1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6#include <linux/export.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24#include <linux/vmalloc.h>
25#include <linux/ftrace.h>
26#include <linux/cpu.h>
27#include <linux/slab.h>
28#include <linux/kgdb.h>
29
30#include <asm/head.h>
31#include <asm/ptrace.h>
32#include <linux/atomic.h>
33#include <asm/tlbflush.h>
34#include <asm/mmu_context.h>
35#include <asm/cpudata.h>
36#include <asm/hvtramp.h>
37#include <asm/io.h>
38#include <asm/timer.h>
39#include <asm/setup.h>
40
41#include <asm/irq.h>
42#include <asm/irq_regs.h>
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/oplib.h>
46#include <asm/uaccess.h>
47#include <asm/starfire.h>
48#include <asm/tlb.h>
49#include <asm/sections.h>
50#include <asm/prom.h>
51#include <asm/mdesc.h>
52#include <asm/ldc.h>
53#include <asm/hypervisor.h>
54#include <asm/pcr.h>
55
56#include "cpumap.h"
57#include "kernel.h"
58
59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62
63EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
64EXPORT_SYMBOL(cpu_core_map);
65
66static cpumask_t smp_commenced_mask;
67
68void smp_info(struct seq_file *m)
69{
70	int i;
71
72	seq_printf(m, "State:\n");
73	for_each_online_cpu(i)
74		seq_printf(m, "CPU%d:\t\tonline\n", i);
75}
76
77void smp_bogo(struct seq_file *m)
78{
79	int i;
80
81	for_each_online_cpu(i)
82		seq_printf(m,
83			   "Cpu%dClkTck\t: %016lx\n",
84			   i, cpu_data(i).clock_tick);
85}
86
87extern void setup_sparc64_timer(void);
88
89static volatile unsigned long callin_flag = 0;
90
91void smp_callin(void)
92{
93	int cpuid = hard_smp_processor_id();
94
95	__local_per_cpu_offset = __per_cpu_offset(cpuid);
96
97	if (tlb_type == hypervisor)
98		sun4v_ktsb_register();
99
100	__flush_tlb_all();
101
102	setup_sparc64_timer();
103
104	if (cheetah_pcache_forced_on)
105		cheetah_enable_pcache();
106
107	callin_flag = 1;
108	__asm__ __volatile__("membar #Sync\n\t"
109			     "flush  %%g6" : : : "memory");
110
111	/* Clear this or we will die instantly when we
112	 * schedule back to this idler...
113	 */
114	current_thread_info()->new_child = 0;
115
116	/* Attach to the address space of init_task. */
117	atomic_inc(&init_mm.mm_count);
118	current->active_mm = &init_mm;
119
120	/* inform the notifiers about the new cpu */
121	notify_cpu_starting(cpuid);
122
123	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
124		rmb();
125
126	set_cpu_online(cpuid, true);
127
128	/* idle thread is expected to have preempt disabled */
129	preempt_disable();
130
131	local_irq_enable();
132
133	cpu_startup_entry(CPUHP_ONLINE);
134}
135
136void cpu_panic(void)
137{
138	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
139	panic("SMP bolixed\n");
140}
141
142/* This tick register synchronization scheme is taken entirely from
143 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
144 *
145 * The only change I've made is to rework it so that the master
146 * initiates the synchonization instead of the slave. -DaveM
147 */
148
149#define MASTER	0
150#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
151
152#define NUM_ROUNDS	64	/* magic value */
153#define NUM_ITERS	5	/* likewise */
154
155static DEFINE_RAW_SPINLOCK(itc_sync_lock);
156static unsigned long go[SLAVE + 1];
157
158#define DEBUG_TICK_SYNC	0
159
160static inline long get_delta (long *rt, long *master)
161{
162	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
163	unsigned long tcenter, t0, t1, tm;
164	unsigned long i;
165
166	for (i = 0; i < NUM_ITERS; i++) {
167		t0 = tick_ops->get_tick();
168		go[MASTER] = 1;
169		membar_safe("#StoreLoad");
170		while (!(tm = go[SLAVE]))
171			rmb();
172		go[SLAVE] = 0;
173		wmb();
174		t1 = tick_ops->get_tick();
175
176		if (t1 - t0 < best_t1 - best_t0)
177			best_t0 = t0, best_t1 = t1, best_tm = tm;
178	}
179
180	*rt = best_t1 - best_t0;
181	*master = best_tm - best_t0;
182
183	/* average best_t0 and best_t1 without overflow: */
184	tcenter = (best_t0/2 + best_t1/2);
185	if (best_t0 % 2 + best_t1 % 2 == 2)
186		tcenter++;
187	return tcenter - best_tm;
188}
189
190void smp_synchronize_tick_client(void)
191{
192	long i, delta, adj, adjust_latency = 0, done = 0;
193	unsigned long flags, rt, master_time_stamp;
194#if DEBUG_TICK_SYNC
195	struct {
196		long rt;	/* roundtrip time */
197		long master;	/* master's timestamp */
198		long diff;	/* difference between midpoint and master's timestamp */
199		long lat;	/* estimate of itc adjustment latency */
200	} t[NUM_ROUNDS];
201#endif
202
203	go[MASTER] = 1;
204
205	while (go[MASTER])
206		rmb();
207
208	local_irq_save(flags);
209	{
210		for (i = 0; i < NUM_ROUNDS; i++) {
211			delta = get_delta(&rt, &master_time_stamp);
212			if (delta == 0)
213				done = 1;	/* let's lock on to this... */
214
215			if (!done) {
216				if (i > 0) {
217					adjust_latency += -delta;
218					adj = -delta + adjust_latency/4;
219				} else
220					adj = -delta;
221
222				tick_ops->add_tick(adj);
223			}
224#if DEBUG_TICK_SYNC
225			t[i].rt = rt;
226			t[i].master = master_time_stamp;
227			t[i].diff = delta;
228			t[i].lat = adjust_latency/4;
229#endif
230		}
231	}
232	local_irq_restore(flags);
233
234#if DEBUG_TICK_SYNC
235	for (i = 0; i < NUM_ROUNDS; i++)
236		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
238#endif
239
240	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
241	       "(last diff %ld cycles, maxerr %lu cycles)\n",
242	       smp_processor_id(), delta, rt);
243}
244
245static void smp_start_sync_tick_client(int cpu);
246
247static void smp_synchronize_one_tick(int cpu)
248{
249	unsigned long flags, i;
250
251	go[MASTER] = 0;
252
253	smp_start_sync_tick_client(cpu);
254
255	/* wait for client to be ready */
256	while (!go[MASTER])
257		rmb();
258
259	/* now let the client proceed into his loop */
260	go[MASTER] = 0;
261	membar_safe("#StoreLoad");
262
263	raw_spin_lock_irqsave(&itc_sync_lock, flags);
264	{
265		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
266			while (!go[MASTER])
267				rmb();
268			go[MASTER] = 0;
269			wmb();
270			go[SLAVE] = tick_ops->get_tick();
271			membar_safe("#StoreLoad");
272		}
273	}
274	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
275}
276
277#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
279				void **descrp)
280{
281	extern unsigned long sparc64_ttable_tl0;
282	extern unsigned long kern_locked_tte_data;
283	struct hvtramp_descr *hdesc;
284	unsigned long trampoline_ra;
285	struct trap_per_cpu *tb;
286	u64 tte_vaddr, tte_data;
287	unsigned long hv_err;
288	int i;
289
290	hdesc = kzalloc(sizeof(*hdesc) +
291			(sizeof(struct hvtramp_mapping) *
292			 num_kernel_image_mappings - 1),
293			GFP_KERNEL);
294	if (!hdesc) {
295		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
296		       "hvtramp_descr.\n");
297		return;
298	}
299	*descrp = hdesc;
300
301	hdesc->cpu = cpu;
302	hdesc->num_mappings = num_kernel_image_mappings;
303
304	tb = &trap_block[cpu];
305
306	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
307	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
308
309	hdesc->thread_reg = thread_reg;
310
311	tte_vaddr = (unsigned long) KERNBASE;
312	tte_data = kern_locked_tte_data;
313
314	for (i = 0; i < hdesc->num_mappings; i++) {
315		hdesc->maps[i].vaddr = tte_vaddr;
316		hdesc->maps[i].tte   = tte_data;
317		tte_vaddr += 0x400000;
318		tte_data  += 0x400000;
319	}
320
321	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
322
323	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
324				 kimage_addr_to_ra(&sparc64_ttable_tl0),
325				 __pa(hdesc));
326	if (hv_err)
327		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
328		       "gives error %lu\n", hv_err);
329}
330#endif
331
332extern unsigned long sparc64_cpu_startup;
333
334/* The OBP cpu startup callback truncates the 3rd arg cookie to
335 * 32-bits (I think) so to be safe we have it read the pointer
336 * contained here so we work on >4GB machines. -DaveM
337 */
338static struct thread_info *cpu_new_thread = NULL;
339
340static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
341{
342	unsigned long entry =
343		(unsigned long)(&sparc64_cpu_startup);
344	unsigned long cookie =
345		(unsigned long)(&cpu_new_thread);
346	void *descr = NULL;
347	int timeout, ret;
348
349	callin_flag = 0;
350	cpu_new_thread = task_thread_info(idle);
351
352	if (tlb_type == hypervisor) {
353#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
354		if (ldom_domaining_enabled)
355			ldom_startcpu_cpuid(cpu,
356					    (unsigned long) cpu_new_thread,
357					    &descr);
358		else
359#endif
360			prom_startcpu_cpuid(cpu, entry, cookie);
361	} else {
362		struct device_node *dp = of_find_node_by_cpuid(cpu);
363
364		prom_startcpu(dp->phandle, entry, cookie);
365	}
366
367	for (timeout = 0; timeout < 50000; timeout++) {
368		if (callin_flag)
369			break;
370		udelay(100);
371	}
372
373	if (callin_flag) {
374		ret = 0;
375	} else {
376		printk("Processor %d is stuck.\n", cpu);
377		ret = -ENODEV;
378	}
379	cpu_new_thread = NULL;
380
381	kfree(descr);
382
383	return ret;
384}
385
386static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
387{
388	u64 result, target;
389	int stuck, tmp;
390
391	if (this_is_starfire) {
392		/* map to real upaid */
393		cpu = (((cpu & 0x3c) << 1) |
394			((cpu & 0x40) >> 4) |
395			(cpu & 0x3));
396	}
397
398	target = (cpu << 14) | 0x70;
399again:
400	/* Ok, this is the real Spitfire Errata #54.
401	 * One must read back from a UDB internal register
402	 * after writes to the UDB interrupt dispatch, but
403	 * before the membar Sync for that write.
404	 * So we use the high UDB control register (ASI 0x7f,
405	 * ADDR 0x20) for the dummy read. -DaveM
406	 */
407	tmp = 0x40;
408	__asm__ __volatile__(
409	"wrpr	%1, %2, %%pstate\n\t"
410	"stxa	%4, [%0] %3\n\t"
411	"stxa	%5, [%0+%8] %3\n\t"
412	"add	%0, %8, %0\n\t"
413	"stxa	%6, [%0+%8] %3\n\t"
414	"membar	#Sync\n\t"
415	"stxa	%%g0, [%7] %3\n\t"
416	"membar	#Sync\n\t"
417	"mov	0x20, %%g1\n\t"
418	"ldxa	[%%g1] 0x7f, %%g0\n\t"
419	"membar	#Sync"
420	: "=r" (tmp)
421	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
422	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
423	  "r" (0x10), "0" (tmp)
424        : "g1");
425
426	/* NOTE: PSTATE_IE is still clear. */
427	stuck = 100000;
428	do {
429		__asm__ __volatile__("ldxa [%%g0] %1, %0"
430			: "=r" (result)
431			: "i" (ASI_INTR_DISPATCH_STAT));
432		if (result == 0) {
433			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
434					     : : "r" (pstate));
435			return;
436		}
437		stuck -= 1;
438		if (stuck == 0)
439			break;
440	} while (result & 0x1);
441	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442			     : : "r" (pstate));
443	if (stuck == 0) {
444		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
445		       smp_processor_id(), result);
446	} else {
447		udelay(2);
448		goto again;
449	}
450}
451
452static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
453{
454	u64 *mondo, data0, data1, data2;
455	u16 *cpu_list;
456	u64 pstate;
457	int i;
458
459	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
460	cpu_list = __va(tb->cpu_list_pa);
461	mondo = __va(tb->cpu_mondo_block_pa);
462	data0 = mondo[0];
463	data1 = mondo[1];
464	data2 = mondo[2];
465	for (i = 0; i < cnt; i++)
466		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
467}
468
469/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
470 * packet, but we have no use for that.  However we do take advantage of
471 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
472 */
473static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
474{
475	int nack_busy_id, is_jbus, need_more;
476	u64 *mondo, pstate, ver, busy_mask;
477	u16 *cpu_list;
478
479	cpu_list = __va(tb->cpu_list_pa);
480	mondo = __va(tb->cpu_mondo_block_pa);
481
482	/* Unfortunately, someone at Sun had the brilliant idea to make the
483	 * busy/nack fields hard-coded by ITID number for this Ultra-III
484	 * derivative processor.
485	 */
486	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
487	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
488		   (ver >> 32) == __SERRANO_ID);
489
490	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
491
492retry:
493	need_more = 0;
494	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
495			     : : "r" (pstate), "i" (PSTATE_IE));
496
497	/* Setup the dispatch data registers. */
498	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
499			     "stxa	%1, [%4] %6\n\t"
500			     "stxa	%2, [%5] %6\n\t"
501			     "membar	#Sync\n\t"
502			     : /* no outputs */
503			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
504			       "r" (0x40), "r" (0x50), "r" (0x60),
505			       "i" (ASI_INTR_W));
506
507	nack_busy_id = 0;
508	busy_mask = 0;
509	{
510		int i;
511
512		for (i = 0; i < cnt; i++) {
513			u64 target, nr;
514
515			nr = cpu_list[i];
516			if (nr == 0xffff)
517				continue;
518
519			target = (nr << 14) | 0x70;
520			if (is_jbus) {
521				busy_mask |= (0x1UL << (nr * 2));
522			} else {
523				target |= (nack_busy_id << 24);
524				busy_mask |= (0x1UL <<
525					      (nack_busy_id * 2));
526			}
527			__asm__ __volatile__(
528				"stxa	%%g0, [%0] %1\n\t"
529				"membar	#Sync\n\t"
530				: /* no outputs */
531				: "r" (target), "i" (ASI_INTR_W));
532			nack_busy_id++;
533			if (nack_busy_id == 32) {
534				need_more = 1;
535				break;
536			}
537		}
538	}
539
540	/* Now, poll for completion. */
541	{
542		u64 dispatch_stat, nack_mask;
543		long stuck;
544
545		stuck = 100000 * nack_busy_id;
546		nack_mask = busy_mask << 1;
547		do {
548			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
549					     : "=r" (dispatch_stat)
550					     : "i" (ASI_INTR_DISPATCH_STAT));
551			if (!(dispatch_stat & (busy_mask | nack_mask))) {
552				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
553						     : : "r" (pstate));
554				if (unlikely(need_more)) {
555					int i, this_cnt = 0;
556					for (i = 0; i < cnt; i++) {
557						if (cpu_list[i] == 0xffff)
558							continue;
559						cpu_list[i] = 0xffff;
560						this_cnt++;
561						if (this_cnt == 32)
562							break;
563					}
564					goto retry;
565				}
566				return;
567			}
568			if (!--stuck)
569				break;
570		} while (dispatch_stat & busy_mask);
571
572		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
573				     : : "r" (pstate));
574
575		if (dispatch_stat & busy_mask) {
576			/* Busy bits will not clear, continue instead
577			 * of freezing up on this cpu.
578			 */
579			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
580			       smp_processor_id(), dispatch_stat);
581		} else {
582			int i, this_busy_nack = 0;
583
584			/* Delay some random time with interrupts enabled
585			 * to prevent deadlock.
586			 */
587			udelay(2 * nack_busy_id);
588
589			/* Clear out the mask bits for cpus which did not
590			 * NACK us.
591			 */
592			for (i = 0; i < cnt; i++) {
593				u64 check_mask, nr;
594
595				nr = cpu_list[i];
596				if (nr == 0xffff)
597					continue;
598
599				if (is_jbus)
600					check_mask = (0x2UL << (2*nr));
601				else
602					check_mask = (0x2UL <<
603						      this_busy_nack);
604				if ((dispatch_stat & check_mask) == 0)
605					cpu_list[i] = 0xffff;
606				this_busy_nack += 2;
607				if (this_busy_nack == 64)
608					break;
609			}
610
611			goto retry;
612		}
613	}
614}
615
616/* Multi-cpu list version.  */
617static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
618{
619	int retries, this_cpu, prev_sent, i, saw_cpu_error;
620	unsigned long status;
621	u16 *cpu_list;
622
623	this_cpu = smp_processor_id();
624
625	cpu_list = __va(tb->cpu_list_pa);
626
627	saw_cpu_error = 0;
628	retries = 0;
629	prev_sent = 0;
630	do {
631		int forward_progress, n_sent;
632
633		status = sun4v_cpu_mondo_send(cnt,
634					      tb->cpu_list_pa,
635					      tb->cpu_mondo_block_pa);
636
637		/* HV_EOK means all cpus received the xcall, we're done.  */
638		if (likely(status == HV_EOK))
639			break;
640
641		/* First, see if we made any forward progress.
642		 *
643		 * The hypervisor indicates successful sends by setting
644		 * cpu list entries to the value 0xffff.
645		 */
646		n_sent = 0;
647		for (i = 0; i < cnt; i++) {
648			if (likely(cpu_list[i] == 0xffff))
649				n_sent++;
650		}
651
652		forward_progress = 0;
653		if (n_sent > prev_sent)
654			forward_progress = 1;
655
656		prev_sent = n_sent;
657
658		/* If we get a HV_ECPUERROR, then one or more of the cpus
659		 * in the list are in error state.  Use the cpu_state()
660		 * hypervisor call to find out which cpus are in error state.
661		 */
662		if (unlikely(status == HV_ECPUERROR)) {
663			for (i = 0; i < cnt; i++) {
664				long err;
665				u16 cpu;
666
667				cpu = cpu_list[i];
668				if (cpu == 0xffff)
669					continue;
670
671				err = sun4v_cpu_state(cpu);
672				if (err == HV_CPU_STATE_ERROR) {
673					saw_cpu_error = (cpu + 1);
674					cpu_list[i] = 0xffff;
675				}
676			}
677		} else if (unlikely(status != HV_EWOULDBLOCK))
678			goto fatal_mondo_error;
679
680		/* Don't bother rewriting the CPU list, just leave the
681		 * 0xffff and non-0xffff entries in there and the
682		 * hypervisor will do the right thing.
683		 *
684		 * Only advance timeout state if we didn't make any
685		 * forward progress.
686		 */
687		if (unlikely(!forward_progress)) {
688			if (unlikely(++retries > 10000))
689				goto fatal_mondo_timeout;
690
691			/* Delay a little bit to let other cpus catch up
692			 * on their cpu mondo queue work.
693			 */
694			udelay(2 * cnt);
695		}
696	} while (1);
697
698	if (unlikely(saw_cpu_error))
699		goto fatal_mondo_cpu_error;
700
701	return;
702
703fatal_mondo_cpu_error:
704	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
705	       "(including %d) were in error state\n",
706	       this_cpu, saw_cpu_error - 1);
707	return;
708
709fatal_mondo_timeout:
710	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
711	       " progress after %d retries.\n",
712	       this_cpu, retries);
713	goto dump_cpu_list_and_out;
714
715fatal_mondo_error:
716	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
717	       this_cpu, status);
718	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
719	       "mondo_block_pa(%lx)\n",
720	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
721
722dump_cpu_list_and_out:
723	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
724	for (i = 0; i < cnt; i++)
725		printk("%u ", cpu_list[i]);
726	printk("]\n");
727}
728
729static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
730
731static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
732{
733	struct trap_per_cpu *tb;
734	int this_cpu, i, cnt;
735	unsigned long flags;
736	u16 *cpu_list;
737	u64 *mondo;
738
739	/* We have to do this whole thing with interrupts fully disabled.
740	 * Otherwise if we send an xcall from interrupt context it will
741	 * corrupt both our mondo block and cpu list state.
742	 *
743	 * One consequence of this is that we cannot use timeout mechanisms
744	 * that depend upon interrupts being delivered locally.  So, for
745	 * example, we cannot sample jiffies and expect it to advance.
746	 *
747	 * Fortunately, udelay() uses %stick/%tick so we can use that.
748	 */
749	local_irq_save(flags);
750
751	this_cpu = smp_processor_id();
752	tb = &trap_block[this_cpu];
753
754	mondo = __va(tb->cpu_mondo_block_pa);
755	mondo[0] = data0;
756	mondo[1] = data1;
757	mondo[2] = data2;
758	wmb();
759
760	cpu_list = __va(tb->cpu_list_pa);
761
762	/* Setup the initial cpu list.  */
763	cnt = 0;
764	for_each_cpu(i, mask) {
765		if (i == this_cpu || !cpu_online(i))
766			continue;
767		cpu_list[cnt++] = i;
768	}
769
770	if (cnt)
771		xcall_deliver_impl(tb, cnt);
772
773	local_irq_restore(flags);
774}
775
776/* Send cross call to all processors mentioned in MASK_P
777 * except self.  Really, there are only two cases currently,
778 * "cpu_online_mask" and "mm_cpumask(mm)".
779 */
780static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
781{
782	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
783
784	xcall_deliver(data0, data1, data2, mask);
785}
786
787/* Send cross call to all processors except self. */
788static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
789{
790	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
791}
792
793extern unsigned long xcall_sync_tick;
794
795static void smp_start_sync_tick_client(int cpu)
796{
797	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
798		      cpumask_of(cpu));
799}
800
801extern unsigned long xcall_call_function;
802
803void arch_send_call_function_ipi_mask(const struct cpumask *mask)
804{
805	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
806}
807
808extern unsigned long xcall_call_function_single;
809
810void arch_send_call_function_single_ipi(int cpu)
811{
812	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
813		      cpumask_of(cpu));
814}
815
816void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
817{
818	clear_softint(1 << irq);
819	irq_enter();
820	generic_smp_call_function_interrupt();
821	irq_exit();
822}
823
824void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
825{
826	clear_softint(1 << irq);
827	irq_enter();
828	generic_smp_call_function_single_interrupt();
829	irq_exit();
830}
831
832static void tsb_sync(void *info)
833{
834	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
835	struct mm_struct *mm = info;
836
837	/* It is not valid to test "current->active_mm == mm" here.
838	 *
839	 * The value of "current" is not changed atomically with
840	 * switch_mm().  But that's OK, we just need to check the
841	 * current cpu's trap block PGD physical address.
842	 */
843	if (tp->pgd_paddr == __pa(mm->pgd))
844		tsb_context_switch(mm);
845}
846
847void smp_tsb_sync(struct mm_struct *mm)
848{
849	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
850}
851
852extern unsigned long xcall_flush_tlb_mm;
853extern unsigned long xcall_flush_tlb_page;
854extern unsigned long xcall_flush_tlb_kernel_range;
855extern unsigned long xcall_fetch_glob_regs;
856extern unsigned long xcall_fetch_glob_pmu;
857extern unsigned long xcall_fetch_glob_pmu_n4;
858extern unsigned long xcall_receive_signal;
859extern unsigned long xcall_new_mmu_context_version;
860#ifdef CONFIG_KGDB
861extern unsigned long xcall_kgdb_capture;
862#endif
863
864#ifdef DCACHE_ALIASING_POSSIBLE
865extern unsigned long xcall_flush_dcache_page_cheetah;
866#endif
867extern unsigned long xcall_flush_dcache_page_spitfire;
868
869static inline void __local_flush_dcache_page(struct page *page)
870{
871#ifdef DCACHE_ALIASING_POSSIBLE
872	__flush_dcache_page(page_address(page),
873			    ((tlb_type == spitfire) &&
874			     page_mapping(page) != NULL));
875#else
876	if (page_mapping(page) != NULL &&
877	    tlb_type == spitfire)
878		__flush_icache_page(__pa(page_address(page)));
879#endif
880}
881
882void smp_flush_dcache_page_impl(struct page *page, int cpu)
883{
884	int this_cpu;
885
886	if (tlb_type == hypervisor)
887		return;
888
889#ifdef CONFIG_DEBUG_DCFLUSH
890	atomic_inc(&dcpage_flushes);
891#endif
892
893	this_cpu = get_cpu();
894
895	if (cpu == this_cpu) {
896		__local_flush_dcache_page(page);
897	} else if (cpu_online(cpu)) {
898		void *pg_addr = page_address(page);
899		u64 data0 = 0;
900
901		if (tlb_type == spitfire) {
902			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
903			if (page_mapping(page) != NULL)
904				data0 |= ((u64)1 << 32);
905		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
906#ifdef DCACHE_ALIASING_POSSIBLE
907			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
908#endif
909		}
910		if (data0) {
911			xcall_deliver(data0, __pa(pg_addr),
912				      (u64) pg_addr, cpumask_of(cpu));
913#ifdef CONFIG_DEBUG_DCFLUSH
914			atomic_inc(&dcpage_flushes_xcall);
915#endif
916		}
917	}
918
919	put_cpu();
920}
921
922void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
923{
924	void *pg_addr;
925	u64 data0;
926
927	if (tlb_type == hypervisor)
928		return;
929
930	preempt_disable();
931
932#ifdef CONFIG_DEBUG_DCFLUSH
933	atomic_inc(&dcpage_flushes);
934#endif
935	data0 = 0;
936	pg_addr = page_address(page);
937	if (tlb_type == spitfire) {
938		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
939		if (page_mapping(page) != NULL)
940			data0 |= ((u64)1 << 32);
941	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
942#ifdef DCACHE_ALIASING_POSSIBLE
943		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
944#endif
945	}
946	if (data0) {
947		xcall_deliver(data0, __pa(pg_addr),
948			      (u64) pg_addr, cpu_online_mask);
949#ifdef CONFIG_DEBUG_DCFLUSH
950		atomic_inc(&dcpage_flushes_xcall);
951#endif
952	}
953	__local_flush_dcache_page(page);
954
955	preempt_enable();
956}
957
958void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
959{
960	struct mm_struct *mm;
961	unsigned long flags;
962
963	clear_softint(1 << irq);
964
965	/* See if we need to allocate a new TLB context because
966	 * the version of the one we are using is now out of date.
967	 */
968	mm = current->active_mm;
969	if (unlikely(!mm || (mm == &init_mm)))
970		return;
971
972	spin_lock_irqsave(&mm->context.lock, flags);
973
974	if (unlikely(!CTX_VALID(mm->context)))
975		get_new_mmu_context(mm);
976
977	spin_unlock_irqrestore(&mm->context.lock, flags);
978
979	load_secondary_context(mm);
980	__flush_tlb_mm(CTX_HWBITS(mm->context),
981		       SECONDARY_CONTEXT);
982}
983
984void smp_new_mmu_context_version(void)
985{
986	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
987}
988
989#ifdef CONFIG_KGDB
990void kgdb_roundup_cpus(unsigned long flags)
991{
992	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
993}
994#endif
995
996void smp_fetch_global_regs(void)
997{
998	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
999}
1000
1001void smp_fetch_global_pmu(void)
1002{
1003	if (tlb_type == hypervisor &&
1004	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1005		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1006	else
1007		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1008}
1009
1010/* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1014 *
1015 * The SMP TLB coherency scheme we use works as follows:
1016 *
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 *    space has (potentially) executed on, this is the heuristic
1019 *    we use to avoid doing cross calls.
1020 *
1021 *    Also, for flushing from kswapd and also for clones, we
1022 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1023 *
1024 * 2) TLB context numbers are shared globally across all processors
1025 *    in the system, this allows us to play several games to avoid
1026 *    cross calls.
1027 *
1028 *    One invariant is that when a cpu switches to a process, and
1029 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1030 *    current cpu's bit set, that tlb context is flushed locally.
1031 *
1032 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1033 *    cross calls when we want to flush the currently running process's
1034 *    tlb state.  This is done by clearing all cpu bits except the current
1035 *    processor's in current->mm->cpu_vm_mask and performing the
1036 *    flush locally only.  This will force any subsequent cpus which run
1037 *    this task to flush the context from the local tlb if the process
1038 *    migrates to another cpu (again).
1039 *
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 *    bullet for most cases and perform the cross call (but only to
1042 *    the cpus listed in cpu_vm_mask).
1043 *
1044 *    The performance gain from "optimizing" away the cross call for threads is
1045 *    questionable (in theory the big win for threads is the massive sharing of
1046 *    address space state across processors).
1047 */
1048
1049/* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1052 */
1053void smp_flush_tlb_mm(struct mm_struct *mm)
1054{
1055	u32 ctx = CTX_HWBITS(mm->context);
1056	int cpu = get_cpu();
1057
1058	if (atomic_read(&mm->mm_users) == 1) {
1059		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060		goto local_flush_and_out;
1061	}
1062
1063	smp_cross_call_masked(&xcall_flush_tlb_mm,
1064			      ctx, 0, 0,
1065			      mm_cpumask(mm));
1066
1067local_flush_and_out:
1068	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069
1070	put_cpu();
1071}
1072
1073struct tlb_pending_info {
1074	unsigned long ctx;
1075	unsigned long nr;
1076	unsigned long *vaddrs;
1077};
1078
1079static void tlb_pending_func(void *info)
1080{
1081	struct tlb_pending_info *t = info;
1082
1083	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1084}
1085
1086void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1087{
1088	u32 ctx = CTX_HWBITS(mm->context);
1089	struct tlb_pending_info info;
1090	int cpu = get_cpu();
1091
1092	info.ctx = ctx;
1093	info.nr = nr;
1094	info.vaddrs = vaddrs;
1095
1096	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1097		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1098	else
1099		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1100				       &info, 1);
1101
1102	__flush_tlb_pending(ctx, nr, vaddrs);
1103
1104	put_cpu();
1105}
1106
1107void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1108{
1109	unsigned long context = CTX_HWBITS(mm->context);
1110	int cpu = get_cpu();
1111
1112	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1113		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1114	else
1115		smp_cross_call_masked(&xcall_flush_tlb_page,
1116				      context, vaddr, 0,
1117				      mm_cpumask(mm));
1118	__flush_tlb_page(context, vaddr);
1119
1120	put_cpu();
1121}
1122
1123void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1124{
1125	start &= PAGE_MASK;
1126	end    = PAGE_ALIGN(end);
1127	if (start != end) {
1128		smp_cross_call(&xcall_flush_tlb_kernel_range,
1129			       0, start, end);
1130
1131		__flush_tlb_kernel_range(start, end);
1132	}
1133}
1134
1135/* CPU capture. */
1136/* #define CAPTURE_DEBUG */
1137extern unsigned long xcall_capture;
1138
1139static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1140static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1141static unsigned long penguins_are_doing_time;
1142
1143void smp_capture(void)
1144{
1145	int result = atomic_add_return(1, &smp_capture_depth);
1146
1147	if (result == 1) {
1148		int ncpus = num_online_cpus();
1149
1150#ifdef CAPTURE_DEBUG
1151		printk("CPU[%d]: Sending penguins to jail...",
1152		       smp_processor_id());
1153#endif
1154		penguins_are_doing_time = 1;
1155		atomic_inc(&smp_capture_registry);
1156		smp_cross_call(&xcall_capture, 0, 0, 0);
1157		while (atomic_read(&smp_capture_registry) != ncpus)
1158			rmb();
1159#ifdef CAPTURE_DEBUG
1160		printk("done\n");
1161#endif
1162	}
1163}
1164
1165void smp_release(void)
1166{
1167	if (atomic_dec_and_test(&smp_capture_depth)) {
1168#ifdef CAPTURE_DEBUG
1169		printk("CPU[%d]: Giving pardon to "
1170		       "imprisoned penguins\n",
1171		       smp_processor_id());
1172#endif
1173		penguins_are_doing_time = 0;
1174		membar_safe("#StoreLoad");
1175		atomic_dec(&smp_capture_registry);
1176	}
1177}
1178
1179/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1180 * set, so they can service tlb flush xcalls...
1181 */
1182extern void prom_world(int);
1183
1184void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1185{
1186	clear_softint(1 << irq);
1187
1188	preempt_disable();
1189
1190	__asm__ __volatile__("flushw");
1191	prom_world(1);
1192	atomic_inc(&smp_capture_registry);
1193	membar_safe("#StoreLoad");
1194	while (penguins_are_doing_time)
1195		rmb();
1196	atomic_dec(&smp_capture_registry);
1197	prom_world(0);
1198
1199	preempt_enable();
1200}
1201
1202/* /proc/profile writes can call this, don't __init it please. */
1203int setup_profiling_timer(unsigned int multiplier)
1204{
1205	return -EINVAL;
1206}
1207
1208void __init smp_prepare_cpus(unsigned int max_cpus)
1209{
1210}
1211
1212void smp_prepare_boot_cpu(void)
1213{
1214}
1215
1216void __init smp_setup_processor_id(void)
1217{
1218	if (tlb_type == spitfire)
1219		xcall_deliver_impl = spitfire_xcall_deliver;
1220	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1221		xcall_deliver_impl = cheetah_xcall_deliver;
1222	else
1223		xcall_deliver_impl = hypervisor_xcall_deliver;
1224}
1225
1226void smp_fill_in_sib_core_maps(void)
1227{
1228	unsigned int i;
1229
1230	for_each_present_cpu(i) {
1231		unsigned int j;
1232
1233		cpumask_clear(&cpu_core_map[i]);
1234		if (cpu_data(i).core_id == 0) {
1235			cpumask_set_cpu(i, &cpu_core_map[i]);
1236			continue;
1237		}
1238
1239		for_each_present_cpu(j) {
1240			if (cpu_data(i).core_id ==
1241			    cpu_data(j).core_id)
1242				cpumask_set_cpu(j, &cpu_core_map[i]);
1243		}
1244	}
1245
1246	for_each_present_cpu(i) {
1247		unsigned int j;
1248
1249		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1250		if (cpu_data(i).proc_id == -1) {
1251			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1252			continue;
1253		}
1254
1255		for_each_present_cpu(j) {
1256			if (cpu_data(i).proc_id ==
1257			    cpu_data(j).proc_id)
1258				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1259		}
1260	}
1261}
1262
1263int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1264{
1265	int ret = smp_boot_one_cpu(cpu, tidle);
1266
1267	if (!ret) {
1268		cpumask_set_cpu(cpu, &smp_commenced_mask);
1269		while (!cpu_online(cpu))
1270			mb();
1271		if (!cpu_online(cpu)) {
1272			ret = -ENODEV;
1273		} else {
1274			/* On SUN4V, writes to %tick and %stick are
1275			 * not allowed.
1276			 */
1277			if (tlb_type != hypervisor)
1278				smp_synchronize_one_tick(cpu);
1279		}
1280	}
1281	return ret;
1282}
1283
1284#ifdef CONFIG_HOTPLUG_CPU
1285void cpu_play_dead(void)
1286{
1287	int cpu = smp_processor_id();
1288	unsigned long pstate;
1289
1290	idle_task_exit();
1291
1292	if (tlb_type == hypervisor) {
1293		struct trap_per_cpu *tb = &trap_block[cpu];
1294
1295		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1296				tb->cpu_mondo_pa, 0);
1297		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1298				tb->dev_mondo_pa, 0);
1299		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1300				tb->resum_mondo_pa, 0);
1301		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1302				tb->nonresum_mondo_pa, 0);
1303	}
1304
1305	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1306	membar_safe("#Sync");
1307
1308	local_irq_disable();
1309
1310	__asm__ __volatile__(
1311		"rdpr	%%pstate, %0\n\t"
1312		"wrpr	%0, %1, %%pstate"
1313		: "=r" (pstate)
1314		: "i" (PSTATE_IE));
1315
1316	while (1)
1317		barrier();
1318}
1319
1320int __cpu_disable(void)
1321{
1322	int cpu = smp_processor_id();
1323	cpuinfo_sparc *c;
1324	int i;
1325
1326	for_each_cpu(i, &cpu_core_map[cpu])
1327		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1328	cpumask_clear(&cpu_core_map[cpu]);
1329
1330	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1331		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1332	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1333
1334	c = &cpu_data(cpu);
1335
1336	c->core_id = 0;
1337	c->proc_id = -1;
1338
1339	smp_wmb();
1340
1341	/* Make sure no interrupts point to this cpu.  */
1342	fixup_irqs();
1343
1344	local_irq_enable();
1345	mdelay(1);
1346	local_irq_disable();
1347
1348	set_cpu_online(cpu, false);
1349
1350	cpu_map_rebuild();
1351
1352	return 0;
1353}
1354
1355void __cpu_die(unsigned int cpu)
1356{
1357	int i;
1358
1359	for (i = 0; i < 100; i++) {
1360		smp_rmb();
1361		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1362			break;
1363		msleep(100);
1364	}
1365	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1366		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1367	} else {
1368#if defined(CONFIG_SUN_LDOMS)
1369		unsigned long hv_err;
1370		int limit = 100;
1371
1372		do {
1373			hv_err = sun4v_cpu_stop(cpu);
1374			if (hv_err == HV_EOK) {
1375				set_cpu_present(cpu, false);
1376				break;
1377			}
1378		} while (--limit > 0);
1379		if (limit <= 0) {
1380			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1381			       hv_err);
1382		}
1383#endif
1384	}
1385}
1386#endif
1387
1388void __init smp_cpus_done(unsigned int max_cpus)
1389{
1390}
1391
1392void smp_send_reschedule(int cpu)
1393{
1394	if (cpu == smp_processor_id()) {
1395		WARN_ON_ONCE(preemptible());
1396		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1397	} else {
1398		xcall_deliver((u64) &xcall_receive_signal,
1399			      0, 0, cpumask_of(cpu));
1400	}
1401}
1402
1403void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1404{
1405	clear_softint(1 << irq);
1406	scheduler_ipi();
1407}
1408
1409/* This is a nop because we capture all other cpus
1410 * anyways when making the PROM active.
1411 */
1412void smp_send_stop(void)
1413{
1414}
1415
1416/**
1417 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1418 * @cpu: cpu to allocate for
1419 * @size: size allocation in bytes
1420 * @align: alignment
1421 *
1422 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1423 * does the right thing for NUMA regardless of the current
1424 * configuration.
1425 *
1426 * RETURNS:
1427 * Pointer to the allocated area on success, NULL on failure.
1428 */
1429static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1430					size_t align)
1431{
1432	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1433#ifdef CONFIG_NEED_MULTIPLE_NODES
1434	int node = cpu_to_node(cpu);
1435	void *ptr;
1436
1437	if (!node_online(node) || !NODE_DATA(node)) {
1438		ptr = __alloc_bootmem(size, align, goal);
1439		pr_info("cpu %d has no node %d or node-local memory\n",
1440			cpu, node);
1441		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1442			 cpu, size, __pa(ptr));
1443	} else {
1444		ptr = __alloc_bootmem_node(NODE_DATA(node),
1445					   size, align, goal);
1446		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1447			 "%016lx\n", cpu, size, node, __pa(ptr));
1448	}
1449	return ptr;
1450#else
1451	return __alloc_bootmem(size, align, goal);
1452#endif
1453}
1454
1455static void __init pcpu_free_bootmem(void *ptr, size_t size)
1456{
1457	free_bootmem(__pa(ptr), size);
1458}
1459
1460static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1461{
1462	if (cpu_to_node(from) == cpu_to_node(to))
1463		return LOCAL_DISTANCE;
1464	else
1465		return REMOTE_DISTANCE;
1466}
1467
1468static void __init pcpu_populate_pte(unsigned long addr)
1469{
1470	pgd_t *pgd = pgd_offset_k(addr);
1471	pud_t *pud;
1472	pmd_t *pmd;
1473
1474	if (pgd_none(*pgd)) {
1475		pud_t *new;
1476
1477		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1478		pgd_populate(&init_mm, pgd, new);
1479	}
1480
1481	pud = pud_offset(pgd, addr);
1482	if (pud_none(*pud)) {
1483		pmd_t *new;
1484
1485		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1486		pud_populate(&init_mm, pud, new);
1487	}
1488
1489	pmd = pmd_offset(pud, addr);
1490	if (!pmd_present(*pmd)) {
1491		pte_t *new;
1492
1493		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1494		pmd_populate_kernel(&init_mm, pmd, new);
1495	}
1496}
1497
1498void __init setup_per_cpu_areas(void)
1499{
1500	unsigned long delta;
1501	unsigned int cpu;
1502	int rc = -EINVAL;
1503
1504	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1505		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1506					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1507					    pcpu_cpu_distance,
1508					    pcpu_alloc_bootmem,
1509					    pcpu_free_bootmem);
1510		if (rc)
1511			pr_warning("PERCPU: %s allocator failed (%d), "
1512				   "falling back to page size\n",
1513				   pcpu_fc_names[pcpu_chosen_fc], rc);
1514	}
1515	if (rc < 0)
1516		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1517					   pcpu_alloc_bootmem,
1518					   pcpu_free_bootmem,
1519					   pcpu_populate_pte);
1520	if (rc < 0)
1521		panic("cannot initialize percpu area (err=%d)", rc);
1522
1523	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1524	for_each_possible_cpu(cpu)
1525		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1526
1527	/* Setup %g5 for the boot cpu.  */
1528	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1529
1530	of_fill_in_cpu_data();
1531	if (tlb_type == hypervisor)
1532		mdesc_fill_in_cpu_data(cpu_all_mask);
1533}
1534