must be held
411 * when this function gets called.
412 */
413unsigned long __gmap_translate(unsigned long address, struct gmap *gmap)
414{
415	unsigned long *segment_ptr, vmaddr, segment;
416	struct gmap_pgtable *mp;
417	struct page *page;
418
419	current->thread.gmap_addr = address;
420	segment_ptr = gmap_table_walk(address, gmap);
421	if (IS_ERR(segment_ptr))
422		return PTR_ERR(segment_ptr);
423	/* Convert the gmap address to an mm address. */
424	segment = *segment_ptr;
425	if (!(segment & _SEGMENT_ENTRY_INV)) {
426		page = pfn_to_page(segment >> PAGE_SHIFT);
427		mp = (struct gmap_pgtable *) page->index;
428		return mp->vmaddr | (address & ~PMD_MASK);
429	} else if (segment & _SEGMENT_ENTRY_RO) {
430		vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
431		return vmaddr | (address & ~PMD_MASK);
432	}
433	return -EFAULT;
434}
435EXPORT_SYMBOL_GPL(__gmap_translate);
436
437/**
438 * gmap_translate - translate a guest address to a user space address
439 * @address: guest address
440 * @gmap: pointer to guest mapping meta data structure
441 *
442 * Returns user space address which corresponds to the guest address or
443 * -EFAULT if no such mapping exists.
444 * This function does not establish potentially missing page table entries.
445 */
446unsigned long gmap_translate(unsigned long address, struct gmap *gmap)
447{
448	unsigned long rc;
449
450	down_read(&gmap->mm->mmap_sem);
451	rc = __gmap_translate(address, gmap);
452	up_read(&gmap->mm->mmap_sem);
453	return rc;
454}
455EXPORT_SYMBOL_GPL(gmap_translate);
456
457static int gmap_connect_pgtable(unsigned long address, unsigned long segment,
458				unsigned long *segment_ptr, struct gmap *gmap)
459{
460	unsigned long vmaddr;
461	struct vm_area_struct *vma;
462	struct gmap_pgtable *mp;
463	struct gmap_rmap *rmap;
464	struct mm_struct *mm;
465	struct page *page;
466	pgd_t *pgd;
467	pud_t *pud;
468	pmd_t *pmd;
469
470	mm = gmap->mm;
471	vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
472	vma = find_vma(mm, vmaddr);
473	if (!vma || vma->vm_start > vmaddr)
474		return -EFAULT;
475	/* Walk the parent mm page table */
476	pgd = pgd_offset(mm, vmaddr);
477	pud = pud_alloc(mm, pgd, vmaddr);
478	if (!pud)
479		return -ENOMEM;
480	pmd = pmd_alloc(mm, pud, vmaddr);
481	if (!pmd)
482		return -ENOMEM;
483	if (!pmd_present(*pmd) &&
484	    __pte_alloc(mm, vma, pmd, vmaddr))
485		return -ENOMEM;
486	/* pmd now points to a valid segment table entry. */
487	rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
488	if (!rmap)
489		return -ENOMEM;
490	/* Link gmap segment table entry location to page table. */
491	page = pmd_page(*pmd);
492	mp = (struct gmap_pgtable *) page->index;
493	rmap->gmap = gmap;
494	rmap->entry = segment_ptr;
495	rmap->vmaddr = address;
496	spin_lock(&mm->page_table_lock);
497	if (*segment_ptr == segment) {
498		list_add(&rmap->list, &mp->mapper);
499		/* Set gmap segment table entry to page table. */
500		*segment_ptr = pmd_val(*pmd) & PAGE_MASK;
501		rmap = NULL;
502	}
503	spin_unlock(&mm->page_table_lock);
504	kfree(rmap);
505	return 0;
506}
507
508static void gmap_disconnect_pgtable(struct mm_struct *mm, unsigned long *table)
509{
510	struct gmap_rmap *rmap, *next;
511	struct gmap_pgtable *mp;
512	struct page *page;
513	int flush;
514
515	flush = 0;
516	spin_lock(&mm->page_table_lock);
517	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
518	mp = (struct gmap_pgtable *) page->index;
519	list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
520		*rmap->entry =
521			_SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
522		list_del(&rmap->list);
523		kfree(rmap);
524		flush = 1;
525	}
526	spin_unlock(&mm->page_table_lock);
527	if (flush)
528		__tlb_flush_global();
529}
530
531/*
532 * this function is assumed to be called with mmap_sem held
533 */
534unsigned long __gmap_fault(unsigned long address, struct gmap *gmap)
535{
536	unsigned long *segment_ptr, segment;
537	struct gmap_pgtable *mp;
538	struct page *page;
539	int rc;
540
541	current->thread.gmap_addr = address;
542	segment_ptr = gmap_table_walk(address, gmap);
543	if (IS_ERR(segment_ptr))
544		return -EFAULT;
545	/* Convert the gmap address to an mm address. */
546	while (1) {
547		segment = *segment_ptr;
548		if (!(segment & _SEGMENT_ENTRY_INV)) {
549			/* Page table is present */
550			page = pfn_to_page(segment >> PAGE_SHIFT);
551			mp = (struct gmap_pgtable *) page->index;
552			return mp->vmaddr | (address & ~PMD_MASK);
553		}
554		if (!(segment & _SEGMENT_ENTRY_RO))
555			/* Nothing mapped in the gmap address space. */
556			break;
557		rc = gmap_connect_pgtable(address, segment, segment_ptr, gmap);
558		if (rc)
559			return rc;
560	}
561	return -EFAULT;
562}
563
564unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
565{
566	unsigned long rc;
567
568	down_read(&gmap->mm->mmap_sem);
569	rc = __gmap_fault(address, gmap);
570	up_read(&gmap->mm->mmap_sem);
571
572	return rc;
573}
574EXPORT_SYMBOL_GPL(gmap_fault);
575
576void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap)
577{
578
579	unsigned long *table, address, size;
580	struct vm_area_struct *vma;
581	struct gmap_pgtable *mp;
582	struct page *page;
583
584	down_read(&gmap->mm->mmap_sem);
585	address = from;
586	while (address < to) {
587		/* Walk the gmap address space page table */
588		table = gmap->table + ((address >> 53) & 0x7ff);
589		if (unlikely(*table & _REGION_ENTRY_INV)) {
590			address = (address + PMD_SIZE) & PMD_MASK;
591			continue;
592		}
593		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
594		table = table + ((address >> 42) & 0x7ff);
595		if (unlikely(*table & _REGION_ENTRY_INV)) {
596			address = (address + PMD_SIZE) & PMD_MASK;
597			continue;
598		}
599		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
600		table = table + ((address >> 31) & 0x7ff);
601		if (unlikely(*table & _REGION_ENTRY_INV)) {
602			address = (address + PMD_SIZE) & PMD_MASK;
603			continue;
604		}
605		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
606		table = table + ((address >> 20) & 0x7ff);
607		if (unlikely(*table & _SEGMENT_ENTRY_INV)) {
608			address = (address + PMD_SIZE) & PMD_MASK;
609			continue;
610		}
611		page = pfn_to_page(*table >> PAGE_SHIFT);
612		mp = (struct gmap_pgtable *) page->index;
613		vma = find_vma(gmap->mm, mp->vmaddr);
614		size = min(to - address, PMD_SIZE - (address & ~PMD_MASK));
615		zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK),
616			       size, NULL);
617		address = (address + PMD_SIZE) & PMD_MASK;
618	}
619	up_read(&gmap->mm->mmap_sem);
620}
621EXPORT_SYMBOL_GPL(gmap_discard);
622
623static LIST_HEAD(gmap_notifier_list);
624static DEFINE_SPINLOCK(gmap_notifier_lock);
625
626/**
627 * gmap_register_ipte_notifier - register a pte invalidation callback
628 * @nb: pointer to the gmap notifier block
629 */
630void gmap_register_ipte_notifier(struct gmap_notifier *nb)
631{
632	spin_lock(&gmap_notifier_lock);
633	list_add(&nb->list, &gmap_notifier_list);
634	spin_unlock(&gmap_notifier_lock);
635}
636EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
637
638/**
639 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
640 * @nb: pointer to the gmap notifier block
641 */
642void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
643{
644	spin_lock(&gmap_notifier_lock);
645	list_del_init(&nb->list);
646	spin_unlock(&gmap_notifier_lock);
647}
648EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
649
650/**
651 * gmap_ipte_notify - mark a range of ptes for invalidation notification
652 * @gmap: pointer to guest mapping meta data structure
653 * @address: virtual address in the guest address space
654 * @len: size of area
655 *
656 * Returns 0 if for each page in the given range a gmap mapping exists and
657 * the invalidation notification could be set. If the gmap mapping is missing
658 * for one or more pages -EFAULT is returned. If no memory could be allocated
659 * -ENOMEM is returned. This function establishes missing page table entries.
660 */
661int gmap_ipte_notify(struct gmap *gmap, unsigned long start, unsigned long len)
662{
663	unsigned long addr;
664	spinlock_t *ptl;
665	pte_t *ptep, entry;
666	pgste_t pgste;
667	int rc = 0;
668
669	if ((start & ~PAGE_MASK) || (len & ~PAGE_MASK))
670		return -EINVAL;
671	down_read(&gmap->mm->mmap_sem);
672	while (len) {
673		/* Convert gmap address and connect the page tables */
674		addr = __gmap_fault(start, gmap);
675		if (IS_ERR_VALUE(addr)) {
676			rc = addr;
677			break;
678		}
679		/* Get the page mapped */
680		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
681			rc = -EFAULT;
682			break;
683		}
684		/* Walk the process page table, lock and get pte pointer */
685		ptep = get_locked_pte(gmap->mm, addr, &ptl);
686		if (unlikely(!ptep))
687			continue;
688		/* Set notification bit in the pgste of the pte */
689		entry = *ptep;
690		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_RO)) == 0) {
691			pgste = pgste_get_lock(ptep);
692			pgste_val(pgste) |= PGSTE_IN_BIT;
693			pgste_set_unlock(ptep, pgste);
694			start += PAGE_SIZE;
695			len -= PAGE_SIZE;
696		}
697		spin_unlock(ptl);
698	}
699	up_read(&gmap->mm->mmap_sem);
700	return rc;
701}
702EXPORT_SYMBOL_GPL(gmap_ipte_notify);
703
704/**
705 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
706 * @mm: pointer to the process mm_struct
707 * @addr: virtual address in the process address space
708 * @pte: pointer to the page table entry
709 *
710 * This function is assumed to be called with the page table lock held
711 * for the pte to notify.
712 */
713void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long addr, pte_t *pte)
714{
715	unsigned long segment_offset;
716	struct gmap_notifier *nb;
717	struct gmap_pgtable *mp;
718	struct gmap_rmap *rmap;
719	struct page *page;
720
721	segment_offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
722	segment_offset = segment_offset * (4096 / sizeof(pte_t));
723	page = pfn_to_page(__pa(pte) >> PAGE_SHIFT);
724	mp = (struct gmap_pgtable *) page->index;
725	spin_lock(&gmap_notifier_lock);
726	list_for_each_entry(rmap, &mp->mapper, list) {
727		list_for_each_entry(nb, &gmap_notifier_list, list)
728			nb->notifier_call(rmap->gmap,
729					  rmap->vmaddr + segment_offset);
730	}
731	spin_unlock(&gmap_notifier_lock);
732}
733
734static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
735						    unsigned long vmaddr)
736{
737	struct page *page;
738	unsigned long *table;
739	struct gmap_pgtable *mp;
740
741	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
742	if (!page)
743		return NULL;
744	mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
745	if (!mp) {
746		__free_page(page);
747		return NULL;
748	}
749	pgtable_page_ctor(page);
750	mp->vmaddr = vmaddr & PMD_MASK;
751	INIT_LIST_HEAD(&mp->mapper);
752	page->index = (unsigned long) mp;
753	atomic_set(&page->_mapcount, 3);
754	table = (unsigned long *) page_to_phys(page);
755	clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE/2);
756	clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
757	return table;
758}
759
760static inline void page_table_free_pgste(unsigned long *table)
761{
762	struct page *page;
763	struct gmap_pgtable *mp;
764
765	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
766	mp = (struct gmap_pgtable *) page->index;
767	BUG_ON(!list_empty(&mp->mapper));
768	pgtable_page_dtor(page);
769	atomic_set(&page->_mapcount, -1);
770	kfree(mp);
771	__free_page(page);
772}
773
774int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
775			  unsigned long key, bool nq)
776{
777	spinlock_t *ptl;
778	pgste_t old, new;
779	pte_t *ptep;
780
781	down_read(&mm->mmap_sem);
782	ptep = get_locked_pte(current->mm, addr, &ptl);
783	if (unlikely(!ptep)) {
784		up_read(&mm->mmap_sem);
785		return -EFAULT;
786	}
787
788	new = old = pgste_get_lock(ptep);
789	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
790			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
791	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
792	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
793	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
794		unsigned long address, bits;
795		unsigned char skey;
796
797		address = pte_val(*ptep) & PAGE_MASK;
798		skey = page_get_storage_key(address);
799		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
800		/* Set storage key ACC and FP */
801		page_set_storage_key(address,
802				(key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)),
803				!nq);
804
805		/* Merge host changed & referenced into pgste  */
806		pgste_val(new) |= bits << 52;
807		/* Transfer skey changed & referenced bit to kvm user bits */
808		pgste_val(new) |= bits << 45;	/* PGSTE_UR_BIT & PGSTE_UC_BIT */
809	}
810	/* changing the guest storage key is considered a change of the page */
811	if ((pgste_val(new) ^ pgste_val(old)) &
812	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
813		pgste_val(new) |= PGSTE_UC_BIT;
814
815	pgste_set_unlock(ptep, new);
816	pte_unmap_unlock(*ptep, ptl);
817	up_read(&mm->mmap_sem);
818	return 0;
819}
820EXPORT_SYMBOL(set_guest_storage_key);
821
822#else /* CONFIG_PGSTE */
823
824static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
825						    unsigned long vmaddr)
826{
827	return NULL;
828}
829
830static inline void page_table_free_pgste(unsigned long *table)
831{
832}
833
834static inline void gmap_disconnect_pgtable(struct mm_struct *mm,
835					   unsigned long *table)
836{
837}
838
839#endif /* CONFIG_PGSTE */
840
841static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
842{
843	unsigned int old, new;
844
845	do {
846		old = atomic_read(v);
847		new = old ^ bits;
848	} while (atomic_cmpxchg(v, old, new) != old);
849	return new;
850}
851
852/*
853 * page table entry allocation/free routines.
854 */
855unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
856{
857	unsigned long *uninitialized_var(table);
858	struct page *uninitialized_var(page);
859	unsigned int mask, bit;
860
861	if (mm_has_pgste(mm))
862		return page_table_alloc_pgste(mm, vmaddr);
863	/* Allocate fragments of a 4K page as 1K/2K page table */
864	spin_lock_bh(&mm->context.list_lock);
865	mask = FRAG_MASK;
866	if (!list_empty(&mm->context.pgtable_list)) {
867		page = list_first_entry(&mm->context.pgtable_list,
868					struct page, lru);
869		table = (unsigned long *) page_to_phys(page);
870		mask = atomic_read(&page->_mapcount);
871		mask = mask | (mask >> 4);
872	}
873	if ((mask & FRAG_MASK) == FRAG_MASK) {
874		spin_unlock_bh(&mm->context.list_lock);
875		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
876		if (!page)
877			return NULL;
878		pgtable_page_ctor(page);
879		atomic_set(&page->_mapcount, 1);
880		table = (unsigned long *) page_to_phys(page);
881		clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE);
882		spin_lock_bh(&mm->context.list_lock);
883		list_add(&page->lru, &mm->context.pgtable_list);
884	} else {
885		for (bit = 1; mask & bit; bit <<= 1)
886			table += PTRS_PER_PTE;
887		mask = atomic_xor_bits(&page->_mapcount, bit);
888		if ((mask & FRAG_MASK) == FRAG_MASK)
889			list_del(&page->lru);
890	}
891	spin_unlock_bh(&mm->context.list_lock);
892	return table;
893}
894
895void page_table_free(struct mm_struct *mm, unsigned long *table)
896{
897	struct page *page;
898	unsigned int bit, mask;
899
900	if (mm_has_pgste(mm)) {
901		gmap_disconnect_pgtable(mm, table);
902		return page_table_free_pgste(table);
903	}
904	/* Free 1K/2K page table fragment of a 4K page */
905	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
906	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
907	spin_lock_bh(&mm->context.list_lock);
908	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
909		list_del(&page->lru);
910	mask = atomic_xor_bits(&page->_mapcount, bit);
911	if (mask & FRAG_MASK)
912		list_add(&page->lru, &mm->context.pgtable_list);
913	spin_unlock_bh(&mm->context.list_lock);
914	if (mask == 0) {
915		pgtable_page_dtor(page);
916		atomic_set(&page->_mapcount, -1);
917		__free_page(page);
918	}
919}
920
921static void __page_table_free_rcu(void *table, unsigned bit)
922{
923	struct page *page;
924
925	if (bit == FRAG_MASK)
926		return page_table_free_pgste(table);
927	/* Free 1K/2K page table fragment of a 4K page */
928	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
929	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
930		pgtable_page_dtor(page);
931		atomic_set(&page->_mapcount, -1);
932		__free_page(page);
933	}
934}
935
936void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
937{
938	struct mm_struct *mm;
939	struct page *page;
940	unsigned int bit, mask;
941
942	mm = tlb->mm;
943	if (mm_has_pgste(mm)) {
944		gmap_disconnect_pgtable(mm, table);
945		table = (unsigned long *) (__pa(table) | FRAG_MASK);
946		tlb_remove_table(tlb, table);
947		return;
948	}
949	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
950	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
951	spin_lock_bh(&mm->context.list_lock);
952	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
953		list_del(&page->lru);
954	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
955	if (mask & FRAG_MASK)
956		list_add_tail(&page->lru, &mm->context.pgtable_list);
957	spin_unlock_bh(&mm->context.list_lock);
958	table = (unsigned long *) (__pa(table) | (bit << 4));
959	tlb_remove_table(tlb, table);
960}
961
962void __tlb_remove_table(void *_table)
963{
964	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
965	void *table = (void *)((unsigned long) _table & ~mask);
966	unsigned type = (unsigned long) _table & mask;
967
968	if (type)
969		__page_table_free_rcu(table, type);
970	else
971		free_pages((unsigned long) table, ALLOC_ORDER);
972}
973
974static void tlb_remove_table_smp_sync(void *arg)
975{
976	/* Simply deliver the interrupt */
977}
978
979static void tlb_remove_table_one(void *table)
980{
981	/*
982	 * This isn't an RCU grace period and hence the page-tables cannot be
983	 * assumed to be actually RCU-freed.
984	 *
985	 * It is however sufficient for software page-table walkers that rely
986	 * on IRQ disabling. See the comment near struct mmu_table_batch.
987	 */
988	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
989	__tlb_remove_table(table);
990}
991
992static void tlb_remove_table_rcu(struct rcu_head *head)
993{
994	struct mmu_table_batch *batch;
995	int i;
996
997	batch = container_of(head, struct mmu_table_batch, rcu);
998
999	for (i = 0; i < batch->nr; i++)
1000		__tlb_remove_table(batch->tables[i]);
1001
1002	free_page((unsigned long)batch);
1003}
1004
1005void tlb_table_flush(struct mmu_gather *tlb)
1006{
1007	struct mmu_table_batch **batch = &tlb->batch;
1008
1009	if (*batch) {
1010		__tlb_flush_mm(tlb->mm);
1011		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1012		*batch = NULL;
1013	}
1014}
1015
1016void tlb_remove_table(struct mmu_gather *tlb, void *table)
1017{
1018	struct mmu_table_batch **batch = &tlb->batch;
1019
1020	if (*batch == NULL) {
1021		*batch = (struct mmu_table_batch *)
1022			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1023		if (*batch == NULL) {
1024			__tlb_flush_mm(tlb->mm);
1025			tlb_remove_table_one(table);
1026			return;
1027		}
1028		(*batch)->nr = 0;
1029	}
1030	(*batch)->tables[(*batch)->nr++] = table;
1031	if ((*batch)->nr == MAX_TABLE_BATCH)
1032		tlb_table_flush(tlb);
1033}
1034
1035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1036void thp_split_vma(struct vm_area_struct *vma)
1037{
1038	unsigned long addr;
1039	struct page *page;
1040
1041	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1042		page = follow_page(vma, addr, FOLL_SPLIT);
1043	}
1044}
1045
1046void thp_split_mm(struct mm_struct *mm)
1047{
1048	struct vm_area_struct *vma = mm->mmap;
1049
1050	while (vma != NULL) {
1051		thp_split_vma(vma);
1052		vma->vm_flags &= ~VM_HUGEPAGE;
1053		vma->vm_flags |= VM_NOHUGEPAGE;
1054		vma = vma->vm_next;
1055	}
1056}
1057#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1058
1059/*
1060 * switch on pgstes for its userspace process (for kvm)
1061 */
1062int s390_enable_sie(void)
1063{
1064	struct task_struct *tsk = current;
1065	struct mm_struct *mm, *old_mm;
1066
1067	/* Do we have switched amode? If no, we cannot do sie */
1068	if (s390_user_mode == HOME_SPACE_MODE)
1069		return -EINVAL;
1070
1071	/* Do we have pgstes? if yes, we are done */
1072	if (mm_has_pgste(tsk->mm))
1073		return 0;
1074
1075	/* lets check if we are allowed to replace the mm */
1076	task_lock(tsk);
1077	if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
1078#ifdef CONFIG_AIO
1079	    !hlist_empty(&tsk->mm->ioctx_list) ||
1080#endif
1081	    tsk->mm != tsk->active_mm) {
1082		task_unlock(tsk);
1083		return -EINVAL;
1084	}
1085	task_unlock(tsk);
1086
1087	/* we copy the mm and let dup_mm create the page tables with_pgstes */
1088	tsk->mm->context.alloc_pgste = 1;
1089	/* make sure that both mms have a correct rss state */
1090	sync_mm_rss(tsk->mm);
1091	mm = dup_mm(tsk);
1092	tsk->mm->context.alloc_pgste = 0;
1093	if (!mm)
1094		return -ENOMEM;
1095
1096#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1097	/* split thp mappings and disable thp for future mappings */
1098	thp_split_mm(mm);
1099	mm->def_flags |= VM_NOHUGEPAGE;
1100#endif
1101
1102	/* Now lets check again if something happened */
1103	task_lock(tsk);
1104	if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
1105#ifdef CONFIG_AIO
1106	    !hlist_empty(&tsk->mm->ioctx_list) ||
1107#endif
1108	    tsk->mm != tsk->active_mm) {
1109		mmput(mm);
1110		task_unlock(tsk);
1111		return -EINVAL;
1112	}
1113
1114	/* ok, we are alone. No ptrace, no threads, etc. */
1115	old_mm = tsk->mm;
1116	tsk->mm = tsk->active_mm = mm;
1117	preempt_disable();
1118	update_mm(mm, tsk);
1119	atomic_inc(&mm->context.attach_count);
1120	atomic_dec(&old_mm->context.attach_count);
1121	cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
1122	preempt_enable();
1123	task_unlock(tsk);
1124	mmput(old_mm);
1125	return 0;
1126}
1127EXPORT_SYMBOL_GPL(s390_enable_sie);
1128
1129#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1130int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1131			   pmd_t *pmdp)
1132{
1133	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1134	/* No need to flush TLB
1135	 * On s390 reference bits are in storage key and never in TLB */
1136	return pmdp_test_and_clear_young(vma, address, pmdp);
1137}
1138
1139int pmdp_set_access_flags(struct vm_area_struct *vma,
1140			  unsigned long address, pmd_t *pmdp,
1141			  pmd_t entry, int dirty)
1142{
1143	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1144
1145	if (pmd_same(*pmdp, entry))
1146		return 0;
1147	pmdp_invalidate(vma, address, pmdp);
1148	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1149	return 1;
1150}
1151
1152static void pmdp_splitting_flush_sync(void *arg)
1153{
1154	/* Simply deliver the interrupt */
1155}
1156
1157void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1158			  pmd_t *pmdp)
1159{
1160	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1161	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1162			      (unsigned long *) pmdp)) {
1163		/* need to serialize against gup-fast (IRQ disabled) */
1164		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1165	}
1166}
1167
1168void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable)
1169{
1170	struct list_head *lh = (struct list_head *) pgtable;
1171
1172	assert_spin_locked(&mm->page_table_lock);
1173
1174	/* FIFO */
1175	if (!mm->pmd_huge_pte)
1176		INIT_LIST_HEAD(lh);
1177	else
1178		list_add(lh, (struct list_head *) mm->pmd_huge_pte);
1179	mm->pmd_huge_pte = pgtable;
1180}
1181
1182pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm)
1183{
1184	struct list_head *lh;
1185	pgtable_t pgtable;
1186	pte_t *ptep;
1187
1188	assert_spin_locked(&mm->page_table_lock);
1189
1190	/* FIFO */
1191	pgtable = mm->pmd_huge_pte;
1192	lh = (struct list_head *) pgtable;
1193	if (list_empty(lh))
1194		mm->pmd_huge_pte = NULL;
1195	else {
1196		mm->pmd_huge_pte = (pgtable_t) lh->next;
1197		list_del(lh);
1198	}
1199	ptep = (pte_t *) pgtable;
1200	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1201	ptep++;
1202	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1203	return pgtable;
1204}
1205#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1206