1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
8#include <linux/acpi_pmtmr.h>
9#include <linux/cpufreq.h>
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
13#include <linux/timex.h>
14#include <linux/static_key.h>
15
16#include <asm/hpet.h>
17#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
21#include <asm/hypervisor.h>
22#include <asm/nmi.h>
23#include <asm/x86_init.h>
24
25unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
26EXPORT_SYMBOL(cpu_khz);
27
28unsigned int __read_mostly tsc_khz;
29EXPORT_SYMBOL(tsc_khz);
30
31/*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
34static int __read_mostly tsc_unstable;
35
36/* native_sched_clock() is called before tsc_init(), so
37   we must start with the TSC soft disabled to prevent
38   erroneous rdtsc usage on !cpu_has_tsc processors */
39static int __read_mostly tsc_disabled = -1;
40
41static struct static_key __use_tsc = STATIC_KEY_INIT;
42
43int tsc_clocksource_reliable;
44
45/*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68struct cyc2ns {
69	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
70	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
71	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
72}; /* exactly fits one cacheline */
73
74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76struct cyc2ns_data *cyc2ns_read_begin(void)
77{
78	struct cyc2ns_data *head;
79
80	preempt_disable();
81
82	head = this_cpu_read(cyc2ns.head);
83	/*
84	 * Ensure we observe the entry when we observe the pointer to it.
85	 * matches the wmb from cyc2ns_write_end().
86	 */
87	smp_read_barrier_depends();
88	head->__count++;
89	barrier();
90
91	return head;
92}
93
94void cyc2ns_read_end(struct cyc2ns_data *head)
95{
96	barrier();
97	/*
98	 * If we're the outer most nested read; update the tail pointer
99	 * when we're done. This notifies possible pending writers
100	 * that we've observed the head pointer and that the other
101	 * entry is now free.
102	 */
103	if (!--head->__count) {
104		/*
105		 * x86-TSO does not reorder writes with older reads;
106		 * therefore once this write becomes visible to another
107		 * cpu, we must be finished reading the cyc2ns_data.
108		 *
109		 * matches with cyc2ns_write_begin().
110		 */
111		this_cpu_write(cyc2ns.tail, head);
112	}
113	preempt_enable();
114}
115
116/*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123{
124	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125	struct cyc2ns_data *data = c2n->data;
126
127	if (data == c2n->head)
128		data++;
129
130	/* XXX send an IPI to @cpu in order to guarantee a read? */
131
132	/*
133	 * When we observe the tail write from cyc2ns_read_end(),
134	 * the cpu must be done with that entry and its safe
135	 * to start writing to it.
136	 */
137	while (c2n->tail == data)
138		cpu_relax();
139
140	return data;
141}
142
143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144{
145	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147	/*
148	 * Ensure the @data writes are visible before we publish the
149	 * entry. Matches the data-depencency in cyc2ns_read_begin().
150	 */
151	smp_wmb();
152
153	ACCESS_ONCE(c2n->head) = data;
154}
155
156/*
157 * Accelerators for sched_clock()
158 * convert from cycles(64bits) => nanoseconds (64bits)
159 *  basic equation:
160 *              ns = cycles / (freq / ns_per_sec)
161 *              ns = cycles * (ns_per_sec / freq)
162 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
163 *              ns = cycles * (10^6 / cpu_khz)
164 *
165 *      Then we use scaling math (suggested by george@mvista.com) to get:
166 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
167 *              ns = cycles * cyc2ns_scale / SC
168 *
169 *      And since SC is a constant power of two, we can convert the div
170 *  into a shift.
171 *
172 *  We can use khz divisor instead of mhz to keep a better precision, since
173 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 *  (mathieu.desnoyers@polymtl.ca)
175 *
176 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
177 */
178
179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180
181static void cyc2ns_data_init(struct cyc2ns_data *data)
182{
183	data->cyc2ns_mul = 0;
184	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185	data->cyc2ns_offset = 0;
186	data->__count = 0;
187}
188
189static void cyc2ns_init(int cpu)
190{
191	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193	cyc2ns_data_init(&c2n->data[0]);
194	cyc2ns_data_init(&c2n->data[1]);
195
196	c2n->head = c2n->data;
197	c2n->tail = c2n->data;
198}
199
200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201{
202	struct cyc2ns_data *data, *tail;
203	unsigned long long ns;
204
205	/*
206	 * See cyc2ns_read_*() for details; replicated in order to avoid
207	 * an extra few instructions that came with the abstraction.
208	 * Notable, it allows us to only do the __count and tail update
209	 * dance when its actually needed.
210	 */
211
212	preempt_disable_notrace();
213	data = this_cpu_read(cyc2ns.head);
214	tail = this_cpu_read(cyc2ns.tail);
215
216	if (likely(data == tail)) {
217		ns = data->cyc2ns_offset;
218		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219	} else {
220		data->__count++;
221
222		barrier();
223
224		ns = data->cyc2ns_offset;
225		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226
227		barrier();
228
229		if (!--data->__count)
230			this_cpu_write(cyc2ns.tail, data);
231	}
232	preempt_enable_notrace();
233
234	return ns;
235}
236
237static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238{
239	unsigned long long tsc_now, ns_now;
240	struct cyc2ns_data *data;
241	unsigned long flags;
242
243	local_irq_save(flags);
244	sched_clock_idle_sleep_event();
245
246	if (!cpu_khz)
247		goto done;
248
249	data = cyc2ns_write_begin(cpu);
250
251	rdtscll(tsc_now);
252	ns_now = cycles_2_ns(tsc_now);
253
254	/*
255	 * Compute a new multiplier as per the above comment and ensure our
256	 * time function is continuous; see the comment near struct
257	 * cyc2ns_data.
258	 */
259	data->cyc2ns_mul =
260		DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
261				  cpu_khz);
262	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
263	data->cyc2ns_offset = ns_now -
264		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
265
266	cyc2ns_write_end(cpu, data);
267
268done:
269	sched_clock_idle_wakeup_event(0);
270	local_irq_restore(flags);
271}
272/*
273 * Scheduler clock - returns current time in nanosec units.
274 */
275u64 native_sched_clock(void)
276{
277	u64 tsc_now;
278
279	/*
280	 * Fall back to jiffies if there's no TSC available:
281	 * ( But note that we still use it if the TSC is marked
282	 *   unstable. We do this because unlike Time Of Day,
283	 *   the scheduler clock tolerates small errors and it's
284	 *   very important for it to be as fast as the platform
285	 *   can achieve it. )
286	 */
287	if (!static_key_false(&__use_tsc)) {
288		/* No locking but a rare wrong value is not a big deal: */
289		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
290	}
291
292	/* read the Time Stamp Counter: */
293	rdtscll(tsc_now);
294
295	/* return the value in ns */
296	return cycles_2_ns(tsc_now);
297}
298
299/* We need to define a real function for sched_clock, to override the
300   weak default version */
301#ifdef CONFIG_PARAVIRT
302unsigned long long sched_clock(void)
303{
304	return paravirt_sched_clock();
305}
306#else
307unsigned long long
308sched_clock(void) __attribute__((alias("native_sched_clock")));
309#endif
310
311unsigned long long native_read_tsc(void)
312{
313	return __native_read_tsc();
314}
315EXPORT_SYMBOL(native_read_tsc);
316
317int check_tsc_unstable(void)
318{
319	return tsc_unstable;
320}
321EXPORT_SYMBOL_GPL(check_tsc_unstable);
322
323int check_tsc_disabled(void)
324{
325	return tsc_disabled;
326}
327EXPORT_SYMBOL_GPL(check_tsc_disabled);
328
329#ifdef CONFIG_X86_TSC
330int __init notsc_setup(char *str)
331{
332	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
333	tsc_disabled = 1;
334	return 1;
335}
336#else
337/*
338 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
339 * in cpu/common.c
340 */
341int __init notsc_setup(char *str)
342{
343	setup_clear_cpu_cap(X86_FEATURE_TSC);
344	return 1;
345}
346#endif
347
348__setup("notsc", notsc_setup);
349
350static int no_sched_irq_time;
351
352static int __init tsc_setup(char *str)
353{
354	if (!strcmp(str, "reliable"))
355		tsc_clocksource_reliable = 1;
356	if (!strncmp(str, "noirqtime", 9))
357		no_sched_irq_time = 1;
358	return 1;
359}
360
361__setup("tsc=", tsc_setup);
362
363#define MAX_RETRIES     5
364#define SMI_TRESHOLD    50000
365
366/*
367 * Read TSC and the reference counters. Take care of SMI disturbance
368 */
369static u64 tsc_read_refs(u64 *p, int hpet)
370{
371	u64 t1, t2;
372	int i;
373
374	for (i = 0; i < MAX_RETRIES; i++) {
375		t1 = get_cycles();
376		if (hpet)
377			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
378		else
379			*p = acpi_pm_read_early();
380		t2 = get_cycles();
381		if ((t2 - t1) < SMI_TRESHOLD)
382			return t2;
383	}
384	return ULLONG_MAX;
385}
386
387/*
388 * Calculate the TSC frequency from HPET reference
389 */
390static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
391{
392	u64 tmp;
393
394	if (hpet2 < hpet1)
395		hpet2 += 0x100000000ULL;
396	hpet2 -= hpet1;
397	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
398	do_div(tmp, 1000000);
399	do_div(deltatsc, tmp);
400
401	return (unsigned long) deltatsc;
402}
403
404/*
405 * Calculate the TSC frequency from PMTimer reference
406 */
407static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
408{
409	u64 tmp;
410
411	if (!pm1 && !pm2)
412		return ULONG_MAX;
413
414	if (pm2 < pm1)
415		pm2 += (u64)ACPI_PM_OVRRUN;
416	pm2 -= pm1;
417	tmp = pm2 * 1000000000LL;
418	do_div(tmp, PMTMR_TICKS_PER_SEC);
419	do_div(deltatsc, tmp);
420
421	return (unsigned long) deltatsc;
422}
423
424#define CAL_MS		10
425#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
426#define CAL_PIT_LOOPS	1000
427
428#define CAL2_MS		50
429#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
430#define CAL2_PIT_LOOPS	5000
431
432
433/*
434 * Try to calibrate the TSC against the Programmable
435 * Interrupt Timer and return the frequency of the TSC
436 * in kHz.
437 *
438 * Return ULONG_MAX on failure to calibrate.
439 */
440static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
441{
442	u64 tsc, t1, t2, delta;
443	unsigned long tscmin, tscmax;
444	int pitcnt;
445
446	/* Set the Gate high, disable speaker */
447	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
448
449	/*
450	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
451	 * count mode), binary count. Set the latch register to 50ms
452	 * (LSB then MSB) to begin countdown.
453	 */
454	outb(0xb0, 0x43);
455	outb(latch & 0xff, 0x42);
456	outb(latch >> 8, 0x42);
457
458	tsc = t1 = t2 = get_cycles();
459
460	pitcnt = 0;
461	tscmax = 0;
462	tscmin = ULONG_MAX;
463	while ((inb(0x61) & 0x20) == 0) {
464		t2 = get_cycles();
465		delta = t2 - tsc;
466		tsc = t2;
467		if ((unsigned long) delta < tscmin)
468			tscmin = (unsigned int) delta;
469		if ((unsigned long) delta > tscmax)
470			tscmax = (unsigned int) delta;
471		pitcnt++;
472	}
473
474	/*
475	 * Sanity checks:
476	 *
477	 * If we were not able to read the PIT more than loopmin
478	 * times, then we have been hit by a massive SMI
479	 *
480	 * If the maximum is 10 times larger than the minimum,
481	 * then we got hit by an SMI as well.
482	 */
483	if (pitcnt < loopmin || tscmax > 10 * tscmin)
484		return ULONG_MAX;
485
486	/* Calculate the PIT value */
487	delta = t2 - t1;
488	do_div(delta, ms);
489	return delta;
490}
491
492/*
493 * This reads the current MSB of the PIT counter, and
494 * checks if we are running on sufficiently fast and
495 * non-virtualized hardware.
496 *
497 * Our expectations are:
498 *
499 *  - the PIT is running at roughly 1.19MHz
500 *
501 *  - each IO is going to take about 1us on real hardware,
502 *    but we allow it to be much faster (by a factor of 10) or
503 *    _slightly_ slower (ie we allow up to a 2us read+counter
504 *    update - anything else implies a unacceptably slow CPU
505 *    or PIT for the fast calibration to work.
506 *
507 *  - with 256 PIT ticks to read the value, we have 214us to
508 *    see the same MSB (and overhead like doing a single TSC
509 *    read per MSB value etc).
510 *
511 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
512 *    them each to take about a microsecond on real hardware.
513 *    So we expect a count value of around 100. But we'll be
514 *    generous, and accept anything over 50.
515 *
516 *  - if the PIT is stuck, and we see *many* more reads, we
517 *    return early (and the next caller of pit_expect_msb()
518 *    then consider it a failure when they don't see the
519 *    next expected value).
520 *
521 * These expectations mean that we know that we have seen the
522 * transition from one expected value to another with a fairly
523 * high accuracy, and we didn't miss any events. We can thus
524 * use the TSC value at the transitions to calculate a pretty
525 * good value for the TSC frequencty.
526 */
527static inline int pit_verify_msb(unsigned char val)
528{
529	/* Ignore LSB */
530	inb(0x42);
531	return inb(0x42) == val;
532}
533
534static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
535{
536	int count;
537	u64 tsc = 0, prev_tsc = 0;
538
539	for (count = 0; count < 50000; count++) {
540		if (!pit_verify_msb(val))
541			break;
542		prev_tsc = tsc;
543		tsc = get_cycles();
544	}
545	*deltap = get_cycles() - prev_tsc;
546	*tscp = tsc;
547
548	/*
549	 * We require _some_ success, but the quality control
550	 * will be based on the error terms on the TSC values.
551	 */
552	return count > 5;
553}
554
555/*
556 * How many MSB values do we want to see? We aim for
557 * a maximum error rate of 500ppm (in practice the
558 * real error is much smaller), but refuse to spend
559 * more than 50ms on it.
560 */
561#define MAX_QUICK_PIT_MS 50
562#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
563
564static unsigned long quick_pit_calibrate(void)
565{
566	int i;
567	u64 tsc, delta;
568	unsigned long d1, d2;
569
570	/* Set the Gate high, disable speaker */
571	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
572
573	/*
574	 * Counter 2, mode 0 (one-shot), binary count
575	 *
576	 * NOTE! Mode 2 decrements by two (and then the
577	 * output is flipped each time, giving the same
578	 * final output frequency as a decrement-by-one),
579	 * so mode 0 is much better when looking at the
580	 * individual counts.
581	 */
582	outb(0xb0, 0x43);
583
584	/* Start at 0xffff */
585	outb(0xff, 0x42);
586	outb(0xff, 0x42);
587
588	/*
589	 * The PIT starts counting at the next edge, so we
590	 * need to delay for a microsecond. The easiest way
591	 * to do that is to just read back the 16-bit counter
592	 * once from the PIT.
593	 */
594	pit_verify_msb(0);
595
596	if (pit_expect_msb(0xff, &tsc, &d1)) {
597		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
598			if (!pit_expect_msb(0xff-i, &delta, &d2))
599				break;
600
601			/*
602			 * Iterate until the error is less than 500 ppm
603			 */
604			delta -= tsc;
605			if (d1+d2 >= delta >> 11)
606				continue;
607
608			/*
609			 * Check the PIT one more time to verify that
610			 * all TSC reads were stable wrt the PIT.
611			 *
612			 * This also guarantees serialization of the
613			 * last cycle read ('d2') in pit_expect_msb.
614			 */
615			if (!pit_verify_msb(0xfe - i))
616				break;
617			goto success;
618		}
619	}
620	pr_err("Fast TSC calibration failed\n");
621	return 0;
622
623success:
624	/*
625	 * Ok, if we get here, then we've seen the
626	 * MSB of the PIT decrement 'i' times, and the
627	 * error has shrunk to less than 500 ppm.
628	 *
629	 * As a result, we can depend on there not being
630	 * any odd delays anywhere, and the TSC reads are
631	 * reliable (within the error).
632	 *
633	 * kHz = ticks / time-in-seconds / 1000;
634	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
635	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
636	 */
637	delta *= PIT_TICK_RATE;
638	do_div(delta, i*256*1000);
639	pr_info("Fast TSC calibration using PIT\n");
640	return delta;
641}
642
643/**
644 * native_calibrate_tsc - calibrate the tsc on boot
645 */
646unsigned long native_calibrate_tsc(void)
647{
648	u64 tsc1, tsc2, delta, ref1, ref2;
649	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
650	unsigned long flags, latch, ms, fast_calibrate;
651	int hpet = is_hpet_enabled(), i, loopmin;
652
653	/* Calibrate TSC using MSR for Intel Atom SoCs */
654	local_irq_save(flags);
655	fast_calibrate = try_msr_calibrate_tsc();
656	local_irq_restore(flags);
657	if (fast_calibrate)
658		return fast_calibrate;
659
660	local_irq_save(flags);
661	fast_calibrate = quick_pit_calibrate();
662	local_irq_restore(flags);
663	if (fast_calibrate)
664		return fast_calibrate;
665
666	/*
667	 * Run 5 calibration loops to get the lowest frequency value
668	 * (the best estimate). We use two different calibration modes
669	 * here:
670	 *
671	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
672	 * load a timeout of 50ms. We read the time right after we
673	 * started the timer and wait until the PIT count down reaches
674	 * zero. In each wait loop iteration we read the TSC and check
675	 * the delta to the previous read. We keep track of the min
676	 * and max values of that delta. The delta is mostly defined
677	 * by the IO time of the PIT access, so we can detect when a
678	 * SMI/SMM disturbance happened between the two reads. If the
679	 * maximum time is significantly larger than the minimum time,
680	 * then we discard the result and have another try.
681	 *
682	 * 2) Reference counter. If available we use the HPET or the
683	 * PMTIMER as a reference to check the sanity of that value.
684	 * We use separate TSC readouts and check inside of the
685	 * reference read for a SMI/SMM disturbance. We dicard
686	 * disturbed values here as well. We do that around the PIT
687	 * calibration delay loop as we have to wait for a certain
688	 * amount of time anyway.
689	 */
690
691	/* Preset PIT loop values */
692	latch = CAL_LATCH;
693	ms = CAL_MS;
694	loopmin = CAL_PIT_LOOPS;
695
696	for (i = 0; i < 3; i++) {
697		unsigned long tsc_pit_khz;
698
699		/*
700		 * Read the start value and the reference count of
701		 * hpet/pmtimer when available. Then do the PIT
702		 * calibration, which will take at least 50ms, and
703		 * read the end value.
704		 */
705		local_irq_save(flags);
706		tsc1 = tsc_read_refs(&ref1, hpet);
707		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
708		tsc2 = tsc_read_refs(&ref2, hpet);
709		local_irq_restore(flags);
710
711		/* Pick the lowest PIT TSC calibration so far */
712		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
713
714		/* hpet or pmtimer available ? */
715		if (ref1 == ref2)
716			continue;
717
718		/* Check, whether the sampling was disturbed by an SMI */
719		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
720			continue;
721
722		tsc2 = (tsc2 - tsc1) * 1000000LL;
723		if (hpet)
724			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
725		else
726			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
727
728		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
729
730		/* Check the reference deviation */
731		delta = ((u64) tsc_pit_min) * 100;
732		do_div(delta, tsc_ref_min);
733
734		/*
735		 * If both calibration results are inside a 10% window
736		 * then we can be sure, that the calibration
737		 * succeeded. We break out of the loop right away. We
738		 * use the reference value, as it is more precise.
739		 */
740		if (delta >= 90 && delta <= 110) {
741			pr_info("PIT calibration matches %s. %d loops\n",
742				hpet ? "HPET" : "PMTIMER", i + 1);
743			return tsc_ref_min;
744		}
745
746		/*
747		 * Check whether PIT failed more than once. This
748		 * happens in virtualized environments. We need to
749		 * give the virtual PC a slightly longer timeframe for
750		 * the HPET/PMTIMER to make the result precise.
751		 */
752		if (i == 1 && tsc_pit_min == ULONG_MAX) {
753			latch = CAL2_LATCH;
754			ms = CAL2_MS;
755			loopmin = CAL2_PIT_LOOPS;
756		}
757	}
758
759	/*
760	 * Now check the results.
761	 */
762	if (tsc_pit_min == ULONG_MAX) {
763		/* PIT gave no useful value */
764		pr_warn("Unable to calibrate against PIT\n");
765
766		/* We don't have an alternative source, disable TSC */
767		if (!hpet && !ref1 && !ref2) {
768			pr_notice("No reference (HPET/PMTIMER) available\n");
769			return 0;
770		}
771
772		/* The alternative source failed as well, disable TSC */
773		if (tsc_ref_min == ULONG_MAX) {
774			pr_warn("HPET/PMTIMER calibration failed\n");
775			return 0;
776		}
777
778		/* Use the alternative source */
779		pr_info("using %s reference calibration\n",
780			hpet ? "HPET" : "PMTIMER");
781
782		return tsc_ref_min;
783	}
784
785	/* We don't have an alternative source, use the PIT calibration value */
786	if (!hpet && !ref1 && !ref2) {
787		pr_info("Using PIT calibration value\n");
788		return tsc_pit_min;
789	}
790
791	/* The alternative source failed, use the PIT calibration value */
792	if (tsc_ref_min == ULONG_MAX) {
793		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
794		return tsc_pit_min;
795	}
796
797	/*
798	 * The calibration values differ too much. In doubt, we use
799	 * the PIT value as we know that there are PMTIMERs around
800	 * running at double speed. At least we let the user know:
801	 */
802	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
803		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
804	pr_info("Using PIT calibration value\n");
805	return tsc_pit_min;
806}
807
808int recalibrate_cpu_khz(void)
809{
810#ifndef CONFIG_SMP
811	unsigned long cpu_khz_old = cpu_khz;
812
813	if (cpu_has_tsc) {
814		tsc_khz = x86_platform.calibrate_tsc();
815		cpu_khz = tsc_khz;
816		cpu_data(0).loops_per_jiffy =
817			cpufreq_scale(cpu_data(0).loops_per_jiffy,
818					cpu_khz_old, cpu_khz);
819		return 0;
820	} else
821		return -ENODEV;
822#else
823	return -ENODEV;
824#endif
825}
826
827EXPORT_SYMBOL(recalibrate_cpu_khz);
828
829
830static unsigned long long cyc2ns_suspend;
831
832void tsc_save_sched_clock_state(void)
833{
834	if (!sched_clock_stable())
835		return;
836
837	cyc2ns_suspend = sched_clock();
838}
839
840/*
841 * Even on processors with invariant TSC, TSC gets reset in some the
842 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
843 * arbitrary value (still sync'd across cpu's) during resume from such sleep
844 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
845 * that sched_clock() continues from the point where it was left off during
846 * suspend.
847 */
848void tsc_restore_sched_clock_state(void)
849{
850	unsigned long long offset;
851	unsigned long flags;
852	int cpu;
853
854	if (!sched_clock_stable())
855		return;
856
857	local_irq_save(flags);
858
859	/*
860	 * We're comming out of suspend, there's no concurrency yet; don't
861	 * bother being nice about the RCU stuff, just write to both
862	 * data fields.
863	 */
864
865	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
866	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
867
868	offset = cyc2ns_suspend - sched_clock();
869
870	for_each_possible_cpu(cpu) {
871		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
872		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
873	}
874
875	local_irq_restore(flags);
876}
877
878#ifdef CONFIG_CPU_FREQ
879
880/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
881 * changes.
882 *
883 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
884 * not that important because current Opteron setups do not support
885 * scaling on SMP anyroads.
886 *
887 * Should fix up last_tsc too. Currently gettimeofday in the
888 * first tick after the change will be slightly wrong.
889 */
890
891static unsigned int  ref_freq;
892static unsigned long loops_per_jiffy_ref;
893static unsigned long tsc_khz_ref;
894
895static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
896				void *data)
897{
898	struct cpufreq_freqs *freq = data;
899	unsigned long *lpj;
900
901	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
902		return 0;
903
904	lpj = &boot_cpu_data.loops_per_jiffy;
905#ifdef CONFIG_SMP
906	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
907		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
908#endif
909
910	if (!ref_freq) {
911		ref_freq = freq->old;
912		loops_per_jiffy_ref = *lpj;
913		tsc_khz_ref = tsc_khz;
914	}
915	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
916			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
917		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
918
919		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
920		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
921			mark_tsc_unstable("cpufreq changes");
922
923		set_cyc2ns_scale(tsc_khz, freq->cpu);
924	}
925
926	return 0;
927}
928
929static struct notifier_block time_cpufreq_notifier_block = {
930	.notifier_call  = time_cpufreq_notifier
931};
932
933static int __init cpufreq_tsc(void)
934{
935	if (!cpu_has_tsc)
936		return 0;
937	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
938		return 0;
939	cpufreq_register_notifier(&time_cpufreq_notifier_block,
940				CPUFREQ_TRANSITION_NOTIFIER);
941	return 0;
942}
943
944core_initcall(cpufreq_tsc);
945
946#endif /* CONFIG_CPU_FREQ */
947
948/* clocksource code */
949
950static struct clocksource clocksource_tsc;
951
952/*
953 * We used to compare the TSC to the cycle_last value in the clocksource
954 * structure to avoid a nasty time-warp. This can be observed in a
955 * very small window right after one CPU updated cycle_last under
956 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
957 * is smaller than the cycle_last reference value due to a TSC which
958 * is slighty behind. This delta is nowhere else observable, but in
959 * that case it results in a forward time jump in the range of hours
960 * due to the unsigned delta calculation of the time keeping core
961 * code, which is necessary to support wrapping clocksources like pm
962 * timer.
963 *
964 * This sanity check is now done in the core timekeeping code.
965 * checking the result of read_tsc() - cycle_last for being negative.
966 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
967 */
968static cycle_t read_tsc(struct clocksource *cs)
969{
970	return (cycle_t)get_cycles();
971}
972
973/*
974 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
975 */
976static struct clocksource clocksource_tsc = {
977	.name                   = "tsc",
978	.rating                 = 300,
979	.read                   = read_tsc,
980	.mask                   = CLOCKSOURCE_MASK(64),
981	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
982				  CLOCK_SOURCE_MUST_VERIFY,
983	.archdata               = { .vclock_mode = VCLOCK_TSC },
984};
985
986void mark_tsc_unstable(char *reason)
987{
988	if (!tsc_unstable) {
989		tsc_unstable = 1;
990		clear_sched_clock_stable();
991		disable_sched_clock_irqtime();
992		pr_info("Marking TSC unstable due to %s\n", reason);
993		/* Change only the rating, when not registered */
994		if (clocksource_tsc.mult)
995			clocksource_mark_unstable(&clocksource_tsc);
996		else {
997			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
998			clocksource_tsc.rating = 0;
999		}
1000	}
1001}
1002
1003EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1004
1005static void __init check_system_tsc_reliable(void)
1006{
1007#ifdef CONFIG_MGEODE_LX
1008	/* RTSC counts during suspend */
1009#define RTSC_SUSP 0x100
1010	unsigned long res_low, res_high;
1011
1012	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1013	/* Geode_LX - the OLPC CPU has a very reliable TSC */
1014	if (res_low & RTSC_SUSP)
1015		tsc_clocksource_reliable = 1;
1016#endif
1017	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1018		tsc_clocksource_reliable = 1;
1019}
1020
1021/*
1022 * Make an educated guess if the TSC is trustworthy and synchronized
1023 * over all CPUs.
1024 */
1025int unsynchronized_tsc(void)
1026{
1027	if (!cpu_has_tsc || tsc_unstable)
1028		return 1;
1029
1030#ifdef CONFIG_SMP
1031	if (apic_is_clustered_box())
1032		return 1;
1033#endif
1034
1035	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1036		return 0;
1037
1038	if (tsc_clocksource_reliable)
1039		return 0;
1040	/*
1041	 * Intel systems are normally all synchronized.
1042	 * Exceptions must mark TSC as unstable:
1043	 */
1044	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1045		/* assume multi socket systems are not synchronized: */
1046		if (num_possible_cpus() > 1)
1047			return 1;
1048	}
1049
1050	return 0;
1051}
1052
1053
1054static void tsc_refine_calibration_work(struct work_struct *work);
1055static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1056/**
1057 * tsc_refine_calibration_work - Further refine tsc freq calibration
1058 * @work - ignored.
1059 *
1060 * This functions uses delayed work over a period of a
1061 * second to further refine the TSC freq value. Since this is
1062 * timer based, instead of loop based, we don't block the boot
1063 * process while this longer calibration is done.
1064 *
1065 * If there are any calibration anomalies (too many SMIs, etc),
1066 * or the refined calibration is off by 1% of the fast early
1067 * calibration, we throw out the new calibration and use the
1068 * early calibration.
1069 */
1070static void tsc_refine_calibration_work(struct work_struct *work)
1071{
1072	static u64 tsc_start = -1, ref_start;
1073	static int hpet;
1074	u64 tsc_stop, ref_stop, delta;
1075	unsigned long freq;
1076
1077	/* Don't bother refining TSC on unstable systems */
1078	if (check_tsc_unstable())
1079		goto out;
1080
1081	/*
1082	 * Since the work is started early in boot, we may be
1083	 * delayed the first time we expire. So set the workqueue
1084	 * again once we know timers are working.
1085	 */
1086	if (tsc_start == -1) {
1087		/*
1088		 * Only set hpet once, to avoid mixing hardware
1089		 * if the hpet becomes enabled later.
1090		 */
1091		hpet = is_hpet_enabled();
1092		schedule_delayed_work(&tsc_irqwork, HZ);
1093		tsc_start = tsc_read_refs(&ref_start, hpet);
1094		return;
1095	}
1096
1097	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1098
1099	/* hpet or pmtimer available ? */
1100	if (ref_start == ref_stop)
1101		goto out;
1102
1103	/* Check, whether the sampling was disturbed by an SMI */
1104	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1105		goto out;
1106
1107	delta = tsc_stop - tsc_start;
1108	delta *= 1000000LL;
1109	if (hpet)
1110		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1111	else
1112		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1113
1114	/* Make sure we're within 1% */
1115	if (abs(tsc_khz - freq) > tsc_khz/100)
1116		goto out;
1117
1118	tsc_khz = freq;
1119	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1120		(unsigned long)tsc_khz / 1000,
1121		(unsigned long)tsc_khz % 1000);
1122
1123out:
1124	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1125}
1126
1127
1128static int __init init_tsc_clocksource(void)
1129{
1130	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1131		return 0;
1132
1133	if (tsc_clocksource_reliable)
1134		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1135	/* lower the rating if we already know its unstable: */
1136	if (check_tsc_unstable()) {
1137		clocksource_tsc.rating = 0;
1138		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1139	}
1140
1141	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1142		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1143
1144	/*
1145	 * Trust the results of the earlier calibration on systems
1146	 * exporting a reliable TSC.
1147	 */
1148	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1149		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1150		return 0;
1151	}
1152
1153	schedule_delayed_work(&tsc_irqwork, 0);
1154	return 0;
1155}
1156/*
1157 * We use device_initcall here, to ensure we run after the hpet
1158 * is fully initialized, which may occur at fs_initcall time.
1159 */
1160device_initcall(init_tsc_clocksource);
1161
1162void __init tsc_init(void)
1163{
1164	u64 lpj;
1165	int cpu;
1166
1167	x86_init.timers.tsc_pre_init();
1168
1169	if (!cpu_has_tsc) {
1170		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1171		return;
1172	}
1173
1174	tsc_khz = x86_platform.calibrate_tsc();
1175	cpu_khz = tsc_khz;
1176
1177	if (!tsc_khz) {
1178		mark_tsc_unstable("could not calculate TSC khz");
1179		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1180		return;
1181	}
1182
1183	pr_info("Detected %lu.%03lu MHz processor\n",
1184		(unsigned long)cpu_khz / 1000,
1185		(unsigned long)cpu_khz % 1000);
1186
1187	/*
1188	 * Secondary CPUs do not run through tsc_init(), so set up
1189	 * all the scale factors for all CPUs, assuming the same
1190	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1191	 * up if their speed diverges)
1192	 */
1193	for_each_possible_cpu(cpu) {
1194		cyc2ns_init(cpu);
1195		set_cyc2ns_scale(cpu_khz, cpu);
1196	}
1197
1198	if (tsc_disabled > 0)
1199		return;
1200
1201	/* now allow native_sched_clock() to use rdtsc */
1202
1203	tsc_disabled = 0;
1204	static_key_slow_inc(&__use_tsc);
1205
1206	if (!no_sched_irq_time)
1207		enable_sched_clock_irqtime();
1208
1209	lpj = ((u64)tsc_khz * 1000);
1210	do_div(lpj, HZ);
1211	lpj_fine = lpj;
1212
1213	use_tsc_delay();
1214
1215	if (unsynchronized_tsc())
1216		mark_tsc_unstable("TSCs unsynchronized");
1217
1218	check_system_tsc_reliable();
1219}
1220
1221#ifdef CONFIG_SMP
1222/*
1223 * If we have a constant TSC and are using the TSC for the delay loop,
1224 * we can skip clock calibration if another cpu in the same socket has already
1225 * been calibrated. This assumes that CONSTANT_TSC applies to all
1226 * cpus in the socket - this should be a safe assumption.
1227 */
1228unsigned long calibrate_delay_is_known(void)
1229{
1230	int i, cpu = smp_processor_id();
1231
1232	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1233		return 0;
1234
1235	for_each_online_cpu(i)
1236		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1237			return cpu_data(i).loops_per_jiffy;
1238	return 0;
1239}
1240#endif
1241