1/*
2 * arch/sh/mm/cache-sh4.c
3 *
4 * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5 * Copyright (C) 2001 - 2009  Paul Mundt
6 * Copyright (C) 2003  Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License.  See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/fs.h>
18#include <linux/highmem.h>
19#include <asm/pgtable.h>
20#include <asm/mmu_context.h>
21#include <asm/cache_insns.h>
22#include <asm/cacheflush.h>
23
24/*
25 * The maximum number of pages we support up to when doing ranged dcache
26 * flushing. Anything exceeding this will simply flush the dcache in its
27 * entirety.
28 */
29#define MAX_ICACHE_PAGES	32
30
31static void __flush_cache_one(unsigned long addr, unsigned long phys,
32			       unsigned long exec_offset);
33
34/*
35 * Write back the range of D-cache, and purge the I-cache.
36 *
37 * Called from kernel/module.c:sys_init_module and routine for a.out format,
38 * signal handler code and kprobes code
39 */
40static void sh4_flush_icache_range(void *args)
41{
42	struct flusher_data *data = args;
43	unsigned long start, end;
44	unsigned long flags, v;
45	int i;
46
47	start = data->addr1;
48	end = data->addr2;
49
50	/* If there are too many pages then just blow away the caches */
51	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
52		local_flush_cache_all(NULL);
53		return;
54	}
55
56	/*
57	 * Selectively flush d-cache then invalidate the i-cache.
58	 * This is inefficient, so only use this for small ranges.
59	 */
60	start &= ~(L1_CACHE_BYTES-1);
61	end += L1_CACHE_BYTES-1;
62	end &= ~(L1_CACHE_BYTES-1);
63
64	local_irq_save(flags);
65	jump_to_uncached();
66
67	for (v = start; v < end; v += L1_CACHE_BYTES) {
68		unsigned long icacheaddr;
69		int j, n;
70
71		__ocbwb(v);
72
73		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
74				cpu_data->icache.entry_mask);
75
76		/* Clear i-cache line valid-bit */
77		n = boot_cpu_data.icache.n_aliases;
78		for (i = 0; i < cpu_data->icache.ways; i++) {
79			for (j = 0; j < n; j++)
80				__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
81			icacheaddr += cpu_data->icache.way_incr;
82		}
83	}
84
85	back_to_cached();
86	local_irq_restore(flags);
87}
88
89static inline void flush_cache_one(unsigned long start, unsigned long phys)
90{
91	unsigned long flags, exec_offset = 0;
92
93	/*
94	 * All types of SH-4 require PC to be uncached to operate on the I-cache.
95	 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
96	 */
97	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
98	    (start < CACHE_OC_ADDRESS_ARRAY))
99		exec_offset = cached_to_uncached;
100
101	local_irq_save(flags);
102	__flush_cache_one(start, phys, exec_offset);
103	local_irq_restore(flags);
104}
105
106/*
107 * Write back & invalidate the D-cache of the page.
108 * (To avoid "alias" issues)
109 */
110static void sh4_flush_dcache_page(void *arg)
111{
112	struct page *page = arg;
113	unsigned long addr = (unsigned long)page_address(page);
114#ifndef CONFIG_SMP
115	struct address_space *mapping = page_mapping(page);
116
117	if (mapping && !mapping_mapped(mapping))
118		clear_bit(PG_dcache_clean, &page->flags);
119	else
120#endif
121		flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
122				(addr & shm_align_mask), page_to_phys(page));
123
124	wmb();
125}
126
127/* TODO: Selective icache invalidation through IC address array.. */
128static void flush_icache_all(void)
129{
130	unsigned long flags, ccr;
131
132	local_irq_save(flags);
133	jump_to_uncached();
134
135	/* Flush I-cache */
136	ccr = __raw_readl(SH_CCR);
137	ccr |= CCR_CACHE_ICI;
138	__raw_writel(ccr, SH_CCR);
139
140	/*
141	 * back_to_cached() will take care of the barrier for us, don't add
142	 * another one!
143	 */
144
145	back_to_cached();
146	local_irq_restore(flags);
147}
148
149static void flush_dcache_all(void)
150{
151	unsigned long addr, end_addr, entry_offset;
152
153	end_addr = CACHE_OC_ADDRESS_ARRAY +
154		(current_cpu_data.dcache.sets <<
155		 current_cpu_data.dcache.entry_shift) *
156			current_cpu_data.dcache.ways;
157
158	entry_offset = 1 << current_cpu_data.dcache.entry_shift;
159
160	for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
161		__raw_writel(0, addr); addr += entry_offset;
162		__raw_writel(0, addr); addr += entry_offset;
163		__raw_writel(0, addr); addr += entry_offset;
164		__raw_writel(0, addr); addr += entry_offset;
165		__raw_writel(0, addr); addr += entry_offset;
166		__raw_writel(0, addr); addr += entry_offset;
167		__raw_writel(0, addr); addr += entry_offset;
168		__raw_writel(0, addr); addr += entry_offset;
169	}
170}
171
172static void sh4_flush_cache_all(void *unused)
173{
174	flush_dcache_all();
175	flush_icache_all();
176}
177
178/*
179 * Note : (RPC) since the caches are physically tagged, the only point
180 * of flush_cache_mm for SH-4 is to get rid of aliases from the
181 * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
182 * lines can stay resident so long as the virtual address they were
183 * accessed with (hence cache set) is in accord with the physical
184 * address (i.e. tag).  It's no different here.
185 *
186 * Caller takes mm->mmap_sem.
187 */
188static void sh4_flush_cache_mm(void *arg)
189{
190	struct mm_struct *mm = arg;
191
192	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
193		return;
194
195	flush_dcache_all();
196}
197
198/*
199 * Write back and invalidate I/D-caches for the page.
200 *
201 * ADDR: Virtual Address (U0 address)
202 * PFN: Physical page number
203 */
204static void sh4_flush_cache_page(void *args)
205{
206	struct flusher_data *data = args;
207	struct vm_area_struct *vma;
208	struct page *page;
209	unsigned long address, pfn, phys;
210	int map_coherent = 0;
211	pgd_t *pgd;
212	pud_t *pud;
213	pmd_t *pmd;
214	pte_t *pte;
215	void *vaddr;
216
217	vma = data->vma;
218	address = data->addr1 & PAGE_MASK;
219	pfn = data->addr2;
220	phys = pfn << PAGE_SHIFT;
221	page = pfn_to_page(pfn);
222
223	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
224		return;
225
226	pgd = pgd_offset(vma->vm_mm, address);
227	pud = pud_offset(pgd, address);
228	pmd = pmd_offset(pud, address);
229	pte = pte_offset_kernel(pmd, address);
230
231	/* If the page isn't present, there is nothing to do here. */
232	if (!(pte_val(*pte) & _PAGE_PRESENT))
233		return;
234
235	if ((vma->vm_mm == current->active_mm))
236		vaddr = NULL;
237	else {
238		/*
239		 * Use kmap_coherent or kmap_atomic to do flushes for
240		 * another ASID than the current one.
241		 */
242		map_coherent = (current_cpu_data.dcache.n_aliases &&
243			test_bit(PG_dcache_clean, &page->flags) &&
244			page_mapped(page));
245		if (map_coherent)
246			vaddr = kmap_coherent(page, address);
247		else
248			vaddr = kmap_atomic(page);
249
250		address = (unsigned long)vaddr;
251	}
252
253	flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
254			(address & shm_align_mask), phys);
255
256	if (vma->vm_flags & VM_EXEC)
257		flush_icache_all();
258
259	if (vaddr) {
260		if (map_coherent)
261			kunmap_coherent(vaddr);
262		else
263			kunmap_atomic(vaddr);
264	}
265}
266
267/*
268 * Write back and invalidate D-caches.
269 *
270 * START, END: Virtual Address (U0 address)
271 *
272 * NOTE: We need to flush the _physical_ page entry.
273 * Flushing the cache lines for U0 only isn't enough.
274 * We need to flush for P1 too, which may contain aliases.
275 */
276static void sh4_flush_cache_range(void *args)
277{
278	struct flusher_data *data = args;
279	struct vm_area_struct *vma;
280	unsigned long start, end;
281
282	vma = data->vma;
283	start = data->addr1;
284	end = data->addr2;
285
286	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
287		return;
288
289	/*
290	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
291	 * the cache is physically tagged, the data can just be left in there.
292	 */
293	if (boot_cpu_data.dcache.n_aliases == 0)
294		return;
295
296	flush_dcache_all();
297
298	if (vma->vm_flags & VM_EXEC)
299		flush_icache_all();
300}
301
302/**
303 * __flush_cache_one
304 *
305 * @addr:  address in memory mapped cache array
306 * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
307 *         set i.e. associative write)
308 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
309 *               region else 0x0
310 *
311 * The offset into the cache array implied by 'addr' selects the
312 * 'colour' of the virtual address range that will be flushed.  The
313 * operation (purge/write-back) is selected by the lower 2 bits of
314 * 'phys'.
315 */
316static void __flush_cache_one(unsigned long addr, unsigned long phys,
317			       unsigned long exec_offset)
318{
319	int way_count;
320	unsigned long base_addr = addr;
321	struct cache_info *dcache;
322	unsigned long way_incr;
323	unsigned long a, ea, p;
324	unsigned long temp_pc;
325
326	dcache = &boot_cpu_data.dcache;
327	/* Write this way for better assembly. */
328	way_count = dcache->ways;
329	way_incr = dcache->way_incr;
330
331	/*
332	 * Apply exec_offset (i.e. branch to P2 if required.).
333	 *
334	 * FIXME:
335	 *
336	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence
337	 *	trashing exec_offset before it's been added on - why?  Hence
338	 *	"=&r" as a 'workaround'
339	 */
340	asm volatile("mov.l 1f, %0\n\t"
341		     "add   %1, %0\n\t"
342		     "jmp   @%0\n\t"
343		     "nop\n\t"
344		     ".balign 4\n\t"
345		     "1:  .long 2f\n\t"
346		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
347
348	/*
349	 * We know there will be >=1 iteration, so write as do-while to avoid
350	 * pointless nead-of-loop check for 0 iterations.
351	 */
352	do {
353		ea = base_addr + PAGE_SIZE;
354		a = base_addr;
355		p = phys;
356
357		do {
358			*(volatile unsigned long *)a = p;
359			/*
360			 * Next line: intentionally not p+32, saves an add, p
361			 * will do since only the cache tag bits need to
362			 * match.
363			 */
364			*(volatile unsigned long *)(a+32) = p;
365			a += 64;
366			p += 64;
367		} while (a < ea);
368
369		base_addr += way_incr;
370	} while (--way_count != 0);
371}
372
373extern void __weak sh4__flush_region_init(void);
374
375/*
376 * SH-4 has virtually indexed and physically tagged cache.
377 */
378void __init sh4_cache_init(void)
379{
380	printk("PVR=%08x CVR=%08x PRR=%08x\n",
381		__raw_readl(CCN_PVR),
382		__raw_readl(CCN_CVR),
383		__raw_readl(CCN_PRR));
384
385	local_flush_icache_range	= sh4_flush_icache_range;
386	local_flush_dcache_page		= sh4_flush_dcache_page;
387	local_flush_cache_all		= sh4_flush_cache_all;
388	local_flush_cache_mm		= sh4_flush_cache_mm;
389	local_flush_cache_dup_mm	= sh4_flush_cache_mm;
390	local_flush_cache_page		= sh4_flush_cache_page;
391	local_flush_cache_range		= sh4_flush_cache_range;
392
393	sh4__flush_region_init();
394}
395