1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 *
14 * From i386 code copyright (C) 1995  Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
27#include <linux/interrupt.h>
28#include <linux/init.h>
29#include <linux/tty.h>
30#include <linux/vt_kern.h>		/* For unblank_screen() */
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/kprobes.h>
34#include <linux/hugetlb.h>
35#include <linux/syscalls.h>
36#include <linux/uaccess.h>
37#include <linux/kdebug.h>
38
39#include <asm/pgalloc.h>
40#include <asm/sections.h>
41#include <asm/traps.h>
42#include <asm/syscalls.h>
43
44#include <arch/interrupts.h>
45
46static noinline void force_sig_info_fault(const char *type, int si_signo,
47					  int si_code, unsigned long address,
48					  int fault_num,
49					  struct task_struct *tsk,
50					  struct pt_regs *regs)
51{
52	siginfo_t info;
53
54	if (unlikely(tsk->pid < 2)) {
55		panic("Signal %d (code %d) at %#lx sent to %s!",
56		      si_signo, si_code & 0xffff, address,
57		      is_idle_task(tsk) ? "the idle task" : "init");
58	}
59
60	info.si_signo = si_signo;
61	info.si_errno = 0;
62	info.si_code = si_code;
63	info.si_addr = (void __user *)address;
64	info.si_trapno = fault_num;
65	trace_unhandled_signal(type, regs, address, si_signo);
66	force_sig_info(si_signo, &info, tsk);
67}
68
69#ifndef __tilegx__
70/*
71 * Synthesize the fault a PL0 process would get by doing a word-load of
72 * an unaligned address or a high kernel address.
73 */
74SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
75{
76	struct pt_regs *regs = current_pt_regs();
77
78	if (address >= PAGE_OFFSET)
79		force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
80				     address, INT_DTLB_MISS, current, regs);
81	else
82		force_sig_info_fault("atomic alignment fault", SIGBUS,
83				     BUS_ADRALN, address,
84				     INT_UNALIGN_DATA, current, regs);
85
86	/*
87	 * Adjust pc to point at the actual instruction, which is unusual
88	 * for syscalls normally, but is appropriate when we are claiming
89	 * that a syscall swint1 caused a page fault or bus error.
90	 */
91	regs->pc -= 8;
92
93	/*
94	 * Mark this as a caller-save interrupt, like a normal page fault,
95	 * so that when we go through the signal handler path we will
96	 * properly restore r0, r1, and r2 for the signal handler arguments.
97	 */
98	regs->flags |= PT_FLAGS_CALLER_SAVES;
99
100	return 0;
101}
102#endif
103
104static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
105{
106	unsigned index = pgd_index(address);
107	pgd_t *pgd_k;
108	pud_t *pud, *pud_k;
109	pmd_t *pmd, *pmd_k;
110
111	pgd += index;
112	pgd_k = init_mm.pgd + index;
113
114	if (!pgd_present(*pgd_k))
115		return NULL;
116
117	pud = pud_offset(pgd, address);
118	pud_k = pud_offset(pgd_k, address);
119	if (!pud_present(*pud_k))
120		return NULL;
121
122	pmd = pmd_offset(pud, address);
123	pmd_k = pmd_offset(pud_k, address);
124	if (!pmd_present(*pmd_k))
125		return NULL;
126	if (!pmd_present(*pmd))
127		set_pmd(pmd, *pmd_k);
128	else
129		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130	return pmd_k;
131}
132
133/*
134 * Handle a fault on the vmalloc area.
135 */
136static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137{
138	pmd_t *pmd_k;
139	pte_t *pte_k;
140
141	/* Make sure we are in vmalloc area */
142	if (!(address >= VMALLOC_START && address < VMALLOC_END))
143		return -1;
144
145	/*
146	 * Synchronize this task's top level page-table
147	 * with the 'reference' page table.
148	 */
149	pmd_k = vmalloc_sync_one(pgd, address);
150	if (!pmd_k)
151		return -1;
152	pte_k = pte_offset_kernel(pmd_k, address);
153	if (!pte_present(*pte_k))
154		return -1;
155	return 0;
156}
157
158/* Wait until this PTE has completed migration. */
159static void wait_for_migration(pte_t *pte)
160{
161	if (pte_migrating(*pte)) {
162		/*
163		 * Wait until the migrater fixes up this pte.
164		 * We scale the loop count by the clock rate so we'll wait for
165		 * a few seconds here.
166		 */
167		int retries = 0;
168		int bound = get_clock_rate();
169		while (pte_migrating(*pte)) {
170			barrier();
171			if (++retries > bound)
172				panic("Hit migrating PTE (%#llx) and"
173				      " page PFN %#lx still migrating",
174				      pte->val, pte_pfn(*pte));
175		}
176	}
177}
178
179/*
180 * It's not generally safe to use "current" to get the page table pointer,
181 * since we might be running an oprofile interrupt in the middle of a
182 * task switch.
183 */
184static pgd_t *get_current_pgd(void)
185{
186	HV_Context ctx = hv_inquire_context();
187	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
188	struct page *pgd_page = pfn_to_page(pgd_pfn);
189	BUG_ON(PageHighMem(pgd_page));
190	return (pgd_t *) __va(ctx.page_table);
191}
192
193/*
194 * We can receive a page fault from a migrating PTE at any time.
195 * Handle it by just waiting until the fault resolves.
196 *
197 * It's also possible to get a migrating kernel PTE that resolves
198 * itself during the downcall from hypervisor to Linux.  We just check
199 * here to see if the PTE seems valid, and if so we retry it.
200 *
201 * NOTE! We MUST NOT take any locks for this case.  We may be in an
202 * interrupt or a critical region, and must do as little as possible.
203 * Similarly, we can't use atomic ops here, since we may be handling a
204 * fault caused by an atomic op access.
205 *
206 * If we find a migrating PTE while we're in an NMI context, and we're
207 * at a PC that has a registered exception handler, we don't wait,
208 * since this thread may (e.g.) have been interrupted while migrating
209 * its own stack, which would then cause us to self-deadlock.
210 */
211static int handle_migrating_pte(pgd_t *pgd, int fault_num,
212				unsigned long address, unsigned long pc,
213				int is_kernel_mode, int write)
214{
215	pud_t *pud;
216	pmd_t *pmd;
217	pte_t *pte;
218	pte_t pteval;
219
220	if (pgd_addr_invalid(address))
221		return 0;
222
223	pgd += pgd_index(address);
224	pud = pud_offset(pgd, address);
225	if (!pud || !pud_present(*pud))
226		return 0;
227	pmd = pmd_offset(pud, address);
228	if (!pmd || !pmd_present(*pmd))
229		return 0;
230	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
231		pte_offset_kernel(pmd, address);
232	pteval = *pte;
233	if (pte_migrating(pteval)) {
234		if (in_nmi() && search_exception_tables(pc))
235			return 0;
236		wait_for_migration(pte);
237		return 1;
238	}
239
240	if (!is_kernel_mode || !pte_present(pteval))
241		return 0;
242	if (fault_num == INT_ITLB_MISS) {
243		if (pte_exec(pteval))
244			return 1;
245	} else if (write) {
246		if (pte_write(pteval))
247			return 1;
248	} else {
249		if (pte_read(pteval))
250			return 1;
251	}
252
253	return 0;
254}
255
256/*
257 * This routine is responsible for faulting in user pages.
258 * It passes the work off to one of the appropriate routines.
259 * It returns true if the fault was successfully handled.
260 */
261static int handle_page_fault(struct pt_regs *regs,
262			     int fault_num,
263			     int is_page_fault,
264			     unsigned long address,
265			     int write)
266{
267	struct task_struct *tsk;
268	struct mm_struct *mm;
269	struct vm_area_struct *vma;
270	unsigned long stack_offset;
271	int fault;
272	int si_code;
273	int is_kernel_mode;
274	pgd_t *pgd;
275	unsigned int flags;
276
277	/* on TILE, protection faults are always writes */
278	if (!is_page_fault)
279		write = 1;
280
281	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
282
283	is_kernel_mode = !user_mode(regs);
284
285	tsk = validate_current();
286
287	/*
288	 * Check to see if we might be overwriting the stack, and bail
289	 * out if so.  The page fault code is a relatively likely
290	 * place to get trapped in an infinite regress, and once we
291	 * overwrite the whole stack, it becomes very hard to recover.
292	 */
293	stack_offset = stack_pointer & (THREAD_SIZE-1);
294	if (stack_offset < THREAD_SIZE / 8) {
295		pr_alert("Potential stack overrun: sp %#lx\n",
296		       stack_pointer);
297		show_regs(regs);
298		pr_alert("Killing current process %d/%s\n",
299		       tsk->pid, tsk->comm);
300		do_group_exit(SIGKILL);
301	}
302
303	/*
304	 * Early on, we need to check for migrating PTE entries;
305	 * see homecache.c.  If we find a migrating PTE, we wait until
306	 * the backing page claims to be done migrating, then we proceed.
307	 * For kernel PTEs, we rewrite the PTE and return and retry.
308	 * Otherwise, we treat the fault like a normal "no PTE" fault,
309	 * rather than trying to patch up the existing PTE.
310	 */
311	pgd = get_current_pgd();
312	if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
313				 is_kernel_mode, write))
314		return 1;
315
316	si_code = SEGV_MAPERR;
317
318	/*
319	 * We fault-in kernel-space virtual memory on-demand. The
320	 * 'reference' page table is init_mm.pgd.
321	 *
322	 * NOTE! We MUST NOT take any locks for this case. We may
323	 * be in an interrupt or a critical region, and should
324	 * only copy the information from the master page table,
325	 * nothing more.
326	 *
327	 * This verifies that the fault happens in kernel space
328	 * and that the fault was not a protection fault.
329	 */
330	if (unlikely(address >= TASK_SIZE &&
331		     !is_arch_mappable_range(address, 0))) {
332		if (is_kernel_mode && is_page_fault &&
333		    vmalloc_fault(pgd, address) >= 0)
334			return 1;
335		/*
336		 * Don't take the mm semaphore here. If we fixup a prefetch
337		 * fault we could otherwise deadlock.
338		 */
339		mm = NULL;  /* happy compiler */
340		vma = NULL;
341		goto bad_area_nosemaphore;
342	}
343
344	/*
345	 * If we're trying to touch user-space addresses, we must
346	 * be either at PL0, or else with interrupts enabled in the
347	 * kernel, so either way we can re-enable interrupts here
348	 * unless we are doing atomic access to user space with
349	 * interrupts disabled.
350	 */
351	if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
352		local_irq_enable();
353
354	mm = tsk->mm;
355
356	/*
357	 * If we're in an interrupt, have no user context or are running in an
358	 * atomic region then we must not take the fault.
359	 */
360	if (in_atomic() || !mm) {
361		vma = NULL;  /* happy compiler */
362		goto bad_area_nosemaphore;
363	}
364
365	if (!is_kernel_mode)
366		flags |= FAULT_FLAG_USER;
367
368	/*
369	 * When running in the kernel we expect faults to occur only to
370	 * addresses in user space.  All other faults represent errors in the
371	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
372	 * erroneous fault occurring in a code path which already holds mmap_sem
373	 * we will deadlock attempting to validate the fault against the
374	 * address space.  Luckily the kernel only validly references user
375	 * space from well defined areas of code, which are listed in the
376	 * exceptions table.
377	 *
378	 * As the vast majority of faults will be valid we will only perform
379	 * the source reference check when there is a possibility of a deadlock.
380	 * Attempt to lock the address space, if we cannot we then validate the
381	 * source.  If this is invalid we can skip the address space check,
382	 * thus avoiding the deadlock.
383	 */
384	if (!down_read_trylock(&mm->mmap_sem)) {
385		if (is_kernel_mode &&
386		    !search_exception_tables(regs->pc)) {
387			vma = NULL;  /* happy compiler */
388			goto bad_area_nosemaphore;
389		}
390
391retry:
392		down_read(&mm->mmap_sem);
393	}
394
395	vma = find_vma(mm, address);
396	if (!vma)
397		goto bad_area;
398	if (vma->vm_start <= address)
399		goto good_area;
400	if (!(vma->vm_flags & VM_GROWSDOWN))
401		goto bad_area;
402	if (regs->sp < PAGE_OFFSET) {
403		/*
404		 * accessing the stack below sp is always a bug.
405		 */
406		if (address < regs->sp)
407			goto bad_area;
408	}
409	if (expand_stack(vma, address))
410		goto bad_area;
411
412/*
413 * Ok, we have a good vm_area for this memory access, so
414 * we can handle it..
415 */
416good_area:
417	si_code = SEGV_ACCERR;
418	if (fault_num == INT_ITLB_MISS) {
419		if (!(vma->vm_flags & VM_EXEC))
420			goto bad_area;
421	} else if (write) {
422#ifdef TEST_VERIFY_AREA
423		if (!is_page_fault && regs->cs == KERNEL_CS)
424			pr_err("WP fault at "REGFMT"\n", regs->eip);
425#endif
426		if (!(vma->vm_flags & VM_WRITE))
427			goto bad_area;
428		flags |= FAULT_FLAG_WRITE;
429	} else {
430		if (!is_page_fault || !(vma->vm_flags & VM_READ))
431			goto bad_area;
432	}
433
434	/*
435	 * If for any reason at all we couldn't handle the fault,
436	 * make sure we exit gracefully rather than endlessly redo
437	 * the fault.
438	 */
439	fault = handle_mm_fault(mm, vma, address, flags);
440
441	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
442		return 0;
443
444	if (unlikely(fault & VM_FAULT_ERROR)) {
445		if (fault & VM_FAULT_OOM)
446			goto out_of_memory;
447		else if (fault & VM_FAULT_SIGBUS)
448			goto do_sigbus;
449		BUG();
450	}
451	if (flags & FAULT_FLAG_ALLOW_RETRY) {
452		if (fault & VM_FAULT_MAJOR)
453			tsk->maj_flt++;
454		else
455			tsk->min_flt++;
456		if (fault & VM_FAULT_RETRY) {
457			flags &= ~FAULT_FLAG_ALLOW_RETRY;
458			flags |= FAULT_FLAG_TRIED;
459
460			 /*
461			  * No need to up_read(&mm->mmap_sem) as we would
462			  * have already released it in __lock_page_or_retry
463			  * in mm/filemap.c.
464			  */
465			goto retry;
466		}
467	}
468
469#if CHIP_HAS_TILE_DMA()
470	/* If this was a DMA TLB fault, restart the DMA engine. */
471	switch (fault_num) {
472	case INT_DMATLB_MISS:
473	case INT_DMATLB_MISS_DWNCL:
474	case INT_DMATLB_ACCESS:
475	case INT_DMATLB_ACCESS_DWNCL:
476		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
477		break;
478	}
479#endif
480
481	up_read(&mm->mmap_sem);
482	return 1;
483
484/*
485 * Something tried to access memory that isn't in our memory map..
486 * Fix it, but check if it's kernel or user first..
487 */
488bad_area:
489	up_read(&mm->mmap_sem);
490
491bad_area_nosemaphore:
492	/* User mode accesses just cause a SIGSEGV */
493	if (!is_kernel_mode) {
494		/*
495		 * It's possible to have interrupts off here.
496		 */
497		local_irq_enable();
498
499		force_sig_info_fault("segfault", SIGSEGV, si_code, address,
500				     fault_num, tsk, regs);
501		return 0;
502	}
503
504no_context:
505	/* Are we prepared to handle this kernel fault?  */
506	if (fixup_exception(regs))
507		return 0;
508
509/*
510 * Oops. The kernel tried to access some bad page. We'll have to
511 * terminate things with extreme prejudice.
512 */
513
514	bust_spinlocks(1);
515
516	/* FIXME: no lookup_address() yet */
517#ifdef SUPPORT_LOOKUP_ADDRESS
518	if (fault_num == INT_ITLB_MISS) {
519		pte_t *pte = lookup_address(address);
520
521		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
522			pr_crit("kernel tried to execute"
523			       " non-executable page - exploit attempt?"
524			       " (uid: %d)\n", current->uid);
525	}
526#endif
527	if (address < PAGE_SIZE)
528		pr_alert("Unable to handle kernel NULL pointer dereference\n");
529	else
530		pr_alert("Unable to handle kernel paging request\n");
531	pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
532		 address, regs->pc);
533
534	show_regs(regs);
535
536	if (unlikely(tsk->pid < 2)) {
537		panic("Kernel page fault running %s!",
538		      is_idle_task(tsk) ? "the idle task" : "init");
539	}
540
541	/*
542	 * More FIXME: we should probably copy the i386 here and
543	 * implement a generic die() routine.  Not today.
544	 */
545#ifdef SUPPORT_DIE
546	die("Oops", regs);
547#endif
548	bust_spinlocks(1);
549
550	do_group_exit(SIGKILL);
551
552/*
553 * We ran out of memory, or some other thing happened to us that made
554 * us unable to handle the page fault gracefully.
555 */
556out_of_memory:
557	up_read(&mm->mmap_sem);
558	if (is_kernel_mode)
559		goto no_context;
560	pagefault_out_of_memory();
561	return 0;
562
563do_sigbus:
564	up_read(&mm->mmap_sem);
565
566	/* Kernel mode? Handle exceptions or die */
567	if (is_kernel_mode)
568		goto no_context;
569
570	force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
571			     fault_num, tsk, regs);
572	return 0;
573}
574
575#ifndef __tilegx__
576
577/* We must release ICS before panicking or we won't get anywhere. */
578#define ics_panic(fmt, ...) do { \
579	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
580	panic(fmt, __VA_ARGS__); \
581} while (0)
582
583/*
584 * When we take an ITLB or DTLB fault or access violation in the
585 * supervisor while the critical section bit is set, the hypervisor is
586 * reluctant to write new values into the EX_CONTEXT_K_x registers,
587 * since that might indicate we have not yet squirreled the SPR
588 * contents away and can thus safely take a recursive interrupt.
589 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
590 *
591 * Note that this routine is called before homecache_tlb_defer_enter(),
592 * which means that we can properly unlock any atomics that might
593 * be used there (good), but also means we must be very sensitive
594 * to not touch any data structures that might be located in memory
595 * that could migrate, as we could be entering the kernel on a dataplane
596 * cpu that has been deferring kernel TLB updates.  This means, for
597 * example, that we can't migrate init_mm or its pgd.
598 */
599struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
600				      unsigned long address,
601				      unsigned long info)
602{
603	unsigned long pc = info & ~1;
604	int write = info & 1;
605	pgd_t *pgd = get_current_pgd();
606
607	/* Retval is 1 at first since we will handle the fault fully. */
608	struct intvec_state state = {
609		do_page_fault, fault_num, address, write, 1
610	};
611
612	/* Validate that we are plausibly in the right routine. */
613	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
614	    (fault_num != INT_DTLB_MISS &&
615	     fault_num != INT_DTLB_ACCESS)) {
616		unsigned long old_pc = regs->pc;
617		regs->pc = pc;
618		ics_panic("Bad ICS page fault args:"
619			  " old PC %#lx, fault %d/%d at %#lx\n",
620			  old_pc, fault_num, write, address);
621	}
622
623	/* We might be faulting on a vmalloc page, so check that first. */
624	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
625		return state;
626
627	/*
628	 * If we faulted with ICS set in sys_cmpxchg, we are providing
629	 * a user syscall service that should generate a signal on
630	 * fault.  We didn't set up a kernel stack on initial entry to
631	 * sys_cmpxchg, but instead had one set up by the fault, which
632	 * (because sys_cmpxchg never releases ICS) came to us via the
633	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
634	 * still referencing the original user code.  We release the
635	 * atomic lock and rewrite pt_regs so that it appears that we
636	 * came from user-space directly, and after we finish the
637	 * fault we'll go back to user space and re-issue the swint.
638	 * This way the backtrace information is correct if we need to
639	 * emit a stack dump at any point while handling this.
640	 *
641	 * Must match register use in sys_cmpxchg().
642	 */
643	if (pc >= (unsigned long) sys_cmpxchg &&
644	    pc < (unsigned long) __sys_cmpxchg_end) {
645#ifdef CONFIG_SMP
646		/* Don't unlock before we could have locked. */
647		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
648			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
649			__atomic_fault_unlock(lock_ptr);
650		}
651#endif
652		regs->sp = regs->regs[27];
653	}
654
655	/*
656	 * We can also fault in the atomic assembly, in which
657	 * case we use the exception table to do the first-level fixup.
658	 * We may re-fixup again in the real fault handler if it
659	 * turns out the faulting address is just bad, and not,
660	 * for example, migrating.
661	 */
662	else if (pc >= (unsigned long) __start_atomic_asm_code &&
663		   pc < (unsigned long) __end_atomic_asm_code) {
664		const struct exception_table_entry *fixup;
665#ifdef CONFIG_SMP
666		/* Unlock the atomic lock. */
667		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
668		__atomic_fault_unlock(lock_ptr);
669#endif
670		fixup = search_exception_tables(pc);
671		if (!fixup)
672			ics_panic("ICS atomic fault not in table:"
673				  " PC %#lx, fault %d", pc, fault_num);
674		regs->pc = fixup->fixup;
675		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
676	}
677
678	/*
679	 * Now that we have released the atomic lock (if necessary),
680	 * it's safe to spin if the PTE that caused the fault was migrating.
681	 */
682	if (fault_num == INT_DTLB_ACCESS)
683		write = 1;
684	if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
685		return state;
686
687	/* Return zero so that we continue on with normal fault handling. */
688	state.retval = 0;
689	return state;
690}
691
692#endif /* !__tilegx__ */
693
694/*
695 * This routine handles page faults.  It determines the address, and the
696 * problem, and then passes it handle_page_fault() for normal DTLB and
697 * ITLB issues, and for DMA or SN processor faults when we are in user
698 * space.  For the latter, if we're in kernel mode, we just save the
699 * interrupt away appropriately and return immediately.  We can't do
700 * page faults for user code while in kernel mode.
701 */
702void do_page_fault(struct pt_regs *regs, int fault_num,
703		   unsigned long address, unsigned long write)
704{
705	int is_page_fault;
706
707#ifdef CONFIG_KPROBES
708	/*
709	 * This is to notify the fault handler of the kprobes.  The
710	 * exception code is redundant as it is also carried in REGS,
711	 * but we pass it anyhow.
712	 */
713	if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
714		       regs->faultnum, SIGSEGV) == NOTIFY_STOP)
715		return;
716#endif
717
718#ifdef __tilegx__
719	/*
720	 * We don't need early do_page_fault_ics() support, since unlike
721	 * Pro we don't need to worry about unlocking the atomic locks.
722	 * There is only one current case in GX where we touch any memory
723	 * under ICS other than our own kernel stack, and we handle that
724	 * here.  (If we crash due to trying to touch our own stack,
725	 * we're in too much trouble for C code to help out anyway.)
726	 */
727	if (write & ~1) {
728		unsigned long pc = write & ~1;
729		if (pc >= (unsigned long) __start_unalign_asm_code &&
730		    pc < (unsigned long) __end_unalign_asm_code) {
731			struct thread_info *ti = current_thread_info();
732			/*
733			 * Our EX_CONTEXT is still what it was from the
734			 * initial unalign exception, but now we've faulted
735			 * on the JIT page.  We would like to complete the
736			 * page fault however is appropriate, and then retry
737			 * the instruction that caused the unalign exception.
738			 * Our state has been "corrupted" by setting the low
739			 * bit in "sp", and stashing r0..r3 in the
740			 * thread_info area, so we revert all of that, then
741			 * continue as if this were a normal page fault.
742			 */
743			regs->sp &= ~1UL;
744			regs->regs[0] = ti->unalign_jit_tmp[0];
745			regs->regs[1] = ti->unalign_jit_tmp[1];
746			regs->regs[2] = ti->unalign_jit_tmp[2];
747			regs->regs[3] = ti->unalign_jit_tmp[3];
748			write &= 1;
749		} else {
750			pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
751				 current->comm, current->pid, pc, address);
752			show_regs(regs);
753			do_group_exit(SIGKILL);
754			return;
755		}
756	}
757#else
758	/* This case should have been handled by do_page_fault_ics(). */
759	BUG_ON(write & ~1);
760#endif
761
762#if CHIP_HAS_TILE_DMA()
763	/*
764	 * If it's a DMA fault, suspend the transfer while we're
765	 * handling the miss; we'll restart after it's handled.  If we
766	 * don't suspend, it's possible that this process could swap
767	 * out and back in, and restart the engine since the DMA is
768	 * still 'running'.
769	 */
770	if (fault_num == INT_DMATLB_MISS ||
771	    fault_num == INT_DMATLB_ACCESS ||
772	    fault_num == INT_DMATLB_MISS_DWNCL ||
773	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
774		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
775		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
776		       SPR_DMA_STATUS__BUSY_MASK)
777			;
778	}
779#endif
780
781	/* Validate fault num and decide if this is a first-time page fault. */
782	switch (fault_num) {
783	case INT_ITLB_MISS:
784	case INT_DTLB_MISS:
785#if CHIP_HAS_TILE_DMA()
786	case INT_DMATLB_MISS:
787	case INT_DMATLB_MISS_DWNCL:
788#endif
789		is_page_fault = 1;
790		break;
791
792	case INT_DTLB_ACCESS:
793#if CHIP_HAS_TILE_DMA()
794	case INT_DMATLB_ACCESS:
795	case INT_DMATLB_ACCESS_DWNCL:
796#endif
797		is_page_fault = 0;
798		break;
799
800	default:
801		panic("Bad fault number %d in do_page_fault", fault_num);
802	}
803
804#if CHIP_HAS_TILE_DMA()
805	if (!user_mode(regs)) {
806		struct async_tlb *async;
807		switch (fault_num) {
808#if CHIP_HAS_TILE_DMA()
809		case INT_DMATLB_MISS:
810		case INT_DMATLB_ACCESS:
811		case INT_DMATLB_MISS_DWNCL:
812		case INT_DMATLB_ACCESS_DWNCL:
813			async = &current->thread.dma_async_tlb;
814			break;
815#endif
816		default:
817			async = NULL;
818		}
819		if (async) {
820
821			/*
822			 * No vmalloc check required, so we can allow
823			 * interrupts immediately at this point.
824			 */
825			local_irq_enable();
826
827			set_thread_flag(TIF_ASYNC_TLB);
828			if (async->fault_num != 0) {
829				panic("Second async fault %d;"
830				      " old fault was %d (%#lx/%ld)",
831				      fault_num, async->fault_num,
832				      address, write);
833			}
834			BUG_ON(fault_num == 0);
835			async->fault_num = fault_num;
836			async->is_fault = is_page_fault;
837			async->is_write = write;
838			async->address = address;
839			return;
840		}
841	}
842#endif
843
844	handle_page_fault(regs, fault_num, is_page_fault, address, write);
845}
846
847
848#if CHIP_HAS_TILE_DMA()
849/*
850 * This routine effectively re-issues asynchronous page faults
851 * when we are returning to user space.
852 */
853void do_async_page_fault(struct pt_regs *regs)
854{
855	struct async_tlb *async = &current->thread.dma_async_tlb;
856
857	/*
858	 * Clear thread flag early.  If we re-interrupt while processing
859	 * code here, we will reset it and recall this routine before
860	 * returning to user space.
861	 */
862	clear_thread_flag(TIF_ASYNC_TLB);
863
864	if (async->fault_num) {
865		/*
866		 * Clear async->fault_num before calling the page-fault
867		 * handler so that if we re-interrupt before returning
868		 * from the function we have somewhere to put the
869		 * information from the new interrupt.
870		 */
871		int fault_num = async->fault_num;
872		async->fault_num = 0;
873		handle_page_fault(regs, fault_num, async->is_fault,
874				  async->address, async->is_write);
875	}
876}
877#endif /* CHIP_HAS_TILE_DMA() */
878
879
880void vmalloc_sync_all(void)
881{
882#ifdef __tilegx__
883	/* Currently all L1 kernel pmd's are static and shared. */
884	BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
885		     pgd_index(VMALLOC_START));
886#else
887	/*
888	 * Note that races in the updates of insync and start aren't
889	 * problematic: insync can only get set bits added, and updates to
890	 * start are only improving performance (without affecting correctness
891	 * if undone).
892	 */
893	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
894	static unsigned long start = PAGE_OFFSET;
895	unsigned long address;
896
897	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
898	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
899		if (!test_bit(pgd_index(address), insync)) {
900			unsigned long flags;
901			struct list_head *pos;
902
903			spin_lock_irqsave(&pgd_lock, flags);
904			list_for_each(pos, &pgd_list)
905				if (!vmalloc_sync_one(list_to_pgd(pos),
906								address)) {
907					/* Must be at first entry in list. */
908					BUG_ON(pos != pgd_list.next);
909					break;
910				}
911			spin_unlock_irqrestore(&pgd_lock, flags);
912			if (pos != pgd_list.next)
913				set_bit(pgd_index(address), insync);
914		}
915		if (address == start && test_bit(pgd_index(address), insync))
916			start = address + PGDIR_SIZE;
917	}
918#endif
919}
920