1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 *   Yaniv Kamay  <yaniv@qumranet.com>
11 *   Avi Kivity   <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2.  See
14 * the COPYING file in the top-level directory.
15 *
16 */
17#include <linux/kvm_host.h>
18
19#include "irq.h"
20#include "mmu.h"
21#include "kvm_cache_regs.h"
22#include "x86.h"
23#include "cpuid.h"
24
25#include <linux/module.h>
26#include <linux/mod_devicetable.h>
27#include <linux/kernel.h>
28#include <linux/vmalloc.h>
29#include <linux/highmem.h>
30#include <linux/sched.h>
31#include <linux/ftrace_event.h>
32#include <linux/slab.h>
33
34#include <asm/perf_event.h>
35#include <asm/tlbflush.h>
36#include <asm/desc.h>
37#include <asm/debugreg.h>
38#include <asm/kvm_para.h>
39
40#include <asm/virtext.h>
41#include "trace.h"
42
43#define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45MODULE_AUTHOR("Qumranet");
46MODULE_LICENSE("GPL");
47
48static const struct x86_cpu_id svm_cpu_id[] = {
49	X86_FEATURE_MATCH(X86_FEATURE_SVM),
50	{}
51};
52MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54#define IOPM_ALLOC_ORDER 2
55#define MSRPM_ALLOC_ORDER 1
56
57#define SEG_TYPE_LDT 2
58#define SEG_TYPE_BUSY_TSS16 3
59
60#define SVM_FEATURE_NPT            (1 <<  0)
61#define SVM_FEATURE_LBRV           (1 <<  1)
62#define SVM_FEATURE_SVML           (1 <<  2)
63#define SVM_FEATURE_NRIP           (1 <<  3)
64#define SVM_FEATURE_TSC_RATE       (1 <<  4)
65#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
71#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
72#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
73
74#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76#define TSC_RATIO_RSVD          0xffffff0000000000ULL
77#define TSC_RATIO_MIN		0x0000000000000001ULL
78#define TSC_RATIO_MAX		0x000000ffffffffffULL
79
80static bool erratum_383_found __read_mostly;
81
82static const u32 host_save_user_msrs[] = {
83#ifdef CONFIG_X86_64
84	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85	MSR_FS_BASE,
86#endif
87	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88};
89
90#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92struct kvm_vcpu;
93
94struct nested_state {
95	struct vmcb *hsave;
96	u64 hsave_msr;
97	u64 vm_cr_msr;
98	u64 vmcb;
99
100	/* These are the merged vectors */
101	u32 *msrpm;
102
103	/* gpa pointers to the real vectors */
104	u64 vmcb_msrpm;
105	u64 vmcb_iopm;
106
107	/* A VMEXIT is required but not yet emulated */
108	bool exit_required;
109
110	/* cache for intercepts of the guest */
111	u32 intercept_cr;
112	u32 intercept_dr;
113	u32 intercept_exceptions;
114	u64 intercept;
115
116	/* Nested Paging related state */
117	u64 nested_cr3;
118};
119
120#define MSRPM_OFFSETS	16
121static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123/*
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
126 */
127static uint64_t osvw_len = 4, osvw_status;
128
129struct vcpu_svm {
130	struct kvm_vcpu vcpu;
131	struct vmcb *vmcb;
132	unsigned long vmcb_pa;
133	struct svm_cpu_data *svm_data;
134	uint64_t asid_generation;
135	uint64_t sysenter_esp;
136	uint64_t sysenter_eip;
137
138	u64 next_rip;
139
140	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141	struct {
142		u16 fs;
143		u16 gs;
144		u16 ldt;
145		u64 gs_base;
146	} host;
147
148	u32 *msrpm;
149
150	ulong nmi_iret_rip;
151
152	struct nested_state nested;
153
154	bool nmi_singlestep;
155
156	unsigned int3_injected;
157	unsigned long int3_rip;
158	u32 apf_reason;
159
160	u64  tsc_ratio;
161};
162
163static DEFINE_PER_CPU(u64, current_tsc_ratio);
164#define TSC_RATIO_DEFAULT	0x0100000000ULL
165
166#define MSR_INVALID			0xffffffffU
167
168static const struct svm_direct_access_msrs {
169	u32 index;   /* Index of the MSR */
170	bool always; /* True if intercept is always on */
171} direct_access_msrs[] = {
172	{ .index = MSR_STAR,				.always = true  },
173	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
174#ifdef CONFIG_X86_64
175	{ .index = MSR_GS_BASE,				.always = true  },
176	{ .index = MSR_FS_BASE,				.always = true  },
177	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
178	{ .index = MSR_LSTAR,				.always = true  },
179	{ .index = MSR_CSTAR,				.always = true  },
180	{ .index = MSR_SYSCALL_MASK,			.always = true  },
181#endif
182	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
183	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
184	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
185	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
186	{ .index = MSR_INVALID,				.always = false },
187};
188
189/* enable NPT for AMD64 and X86 with PAE */
190#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191static bool npt_enabled = true;
192#else
193static bool npt_enabled;
194#endif
195
196/* allow nested paging (virtualized MMU) for all guests */
197static int npt = true;
198module_param(npt, int, S_IRUGO);
199
200/* allow nested virtualization in KVM/SVM */
201static int nested = true;
202module_param(nested, int, S_IRUGO);
203
204static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207static int nested_svm_exit_handled(struct vcpu_svm *svm);
208static int nested_svm_intercept(struct vcpu_svm *svm);
209static int nested_svm_vmexit(struct vcpu_svm *svm);
210static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211				      bool has_error_code, u32 error_code);
212static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214enum {
215	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216			    pause filter count */
217	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218	VMCB_ASID,	 /* ASID */
219	VMCB_INTR,	 /* int_ctl, int_vector */
220	VMCB_NPT,        /* npt_en, nCR3, gPAT */
221	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
222	VMCB_DR,         /* DR6, DR7 */
223	VMCB_DT,         /* GDT, IDT */
224	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225	VMCB_CR2,        /* CR2 only */
226	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227	VMCB_DIRTY_MAX,
228};
229
230/* TPR and CR2 are always written before VMRUN */
231#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233static inline void mark_all_dirty(struct vmcb *vmcb)
234{
235	vmcb->control.clean = 0;
236}
237
238static inline void mark_all_clean(struct vmcb *vmcb)
239{
240	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241			       & ~VMCB_ALWAYS_DIRTY_MASK;
242}
243
244static inline void mark_dirty(struct vmcb *vmcb, int bit)
245{
246	vmcb->control.clean &= ~(1 << bit);
247}
248
249static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250{
251	return container_of(vcpu, struct vcpu_svm, vcpu);
252}
253
254static void recalc_intercepts(struct vcpu_svm *svm)
255{
256	struct vmcb_control_area *c, *h;
257	struct nested_state *g;
258
259	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261	if (!is_guest_mode(&svm->vcpu))
262		return;
263
264	c = &svm->vmcb->control;
265	h = &svm->nested.hsave->control;
266	g = &svm->nested;
267
268	c->intercept_cr = h->intercept_cr | g->intercept_cr;
269	c->intercept_dr = h->intercept_dr | g->intercept_dr;
270	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271	c->intercept = h->intercept | g->intercept;
272}
273
274static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275{
276	if (is_guest_mode(&svm->vcpu))
277		return svm->nested.hsave;
278	else
279		return svm->vmcb;
280}
281
282static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283{
284	struct vmcb *vmcb = get_host_vmcb(svm);
285
286	vmcb->control.intercept_cr |= (1U << bit);
287
288	recalc_intercepts(svm);
289}
290
291static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292{
293	struct vmcb *vmcb = get_host_vmcb(svm);
294
295	vmcb->control.intercept_cr &= ~(1U << bit);
296
297	recalc_intercepts(svm);
298}
299
300static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301{
302	struct vmcb *vmcb = get_host_vmcb(svm);
303
304	return vmcb->control.intercept_cr & (1U << bit);
305}
306
307static inline void set_dr_intercepts(struct vcpu_svm *svm)
308{
309	struct vmcb *vmcb = get_host_vmcb(svm);
310
311	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312		| (1 << INTERCEPT_DR1_READ)
313		| (1 << INTERCEPT_DR2_READ)
314		| (1 << INTERCEPT_DR3_READ)
315		| (1 << INTERCEPT_DR4_READ)
316		| (1 << INTERCEPT_DR5_READ)
317		| (1 << INTERCEPT_DR6_READ)
318		| (1 << INTERCEPT_DR7_READ)
319		| (1 << INTERCEPT_DR0_WRITE)
320		| (1 << INTERCEPT_DR1_WRITE)
321		| (1 << INTERCEPT_DR2_WRITE)
322		| (1 << INTERCEPT_DR3_WRITE)
323		| (1 << INTERCEPT_DR4_WRITE)
324		| (1 << INTERCEPT_DR5_WRITE)
325		| (1 << INTERCEPT_DR6_WRITE)
326		| (1 << INTERCEPT_DR7_WRITE);
327
328	recalc_intercepts(svm);
329}
330
331static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332{
333	struct vmcb *vmcb = get_host_vmcb(svm);
334
335	vmcb->control.intercept_dr = 0;
336
337	recalc_intercepts(svm);
338}
339
340static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341{
342	struct vmcb *vmcb = get_host_vmcb(svm);
343
344	vmcb->control.intercept_exceptions |= (1U << bit);
345
346	recalc_intercepts(svm);
347}
348
349static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350{
351	struct vmcb *vmcb = get_host_vmcb(svm);
352
353	vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355	recalc_intercepts(svm);
356}
357
358static inline void set_intercept(struct vcpu_svm *svm, int bit)
359{
360	struct vmcb *vmcb = get_host_vmcb(svm);
361
362	vmcb->control.intercept |= (1ULL << bit);
363
364	recalc_intercepts(svm);
365}
366
367static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368{
369	struct vmcb *vmcb = get_host_vmcb(svm);
370
371	vmcb->control.intercept &= ~(1ULL << bit);
372
373	recalc_intercepts(svm);
374}
375
376static inline void enable_gif(struct vcpu_svm *svm)
377{
378	svm->vcpu.arch.hflags |= HF_GIF_MASK;
379}
380
381static inline void disable_gif(struct vcpu_svm *svm)
382{
383	svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384}
385
386static inline bool gif_set(struct vcpu_svm *svm)
387{
388	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389}
390
391static unsigned long iopm_base;
392
393struct kvm_ldttss_desc {
394	u16 limit0;
395	u16 base0;
396	unsigned base1:8, type:5, dpl:2, p:1;
397	unsigned limit1:4, zero0:3, g:1, base2:8;
398	u32 base3;
399	u32 zero1;
400} __attribute__((packed));
401
402struct svm_cpu_data {
403	int cpu;
404
405	u64 asid_generation;
406	u32 max_asid;
407	u32 next_asid;
408	struct kvm_ldttss_desc *tss_desc;
409
410	struct page *save_area;
411};
412
413static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415struct svm_init_data {
416	int cpu;
417	int r;
418};
419
420static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423#define MSRS_RANGE_SIZE 2048
424#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426static u32 svm_msrpm_offset(u32 msr)
427{
428	u32 offset;
429	int i;
430
431	for (i = 0; i < NUM_MSR_MAPS; i++) {
432		if (msr < msrpm_ranges[i] ||
433		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434			continue;
435
436		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439		/* Now we have the u8 offset - but need the u32 offset */
440		return offset / 4;
441	}
442
443	/* MSR not in any range */
444	return MSR_INVALID;
445}
446
447#define MAX_INST_SIZE 15
448
449static inline void clgi(void)
450{
451	asm volatile (__ex(SVM_CLGI));
452}
453
454static inline void stgi(void)
455{
456	asm volatile (__ex(SVM_STGI));
457}
458
459static inline void invlpga(unsigned long addr, u32 asid)
460{
461	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462}
463
464static int get_npt_level(void)
465{
466#ifdef CONFIG_X86_64
467	return PT64_ROOT_LEVEL;
468#else
469	return PT32E_ROOT_LEVEL;
470#endif
471}
472
473static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474{
475	vcpu->arch.efer = efer;
476	if (!npt_enabled && !(efer & EFER_LMA))
477		efer &= ~EFER_LME;
478
479	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481}
482
483static int is_external_interrupt(u32 info)
484{
485	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487}
488
489static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490{
491	struct vcpu_svm *svm = to_svm(vcpu);
492	u32 ret = 0;
493
494	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496	return ret;
497}
498
499static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500{
501	struct vcpu_svm *svm = to_svm(vcpu);
502
503	if (mask == 0)
504		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505	else
506		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508}
509
510static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511{
512	struct vcpu_svm *svm = to_svm(vcpu);
513
514	if (svm->vmcb->control.next_rip != 0)
515		svm->next_rip = svm->vmcb->control.next_rip;
516
517	if (!svm->next_rip) {
518		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519				EMULATE_DONE)
520			printk(KERN_DEBUG "%s: NOP\n", __func__);
521		return;
522	}
523	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525		       __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527	kvm_rip_write(vcpu, svm->next_rip);
528	svm_set_interrupt_shadow(vcpu, 0);
529}
530
531static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532				bool has_error_code, u32 error_code,
533				bool reinject)
534{
535	struct vcpu_svm *svm = to_svm(vcpu);
536
537	/*
538	 * If we are within a nested VM we'd better #VMEXIT and let the guest
539	 * handle the exception
540	 */
541	if (!reinject &&
542	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
543		return;
544
545	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548		/*
549		 * For guest debugging where we have to reinject #BP if some
550		 * INT3 is guest-owned:
551		 * Emulate nRIP by moving RIP forward. Will fail if injection
552		 * raises a fault that is not intercepted. Still better than
553		 * failing in all cases.
554		 */
555		skip_emulated_instruction(&svm->vcpu);
556		rip = kvm_rip_read(&svm->vcpu);
557		svm->int3_rip = rip + svm->vmcb->save.cs.base;
558		svm->int3_injected = rip - old_rip;
559	}
560
561	svm->vmcb->control.event_inj = nr
562		| SVM_EVTINJ_VALID
563		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564		| SVM_EVTINJ_TYPE_EXEPT;
565	svm->vmcb->control.event_inj_err = error_code;
566}
567
568static void svm_init_erratum_383(void)
569{
570	u32 low, high;
571	int err;
572	u64 val;
573
574	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575		return;
576
577	/* Use _safe variants to not break nested virtualization */
578	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579	if (err)
580		return;
581
582	val |= (1ULL << 47);
583
584	low  = lower_32_bits(val);
585	high = upper_32_bits(val);
586
587	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589	erratum_383_found = true;
590}
591
592static void svm_init_osvw(struct kvm_vcpu *vcpu)
593{
594	/*
595	 * Guests should see errata 400 and 415 as fixed (assuming that
596	 * HLT and IO instructions are intercepted).
597	 */
598	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601	/*
602	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
603	 * all osvw.status bits inside that length, including bit 0 (which is
604	 * reserved for erratum 298), are valid. However, if host processor's
605	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
606	 * be conservative here and therefore we tell the guest that erratum 298
607	 * is present (because we really don't know).
608	 */
609	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610		vcpu->arch.osvw.status |= 1;
611}
612
613static int has_svm(void)
614{
615	const char *msg;
616
617	if (!cpu_has_svm(&msg)) {
618		printk(KERN_INFO "has_svm: %s\n", msg);
619		return 0;
620	}
621
622	return 1;
623}
624
625static void svm_hardware_disable(void)
626{
627	/* Make sure we clean up behind us */
628	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631	cpu_svm_disable();
632
633	amd_pmu_disable_virt();
634}
635
636static int svm_hardware_enable(void)
637{
638
639	struct svm_cpu_data *sd;
640	uint64_t efer;
641	struct desc_ptr gdt_descr;
642	struct desc_struct *gdt;
643	int me = raw_smp_processor_id();
644
645	rdmsrl(MSR_EFER, efer);
646	if (efer & EFER_SVME)
647		return -EBUSY;
648
649	if (!has_svm()) {
650		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651		return -EINVAL;
652	}
653	sd = per_cpu(svm_data, me);
654	if (!sd) {
655		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656		return -EINVAL;
657	}
658
659	sd->asid_generation = 1;
660	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661	sd->next_asid = sd->max_asid + 1;
662
663	native_store_gdt(&gdt_descr);
664	gdt = (struct desc_struct *)gdt_descr.address;
665	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667	wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
674	}
675
676
677	/*
678	 * Get OSVW bits.
679	 *
680	 * Note that it is possible to have a system with mixed processor
681	 * revisions and therefore different OSVW bits. If bits are not the same
682	 * on different processors then choose the worst case (i.e. if erratum
683	 * is present on one processor and not on another then assume that the
684	 * erratum is present everywhere).
685	 */
686	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687		uint64_t len, status = 0;
688		int err;
689
690		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691		if (!err)
692			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693						      &err);
694
695		if (err)
696			osvw_status = osvw_len = 0;
697		else {
698			if (len < osvw_len)
699				osvw_len = len;
700			osvw_status |= status;
701			osvw_status &= (1ULL << osvw_len) - 1;
702		}
703	} else
704		osvw_status = osvw_len = 0;
705
706	svm_init_erratum_383();
707
708	amd_pmu_enable_virt();
709
710	return 0;
711}
712
713static void svm_cpu_uninit(int cpu)
714{
715	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717	if (!sd)
718		return;
719
720	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721	__free_page(sd->save_area);
722	kfree(sd);
723}
724
725static int svm_cpu_init(int cpu)
726{
727	struct svm_cpu_data *sd;
728	int r;
729
730	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731	if (!sd)
732		return -ENOMEM;
733	sd->cpu = cpu;
734	sd->save_area = alloc_page(GFP_KERNEL);
735	r = -ENOMEM;
736	if (!sd->save_area)
737		goto err_1;
738
739	per_cpu(svm_data, cpu) = sd;
740
741	return 0;
742
743err_1:
744	kfree(sd);
745	return r;
746
747}
748
749static bool valid_msr_intercept(u32 index)
750{
751	int i;
752
753	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754		if (direct_access_msrs[i].index == index)
755			return true;
756
757	return false;
758}
759
760static void set_msr_interception(u32 *msrpm, unsigned msr,
761				 int read, int write)
762{
763	u8 bit_read, bit_write;
764	unsigned long tmp;
765	u32 offset;
766
767	/*
768	 * If this warning triggers extend the direct_access_msrs list at the
769	 * beginning of the file
770	 */
771	WARN_ON(!valid_msr_intercept(msr));
772
773	offset    = svm_msrpm_offset(msr);
774	bit_read  = 2 * (msr & 0x0f);
775	bit_write = 2 * (msr & 0x0f) + 1;
776	tmp       = msrpm[offset];
777
778	BUG_ON(offset == MSR_INVALID);
779
780	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783	msrpm[offset] = tmp;
784}
785
786static void svm_vcpu_init_msrpm(u32 *msrpm)
787{
788	int i;
789
790	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793		if (!direct_access_msrs[i].always)
794			continue;
795
796		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797	}
798}
799
800static void add_msr_offset(u32 offset)
801{
802	int i;
803
804	for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806		/* Offset already in list? */
807		if (msrpm_offsets[i] == offset)
808			return;
809
810		/* Slot used by another offset? */
811		if (msrpm_offsets[i] != MSR_INVALID)
812			continue;
813
814		/* Add offset to list */
815		msrpm_offsets[i] = offset;
816
817		return;
818	}
819
820	/*
821	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
822	 * increase MSRPM_OFFSETS in this case.
823	 */
824	BUG();
825}
826
827static void init_msrpm_offsets(void)
828{
829	int i;
830
831	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834		u32 offset;
835
836		offset = svm_msrpm_offset(direct_access_msrs[i].index);
837		BUG_ON(offset == MSR_INVALID);
838
839		add_msr_offset(offset);
840	}
841}
842
843static void svm_enable_lbrv(struct vcpu_svm *svm)
844{
845	u32 *msrpm = svm->msrpm;
846
847	svm->vmcb->control.lbr_ctl = 1;
848	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852}
853
854static void svm_disable_lbrv(struct vcpu_svm *svm)
855{
856	u32 *msrpm = svm->msrpm;
857
858	svm->vmcb->control.lbr_ctl = 0;
859	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863}
864
865static __init int svm_hardware_setup(void)
866{
867	int cpu;
868	struct page *iopm_pages;
869	void *iopm_va;
870	int r;
871
872	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874	if (!iopm_pages)
875		return -ENOMEM;
876
877	iopm_va = page_address(iopm_pages);
878	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881	init_msrpm_offsets();
882
883	if (boot_cpu_has(X86_FEATURE_NX))
884		kvm_enable_efer_bits(EFER_NX);
885
886	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887		kvm_enable_efer_bits(EFER_FFXSR);
888
889	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890		u64 max;
891
892		kvm_has_tsc_control = true;
893
894		/*
895		 * Make sure the user can only configure tsc_khz values that
896		 * fit into a signed integer.
897		 * A min value is not calculated needed because it will always
898		 * be 1 on all machines and a value of 0 is used to disable
899		 * tsc-scaling for the vcpu.
900		 */
901		max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903		kvm_max_guest_tsc_khz = max;
904	}
905
906	if (nested) {
907		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909	}
910
911	for_each_possible_cpu(cpu) {
912		r = svm_cpu_init(cpu);
913		if (r)
914			goto err;
915	}
916
917	if (!boot_cpu_has(X86_FEATURE_NPT))
918		npt_enabled = false;
919
920	if (npt_enabled && !npt) {
921		printk(KERN_INFO "kvm: Nested Paging disabled\n");
922		npt_enabled = false;
923	}
924
925	if (npt_enabled) {
926		printk(KERN_INFO "kvm: Nested Paging enabled\n");
927		kvm_enable_tdp();
928	} else
929		kvm_disable_tdp();
930
931	return 0;
932
933err:
934	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935	iopm_base = 0;
936	return r;
937}
938
939static __exit void svm_hardware_unsetup(void)
940{
941	int cpu;
942
943	for_each_possible_cpu(cpu)
944		svm_cpu_uninit(cpu);
945
946	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947	iopm_base = 0;
948}
949
950static void init_seg(struct vmcb_seg *seg)
951{
952	seg->selector = 0;
953	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955	seg->limit = 0xffff;
956	seg->base = 0;
957}
958
959static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960{
961	seg->selector = 0;
962	seg->attrib = SVM_SELECTOR_P_MASK | type;
963	seg->limit = 0xffff;
964	seg->base = 0;
965}
966
967static u64 __scale_tsc(u64 ratio, u64 tsc)
968{
969	u64 mult, frac, _tsc;
970
971	mult  = ratio >> 32;
972	frac  = ratio & ((1ULL << 32) - 1);
973
974	_tsc  = tsc;
975	_tsc *= mult;
976	_tsc += (tsc >> 32) * frac;
977	_tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979	return _tsc;
980}
981
982static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983{
984	struct vcpu_svm *svm = to_svm(vcpu);
985	u64 _tsc = tsc;
986
987	if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988		_tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990	return _tsc;
991}
992
993static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994{
995	struct vcpu_svm *svm = to_svm(vcpu);
996	u64 ratio;
997	u64 khz;
998
999	/* Guest TSC same frequency as host TSC? */
1000	if (!scale) {
1001		svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002		return;
1003	}
1004
1005	/* TSC scaling supported? */
1006	if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007		if (user_tsc_khz > tsc_khz) {
1008			vcpu->arch.tsc_catchup = 1;
1009			vcpu->arch.tsc_always_catchup = 1;
1010		} else
1011			WARN(1, "user requested TSC rate below hardware speed\n");
1012		return;
1013	}
1014
1015	khz = user_tsc_khz;
1016
1017	/* TSC scaling required  - calculate ratio */
1018	ratio = khz << 32;
1019	do_div(ratio, tsc_khz);
1020
1021	if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022		WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023				user_tsc_khz);
1024		return;
1025	}
1026	svm->tsc_ratio             = ratio;
1027}
1028
1029static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030{
1031	struct vcpu_svm *svm = to_svm(vcpu);
1032
1033	return svm->vmcb->control.tsc_offset;
1034}
1035
1036static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037{
1038	struct vcpu_svm *svm = to_svm(vcpu);
1039	u64 g_tsc_offset = 0;
1040
1041	if (is_guest_mode(vcpu)) {
1042		g_tsc_offset = svm->vmcb->control.tsc_offset -
1043			       svm->nested.hsave->control.tsc_offset;
1044		svm->nested.hsave->control.tsc_offset = offset;
1045	} else
1046		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047					   svm->vmcb->control.tsc_offset,
1048					   offset);
1049
1050	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053}
1054
1055static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056{
1057	struct vcpu_svm *svm = to_svm(vcpu);
1058
1059	WARN_ON(adjustment < 0);
1060	if (host)
1061		adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063	svm->vmcb->control.tsc_offset += adjustment;
1064	if (is_guest_mode(vcpu))
1065		svm->nested.hsave->control.tsc_offset += adjustment;
1066	else
1067		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068				     svm->vmcb->control.tsc_offset - adjustment,
1069				     svm->vmcb->control.tsc_offset);
1070
1071	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072}
1073
1074static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075{
1076	u64 tsc;
1077
1078	tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080	return target_tsc - tsc;
1081}
1082
1083static void init_vmcb(struct vcpu_svm *svm)
1084{
1085	struct vmcb_control_area *control = &svm->vmcb->control;
1086	struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088	svm->vcpu.fpu_active = 1;
1089	svm->vcpu.arch.hflags = 0;
1090
1091	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097	set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099	set_dr_intercepts(svm);
1100
1101	set_exception_intercept(svm, PF_VECTOR);
1102	set_exception_intercept(svm, UD_VECTOR);
1103	set_exception_intercept(svm, MC_VECTOR);
1104
1105	set_intercept(svm, INTERCEPT_INTR);
1106	set_intercept(svm, INTERCEPT_NMI);
1107	set_intercept(svm, INTERCEPT_SMI);
1108	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109	set_intercept(svm, INTERCEPT_RDPMC);
1110	set_intercept(svm, INTERCEPT_CPUID);
1111	set_intercept(svm, INTERCEPT_INVD);
1112	set_intercept(svm, INTERCEPT_HLT);
1113	set_intercept(svm, INTERCEPT_INVLPG);
1114	set_intercept(svm, INTERCEPT_INVLPGA);
1115	set_intercept(svm, INTERCEPT_IOIO_PROT);
1116	set_intercept(svm, INTERCEPT_MSR_PROT);
1117	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118	set_intercept(svm, INTERCEPT_SHUTDOWN);
1119	set_intercept(svm, INTERCEPT_VMRUN);
1120	set_intercept(svm, INTERCEPT_VMMCALL);
1121	set_intercept(svm, INTERCEPT_VMLOAD);
1122	set_intercept(svm, INTERCEPT_VMSAVE);
1123	set_intercept(svm, INTERCEPT_STGI);
1124	set_intercept(svm, INTERCEPT_CLGI);
1125	set_intercept(svm, INTERCEPT_SKINIT);
1126	set_intercept(svm, INTERCEPT_WBINVD);
1127	set_intercept(svm, INTERCEPT_MONITOR);
1128	set_intercept(svm, INTERCEPT_MWAIT);
1129	set_intercept(svm, INTERCEPT_XSETBV);
1130
1131	control->iopm_base_pa = iopm_base;
1132	control->msrpm_base_pa = __pa(svm->msrpm);
1133	control->int_ctl = V_INTR_MASKING_MASK;
1134
1135	init_seg(&save->es);
1136	init_seg(&save->ss);
1137	init_seg(&save->ds);
1138	init_seg(&save->fs);
1139	init_seg(&save->gs);
1140
1141	save->cs.selector = 0xf000;
1142	save->cs.base = 0xffff0000;
1143	/* Executable/Readable Code Segment */
1144	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146	save->cs.limit = 0xffff;
1147
1148	save->gdtr.limit = 0xffff;
1149	save->idtr.limit = 0xffff;
1150
1151	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154	svm_set_efer(&svm->vcpu, 0);
1155	save->dr6 = 0xffff0ff0;
1156	kvm_set_rflags(&svm->vcpu, 2);
1157	save->rip = 0x0000fff0;
1158	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160	/*
1161	 * This is the guest-visible cr0 value.
1162	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163	 */
1164	svm->vcpu.arch.cr0 = 0;
1165	(void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167	save->cr4 = X86_CR4_PAE;
1168	/* rdx = ?? */
1169
1170	if (npt_enabled) {
1171		/* Setup VMCB for Nested Paging */
1172		control->nested_ctl = 1;
1173		clr_intercept(svm, INTERCEPT_INVLPG);
1174		clr_exception_intercept(svm, PF_VECTOR);
1175		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177		save->g_pat = 0x0007040600070406ULL;
1178		save->cr3 = 0;
1179		save->cr4 = 0;
1180	}
1181	svm->asid_generation = 0;
1182
1183	svm->nested.vmcb = 0;
1184	svm->vcpu.arch.hflags = 0;
1185
1186	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187		control->pause_filter_count = 3000;
1188		set_intercept(svm, INTERCEPT_PAUSE);
1189	}
1190
1191	mark_all_dirty(svm->vmcb);
1192
1193	enable_gif(svm);
1194}
1195
1196static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197{
1198	struct vcpu_svm *svm = to_svm(vcpu);
1199	u32 dummy;
1200	u32 eax = 1;
1201
1202	init_vmcb(svm);
1203
1204	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206}
1207
1208static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209{
1210	struct vcpu_svm *svm;
1211	struct page *page;
1212	struct page *msrpm_pages;
1213	struct page *hsave_page;
1214	struct page *nested_msrpm_pages;
1215	int err;
1216
1217	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218	if (!svm) {
1219		err = -ENOMEM;
1220		goto out;
1221	}
1222
1223	svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226	if (err)
1227		goto free_svm;
1228
1229	err = -ENOMEM;
1230	page = alloc_page(GFP_KERNEL);
1231	if (!page)
1232		goto uninit;
1233
1234	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235	if (!msrpm_pages)
1236		goto free_page1;
1237
1238	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239	if (!nested_msrpm_pages)
1240		goto free_page2;
1241
1242	hsave_page = alloc_page(GFP_KERNEL);
1243	if (!hsave_page)
1244		goto free_page3;
1245
1246	svm->nested.hsave = page_address(hsave_page);
1247
1248	svm->msrpm = page_address(msrpm_pages);
1249	svm_vcpu_init_msrpm(svm->msrpm);
1250
1251	svm->nested.msrpm = page_address(nested_msrpm_pages);
1252	svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254	svm->vmcb = page_address(page);
1255	clear_page(svm->vmcb);
1256	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257	svm->asid_generation = 0;
1258	init_vmcb(svm);
1259
1260	svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1261				   MSR_IA32_APICBASE_ENABLE;
1262	if (kvm_vcpu_is_bsp(&svm->vcpu))
1263		svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1264
1265	svm_init_osvw(&svm->vcpu);
1266
1267	return &svm->vcpu;
1268
1269free_page3:
1270	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1271free_page2:
1272	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1273free_page1:
1274	__free_page(page);
1275uninit:
1276	kvm_vcpu_uninit(&svm->vcpu);
1277free_svm:
1278	kmem_cache_free(kvm_vcpu_cache, svm);
1279out:
1280	return ERR_PTR(err);
1281}
1282
1283static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1284{
1285	struct vcpu_svm *svm = to_svm(vcpu);
1286
1287	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1288	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1289	__free_page(virt_to_page(svm->nested.hsave));
1290	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1291	kvm_vcpu_uninit(vcpu);
1292	kmem_cache_free(kvm_vcpu_cache, svm);
1293}
1294
1295static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1296{
1297	struct vcpu_svm *svm = to_svm(vcpu);
1298	int i;
1299
1300	if (unlikely(cpu != vcpu->cpu)) {
1301		svm->asid_generation = 0;
1302		mark_all_dirty(svm->vmcb);
1303	}
1304
1305#ifdef CONFIG_X86_64
1306	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1307#endif
1308	savesegment(fs, svm->host.fs);
1309	savesegment(gs, svm->host.gs);
1310	svm->host.ldt = kvm_read_ldt();
1311
1312	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1313		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1314
1315	if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1316	    svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1317		__this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1318		wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1319	}
1320}
1321
1322static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1323{
1324	struct vcpu_svm *svm = to_svm(vcpu);
1325	int i;
1326
1327	++vcpu->stat.host_state_reload;
1328	kvm_load_ldt(svm->host.ldt);
1329#ifdef CONFIG_X86_64
1330	loadsegment(fs, svm->host.fs);
1331	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1332	load_gs_index(svm->host.gs);
1333#else
1334#ifdef CONFIG_X86_32_LAZY_GS
1335	loadsegment(gs, svm->host.gs);
1336#endif
1337#endif
1338	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1339		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1340}
1341
1342static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1343{
1344	return to_svm(vcpu)->vmcb->save.rflags;
1345}
1346
1347static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1348{
1349       /*
1350        * Any change of EFLAGS.VM is accompained by a reload of SS
1351        * (caused by either a task switch or an inter-privilege IRET),
1352        * so we do not need to update the CPL here.
1353        */
1354	to_svm(vcpu)->vmcb->save.rflags = rflags;
1355}
1356
1357static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1358{
1359	switch (reg) {
1360	case VCPU_EXREG_PDPTR:
1361		BUG_ON(!npt_enabled);
1362		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1363		break;
1364	default:
1365		BUG();
1366	}
1367}
1368
1369static void svm_set_vintr(struct vcpu_svm *svm)
1370{
1371	set_intercept(svm, INTERCEPT_VINTR);
1372}
1373
1374static void svm_clear_vintr(struct vcpu_svm *svm)
1375{
1376	clr_intercept(svm, INTERCEPT_VINTR);
1377}
1378
1379static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1380{
1381	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1382
1383	switch (seg) {
1384	case VCPU_SREG_CS: return &save->cs;
1385	case VCPU_SREG_DS: return &save->ds;
1386	case VCPU_SREG_ES: return &save->es;
1387	case VCPU_SREG_FS: return &save->fs;
1388	case VCPU_SREG_GS: return &save->gs;
1389	case VCPU_SREG_SS: return &save->ss;
1390	case VCPU_SREG_TR: return &save->tr;
1391	case VCPU_SREG_LDTR: return &save->ldtr;
1392	}
1393	BUG();
1394	return NULL;
1395}
1396
1397static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1398{
1399	struct vmcb_seg *s = svm_seg(vcpu, seg);
1400
1401	return s->base;
1402}
1403
1404static void svm_get_segment(struct kvm_vcpu *vcpu,
1405			    struct kvm_segment *var, int seg)
1406{
1407	struct vmcb_seg *s = svm_seg(vcpu, seg);
1408
1409	var->base = s->base;
1410	var->limit = s->limit;
1411	var->selector = s->selector;
1412	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1413	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1414	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1415	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1416	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1417	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1418	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1419
1420	/*
1421	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1422	 * However, the SVM spec states that the G bit is not observed by the
1423	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1424	 * So let's synthesize a legal G bit for all segments, this helps
1425	 * running KVM nested. It also helps cross-vendor migration, because
1426	 * Intel's vmentry has a check on the 'G' bit.
1427	 */
1428	var->g = s->limit > 0xfffff;
1429
1430	/*
1431	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1432	 * for cross vendor migration purposes by "not present"
1433	 */
1434	var->unusable = !var->present || (var->type == 0);
1435
1436	switch (seg) {
1437	case VCPU_SREG_TR:
1438		/*
1439		 * Work around a bug where the busy flag in the tr selector
1440		 * isn't exposed
1441		 */
1442		var->type |= 0x2;
1443		break;
1444	case VCPU_SREG_DS:
1445	case VCPU_SREG_ES:
1446	case VCPU_SREG_FS:
1447	case VCPU_SREG_GS:
1448		/*
1449		 * The accessed bit must always be set in the segment
1450		 * descriptor cache, although it can be cleared in the
1451		 * descriptor, the cached bit always remains at 1. Since
1452		 * Intel has a check on this, set it here to support
1453		 * cross-vendor migration.
1454		 */
1455		if (!var->unusable)
1456			var->type |= 0x1;
1457		break;
1458	case VCPU_SREG_SS:
1459		/*
1460		 * On AMD CPUs sometimes the DB bit in the segment
1461		 * descriptor is left as 1, although the whole segment has
1462		 * been made unusable. Clear it here to pass an Intel VMX
1463		 * entry check when cross vendor migrating.
1464		 */
1465		if (var->unusable)
1466			var->db = 0;
1467		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1468		break;
1469	}
1470}
1471
1472static int svm_get_cpl(struct kvm_vcpu *vcpu)
1473{
1474	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1475
1476	return save->cpl;
1477}
1478
1479static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1480{
1481	struct vcpu_svm *svm = to_svm(vcpu);
1482
1483	dt->size = svm->vmcb->save.idtr.limit;
1484	dt->address = svm->vmcb->save.idtr.base;
1485}
1486
1487static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1488{
1489	struct vcpu_svm *svm = to_svm(vcpu);
1490
1491	svm->vmcb->save.idtr.limit = dt->size;
1492	svm->vmcb->save.idtr.base = dt->address ;
1493	mark_dirty(svm->vmcb, VMCB_DT);
1494}
1495
1496static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1497{
1498	struct vcpu_svm *svm = to_svm(vcpu);
1499
1500	dt->size = svm->vmcb->save.gdtr.limit;
1501	dt->address = svm->vmcb->save.gdtr.base;
1502}
1503
1504static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1505{
1506	struct vcpu_svm *svm = to_svm(vcpu);
1507
1508	svm->vmcb->save.gdtr.limit = dt->size;
1509	svm->vmcb->save.gdtr.base = dt->address ;
1510	mark_dirty(svm->vmcb, VMCB_DT);
1511}
1512
1513static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1514{
1515}
1516
1517static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1518{
1519}
1520
1521static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1522{
1523}
1524
1525static void update_cr0_intercept(struct vcpu_svm *svm)
1526{
1527	ulong gcr0 = svm->vcpu.arch.cr0;
1528	u64 *hcr0 = &svm->vmcb->save.cr0;
1529
1530	if (!svm->vcpu.fpu_active)
1531		*hcr0 |= SVM_CR0_SELECTIVE_MASK;
1532	else
1533		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1534			| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1535
1536	mark_dirty(svm->vmcb, VMCB_CR);
1537
1538	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1539		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1540		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1541	} else {
1542		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1543		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1544	}
1545}
1546
1547static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1548{
1549	struct vcpu_svm *svm = to_svm(vcpu);
1550
1551#ifdef CONFIG_X86_64
1552	if (vcpu->arch.efer & EFER_LME) {
1553		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1554			vcpu->arch.efer |= EFER_LMA;
1555			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1556		}
1557
1558		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1559			vcpu->arch.efer &= ~EFER_LMA;
1560			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1561		}
1562	}
1563#endif
1564	vcpu->arch.cr0 = cr0;
1565
1566	if (!npt_enabled)
1567		cr0 |= X86_CR0_PG | X86_CR0_WP;
1568
1569	if (!vcpu->fpu_active)
1570		cr0 |= X86_CR0_TS;
1571	/*
1572	 * re-enable caching here because the QEMU bios
1573	 * does not do it - this results in some delay at
1574	 * reboot
1575	 */
1576	cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1577	svm->vmcb->save.cr0 = cr0;
1578	mark_dirty(svm->vmcb, VMCB_CR);
1579	update_cr0_intercept(svm);
1580}
1581
1582static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1583{
1584	unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1585	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1586
1587	if (cr4 & X86_CR4_VMXE)
1588		return 1;
1589
1590	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1591		svm_flush_tlb(vcpu);
1592
1593	vcpu->arch.cr4 = cr4;
1594	if (!npt_enabled)
1595		cr4 |= X86_CR4_PAE;
1596	cr4 |= host_cr4_mce;
1597	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1598	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1599	return 0;
1600}
1601
1602static void svm_set_segment(struct kvm_vcpu *vcpu,
1603			    struct kvm_segment *var, int seg)
1604{
1605	struct vcpu_svm *svm = to_svm(vcpu);
1606	struct vmcb_seg *s = svm_seg(vcpu, seg);
1607
1608	s->base = var->base;
1609	s->limit = var->limit;
1610	s->selector = var->selector;
1611	if (var->unusable)
1612		s->attrib = 0;
1613	else {
1614		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1615		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1616		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1617		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1618		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1619		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1620		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1621		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1622	}
1623
1624	/*
1625	 * This is always accurate, except if SYSRET returned to a segment
1626	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1627	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1628	 * would entail passing the CPL to userspace and back.
1629	 */
1630	if (seg == VCPU_SREG_SS)
1631		svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1632
1633	mark_dirty(svm->vmcb, VMCB_SEG);
1634}
1635
1636static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1637{
1638	struct vcpu_svm *svm = to_svm(vcpu);
1639
1640	clr_exception_intercept(svm, DB_VECTOR);
1641	clr_exception_intercept(svm, BP_VECTOR);
1642
1643	if (svm->nmi_singlestep)
1644		set_exception_intercept(svm, DB_VECTOR);
1645
1646	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1647		if (vcpu->guest_debug &
1648		    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1649			set_exception_intercept(svm, DB_VECTOR);
1650		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1651			set_exception_intercept(svm, BP_VECTOR);
1652	} else
1653		vcpu->guest_debug = 0;
1654}
1655
1656static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1657{
1658	if (sd->next_asid > sd->max_asid) {
1659		++sd->asid_generation;
1660		sd->next_asid = 1;
1661		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1662	}
1663
1664	svm->asid_generation = sd->asid_generation;
1665	svm->vmcb->control.asid = sd->next_asid++;
1666
1667	mark_dirty(svm->vmcb, VMCB_ASID);
1668}
1669
1670static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1671{
1672	return to_svm(vcpu)->vmcb->save.dr6;
1673}
1674
1675static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1676{
1677	struct vcpu_svm *svm = to_svm(vcpu);
1678
1679	svm->vmcb->save.dr6 = value;
1680	mark_dirty(svm->vmcb, VMCB_DR);
1681}
1682
1683static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1684{
1685	struct vcpu_svm *svm = to_svm(vcpu);
1686
1687	get_debugreg(vcpu->arch.db[0], 0);
1688	get_debugreg(vcpu->arch.db[1], 1);
1689	get_debugreg(vcpu->arch.db[2], 2);
1690	get_debugreg(vcpu->arch.db[3], 3);
1691	vcpu->arch.dr6 = svm_get_dr6(vcpu);
1692	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1693
1694	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1695	set_dr_intercepts(svm);
1696}
1697
1698static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1699{
1700	struct vcpu_svm *svm = to_svm(vcpu);
1701
1702	svm->vmcb->save.dr7 = value;
1703	mark_dirty(svm->vmcb, VMCB_DR);
1704}
1705
1706static int pf_interception(struct vcpu_svm *svm)
1707{
1708	u64 fault_address = svm->vmcb->control.exit_info_2;
1709	u32 error_code;
1710	int r = 1;
1711
1712	switch (svm->apf_reason) {
1713	default:
1714		error_code = svm->vmcb->control.exit_info_1;
1715
1716		trace_kvm_page_fault(fault_address, error_code);
1717		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1718			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1719		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1720			svm->vmcb->control.insn_bytes,
1721			svm->vmcb->control.insn_len);
1722		break;
1723	case KVM_PV_REASON_PAGE_NOT_PRESENT:
1724		svm->apf_reason = 0;
1725		local_irq_disable();
1726		kvm_async_pf_task_wait(fault_address);
1727		local_irq_enable();
1728		break;
1729	case KVM_PV_REASON_PAGE_READY:
1730		svm->apf_reason = 0;
1731		local_irq_disable();
1732		kvm_async_pf_task_wake(fault_address);
1733		local_irq_enable();
1734		break;
1735	}
1736	return r;
1737}
1738
1739static int db_interception(struct vcpu_svm *svm)
1740{
1741	struct kvm_run *kvm_run = svm->vcpu.run;
1742
1743	if (!(svm->vcpu.guest_debug &
1744	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1745		!svm->nmi_singlestep) {
1746		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1747		return 1;
1748	}
1749
1750	if (svm->nmi_singlestep) {
1751		svm->nmi_singlestep = false;
1752		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1753			svm->vmcb->save.rflags &=
1754				~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1755		update_db_bp_intercept(&svm->vcpu);
1756	}
1757
1758	if (svm->vcpu.guest_debug &
1759	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1760		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1761		kvm_run->debug.arch.pc =
1762			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1763		kvm_run->debug.arch.exception = DB_VECTOR;
1764		return 0;
1765	}
1766
1767	return 1;
1768}
1769
1770static int bp_interception(struct vcpu_svm *svm)
1771{
1772	struct kvm_run *kvm_run = svm->vcpu.run;
1773
1774	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1775	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1776	kvm_run->debug.arch.exception = BP_VECTOR;
1777	return 0;
1778}
1779
1780static int ud_interception(struct vcpu_svm *svm)
1781{
1782	int er;
1783
1784	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1785	if (er != EMULATE_DONE)
1786		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1787	return 1;
1788}
1789
1790static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1791{
1792	struct vcpu_svm *svm = to_svm(vcpu);
1793
1794	clr_exception_intercept(svm, NM_VECTOR);
1795
1796	svm->vcpu.fpu_active = 1;
1797	update_cr0_intercept(svm);
1798}
1799
1800static int nm_interception(struct vcpu_svm *svm)
1801{
1802	svm_fpu_activate(&svm->vcpu);
1803	return 1;
1804}
1805
1806static bool is_erratum_383(void)
1807{
1808	int err, i;
1809	u64 value;
1810
1811	if (!erratum_383_found)
1812		return false;
1813
1814	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1815	if (err)
1816		return false;
1817
1818	/* Bit 62 may or may not be set for this mce */
1819	value &= ~(1ULL << 62);
1820
1821	if (value != 0xb600000000010015ULL)
1822		return false;
1823
1824	/* Clear MCi_STATUS registers */
1825	for (i = 0; i < 6; ++i)
1826		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1827
1828	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1829	if (!err) {
1830		u32 low, high;
1831
1832		value &= ~(1ULL << 2);
1833		low    = lower_32_bits(value);
1834		high   = upper_32_bits(value);
1835
1836		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1837	}
1838
1839	/* Flush tlb to evict multi-match entries */
1840	__flush_tlb_all();
1841
1842	return true;
1843}
1844
1845static void svm_handle_mce(struct vcpu_svm *svm)
1846{
1847	if (is_erratum_383()) {
1848		/*
1849		 * Erratum 383 triggered. Guest state is corrupt so kill the
1850		 * guest.
1851		 */
1852		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1853
1854		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1855
1856		return;
1857	}
1858
1859	/*
1860	 * On an #MC intercept the MCE handler is not called automatically in
1861	 * the host. So do it by hand here.
1862	 */
1863	asm volatile (
1864		"int $0x12\n");
1865	/* not sure if we ever come back to this point */
1866
1867	return;
1868}
1869
1870static int mc_interception(struct vcpu_svm *svm)
1871{
1872	return 1;
1873}
1874
1875static int shutdown_interception(struct vcpu_svm *svm)
1876{
1877	struct kvm_run *kvm_run = svm->vcpu.run;
1878
1879	/*
1880	 * VMCB is undefined after a SHUTDOWN intercept
1881	 * so reinitialize it.
1882	 */
1883	clear_page(svm->vmcb);
1884	init_vmcb(svm);
1885
1886	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1887	return 0;
1888}
1889
1890static int io_interception(struct vcpu_svm *svm)
1891{
1892	struct kvm_vcpu *vcpu = &svm->vcpu;
1893	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1894	int size, in, string;
1895	unsigned port;
1896
1897	++svm->vcpu.stat.io_exits;
1898	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1899	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1900	if (string || in)
1901		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1902
1903	port = io_info >> 16;
1904	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1905	svm->next_rip = svm->vmcb->control.exit_info_2;
1906	skip_emulated_instruction(&svm->vcpu);
1907
1908	return kvm_fast_pio_out(vcpu, size, port);
1909}
1910
1911static int nmi_interception(struct vcpu_svm *svm)
1912{
1913	return 1;
1914}
1915
1916static int intr_interception(struct vcpu_svm *svm)
1917{
1918	++svm->vcpu.stat.irq_exits;
1919	return 1;
1920}
1921
1922static int nop_on_interception(struct vcpu_svm *svm)
1923{
1924	return 1;
1925}
1926
1927static int halt_interception(struct vcpu_svm *svm)
1928{
1929	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1930	skip_emulated_instruction(&svm->vcpu);
1931	return kvm_emulate_halt(&svm->vcpu);
1932}
1933
1934static int vmmcall_interception(struct vcpu_svm *svm)
1935{
1936	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1937	skip_emulated_instruction(&svm->vcpu);
1938	kvm_emulate_hypercall(&svm->vcpu);
1939	return 1;
1940}
1941
1942static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1943{
1944	struct vcpu_svm *svm = to_svm(vcpu);
1945
1946	return svm->nested.nested_cr3;
1947}
1948
1949static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1950{
1951	struct vcpu_svm *svm = to_svm(vcpu);
1952	u64 cr3 = svm->nested.nested_cr3;
1953	u64 pdpte;
1954	int ret;
1955
1956	ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1957				  offset_in_page(cr3) + index * 8, 8);
1958	if (ret)
1959		return 0;
1960	return pdpte;
1961}
1962
1963static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1964				   unsigned long root)
1965{
1966	struct vcpu_svm *svm = to_svm(vcpu);
1967
1968	svm->vmcb->control.nested_cr3 = root;
1969	mark_dirty(svm->vmcb, VMCB_NPT);
1970	svm_flush_tlb(vcpu);
1971}
1972
1973static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1974				       struct x86_exception *fault)
1975{
1976	struct vcpu_svm *svm = to_svm(vcpu);
1977
1978	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1979		/*
1980		 * TODO: track the cause of the nested page fault, and
1981		 * correctly fill in the high bits of exit_info_1.
1982		 */
1983		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1984		svm->vmcb->control.exit_code_hi = 0;
1985		svm->vmcb->control.exit_info_1 = (1ULL << 32);
1986		svm->vmcb->control.exit_info_2 = fault->address;
1987	}
1988
1989	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1990	svm->vmcb->control.exit_info_1 |= fault->error_code;
1991
1992	/*
1993	 * The present bit is always zero for page structure faults on real
1994	 * hardware.
1995	 */
1996	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1997		svm->vmcb->control.exit_info_1 &= ~1;
1998
1999	nested_svm_vmexit(svm);
2000}
2001
2002static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2003{
2004	kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
2005
2006	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2007	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2008	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2009	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2010	vcpu->arch.mmu.shadow_root_level = get_npt_level();
2011	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2012}
2013
2014static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2015{
2016	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2017}
2018
2019static int nested_svm_check_permissions(struct vcpu_svm *svm)
2020{
2021	if (!(svm->vcpu.arch.efer & EFER_SVME)
2022	    || !is_paging(&svm->vcpu)) {
2023		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2024		return 1;
2025	}
2026
2027	if (svm->vmcb->save.cpl) {
2028		kvm_inject_gp(&svm->vcpu, 0);
2029		return 1;
2030	}
2031
2032       return 0;
2033}
2034
2035static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2036				      bool has_error_code, u32 error_code)
2037{
2038	int vmexit;
2039
2040	if (!is_guest_mode(&svm->vcpu))
2041		return 0;
2042
2043	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2044	svm->vmcb->control.exit_code_hi = 0;
2045	svm->vmcb->control.exit_info_1 = error_code;
2046	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2047
2048	vmexit = nested_svm_intercept(svm);
2049	if (vmexit == NESTED_EXIT_DONE)
2050		svm->nested.exit_required = true;
2051
2052	return vmexit;
2053}
2054
2055/* This function returns true if it is save to enable the irq window */
2056static inline bool nested_svm_intr(struct vcpu_svm *svm)
2057{
2058	if (!is_guest_mode(&svm->vcpu))
2059		return true;
2060
2061	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2062		return true;
2063
2064	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2065		return false;
2066
2067	/*
2068	 * if vmexit was already requested (by intercepted exception
2069	 * for instance) do not overwrite it with "external interrupt"
2070	 * vmexit.
2071	 */
2072	if (svm->nested.exit_required)
2073		return false;
2074
2075	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2076	svm->vmcb->control.exit_info_1 = 0;
2077	svm->vmcb->control.exit_info_2 = 0;
2078
2079	if (svm->nested.intercept & 1ULL) {
2080		/*
2081		 * The #vmexit can't be emulated here directly because this
2082		 * code path runs with irqs and preemption disabled. A
2083		 * #vmexit emulation might sleep. Only signal request for
2084		 * the #vmexit here.
2085		 */
2086		svm->nested.exit_required = true;
2087		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2088		return false;
2089	}
2090
2091	return true;
2092}
2093
2094/* This function returns true if it is save to enable the nmi window */
2095static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2096{
2097	if (!is_guest_mode(&svm->vcpu))
2098		return true;
2099
2100	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2101		return true;
2102
2103	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2104	svm->nested.exit_required = true;
2105
2106	return false;
2107}
2108
2109static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2110{
2111	struct page *page;
2112
2113	might_sleep();
2114
2115	page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2116	if (is_error_page(page))
2117		goto error;
2118
2119	*_page = page;
2120
2121	return kmap(page);
2122
2123error:
2124	kvm_inject_gp(&svm->vcpu, 0);
2125
2126	return NULL;
2127}
2128
2129static void nested_svm_unmap(struct page *page)
2130{
2131	kunmap(page);
2132	kvm_release_page_dirty(page);
2133}
2134
2135static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2136{
2137	unsigned port, size, iopm_len;
2138	u16 val, mask;
2139	u8 start_bit;
2140	u64 gpa;
2141
2142	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2143		return NESTED_EXIT_HOST;
2144
2145	port = svm->vmcb->control.exit_info_1 >> 16;
2146	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2147		SVM_IOIO_SIZE_SHIFT;
2148	gpa  = svm->nested.vmcb_iopm + (port / 8);
2149	start_bit = port % 8;
2150	iopm_len = (start_bit + size > 8) ? 2 : 1;
2151	mask = (0xf >> (4 - size)) << start_bit;
2152	val = 0;
2153
2154	if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2155		return NESTED_EXIT_DONE;
2156
2157	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2158}
2159
2160static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2161{
2162	u32 offset, msr, value;
2163	int write, mask;
2164
2165	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2166		return NESTED_EXIT_HOST;
2167
2168	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2169	offset = svm_msrpm_offset(msr);
2170	write  = svm->vmcb->control.exit_info_1 & 1;
2171	mask   = 1 << ((2 * (msr & 0xf)) + write);
2172
2173	if (offset == MSR_INVALID)
2174		return NESTED_EXIT_DONE;
2175
2176	/* Offset is in 32 bit units but need in 8 bit units */
2177	offset *= 4;
2178
2179	if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2180		return NESTED_EXIT_DONE;
2181
2182	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2183}
2184
2185static int nested_svm_exit_special(struct vcpu_svm *svm)
2186{
2187	u32 exit_code = svm->vmcb->control.exit_code;
2188
2189	switch (exit_code) {
2190	case SVM_EXIT_INTR:
2191	case SVM_EXIT_NMI:
2192	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2193		return NESTED_EXIT_HOST;
2194	case SVM_EXIT_NPF:
2195		/* For now we are always handling NPFs when using them */
2196		if (npt_enabled)
2197			return NESTED_EXIT_HOST;
2198		break;
2199	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2200		/* When we're shadowing, trap PFs, but not async PF */
2201		if (!npt_enabled && svm->apf_reason == 0)
2202			return NESTED_EXIT_HOST;
2203		break;
2204	case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2205		nm_interception(svm);
2206		break;
2207	default:
2208		break;
2209	}
2210
2211	return NESTED_EXIT_CONTINUE;
2212}
2213
2214/*
2215 * If this function returns true, this #vmexit was already handled
2216 */
2217static int nested_svm_intercept(struct vcpu_svm *svm)
2218{
2219	u32 exit_code = svm->vmcb->control.exit_code;
2220	int vmexit = NESTED_EXIT_HOST;
2221
2222	switch (exit_code) {
2223	case SVM_EXIT_MSR:
2224		vmexit = nested_svm_exit_handled_msr(svm);
2225		break;
2226	case SVM_EXIT_IOIO:
2227		vmexit = nested_svm_intercept_ioio(svm);
2228		break;
2229	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2230		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2231		if (svm->nested.intercept_cr & bit)
2232			vmexit = NESTED_EXIT_DONE;
2233		break;
2234	}
2235	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2236		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2237		if (svm->nested.intercept_dr & bit)
2238			vmexit = NESTED_EXIT_DONE;
2239		break;
2240	}
2241	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2242		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2243		if (svm->nested.intercept_exceptions & excp_bits)
2244			vmexit = NESTED_EXIT_DONE;
2245		/* async page fault always cause vmexit */
2246		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2247			 svm->apf_reason != 0)
2248			vmexit = NESTED_EXIT_DONE;
2249		break;
2250	}
2251	case SVM_EXIT_ERR: {
2252		vmexit = NESTED_EXIT_DONE;
2253		break;
2254	}
2255	default: {
2256		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2257		if (svm->nested.intercept & exit_bits)
2258			vmexit = NESTED_EXIT_DONE;
2259	}
2260	}
2261
2262	return vmexit;
2263}
2264
2265static int nested_svm_exit_handled(struct vcpu_svm *svm)
2266{
2267	int vmexit;
2268
2269	vmexit = nested_svm_intercept(svm);
2270
2271	if (vmexit == NESTED_EXIT_DONE)
2272		nested_svm_vmexit(svm);
2273
2274	return vmexit;
2275}
2276
2277static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2278{
2279	struct vmcb_control_area *dst  = &dst_vmcb->control;
2280	struct vmcb_control_area *from = &from_vmcb->control;
2281
2282	dst->intercept_cr         = from->intercept_cr;
2283	dst->intercept_dr         = from->intercept_dr;
2284	dst->intercept_exceptions = from->intercept_exceptions;
2285	dst->intercept            = from->intercept;
2286	dst->iopm_base_pa         = from->iopm_base_pa;
2287	dst->msrpm_base_pa        = from->msrpm_base_pa;
2288	dst->tsc_offset           = from->tsc_offset;
2289	dst->asid                 = from->asid;
2290	dst->tlb_ctl              = from->tlb_ctl;
2291	dst->int_ctl              = from->int_ctl;
2292	dst->int_vector           = from->int_vector;
2293	dst->int_state            = from->int_state;
2294	dst->exit_code            = from->exit_code;
2295	dst->exit_code_hi         = from->exit_code_hi;
2296	dst->exit_info_1          = from->exit_info_1;
2297	dst->exit_info_2          = from->exit_info_2;
2298	dst->exit_int_info        = from->exit_int_info;
2299	dst->exit_int_info_err    = from->exit_int_info_err;
2300	dst->nested_ctl           = from->nested_ctl;
2301	dst->event_inj            = from->event_inj;
2302	dst->event_inj_err        = from->event_inj_err;
2303	dst->nested_cr3           = from->nested_cr3;
2304	dst->lbr_ctl              = from->lbr_ctl;
2305}
2306
2307static int nested_svm_vmexit(struct vcpu_svm *svm)
2308{
2309	struct vmcb *nested_vmcb;
2310	struct vmcb *hsave = svm->nested.hsave;
2311	struct vmcb *vmcb = svm->vmcb;
2312	struct page *page;
2313
2314	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2315				       vmcb->control.exit_info_1,
2316				       vmcb->control.exit_info_2,
2317				       vmcb->control.exit_int_info,
2318				       vmcb->control.exit_int_info_err,
2319				       KVM_ISA_SVM);
2320
2321	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2322	if (!nested_vmcb)
2323		return 1;
2324
2325	/* Exit Guest-Mode */
2326	leave_guest_mode(&svm->vcpu);
2327	svm->nested.vmcb = 0;
2328
2329	/* Give the current vmcb to the guest */
2330	disable_gif(svm);
2331
2332	nested_vmcb->save.es     = vmcb->save.es;
2333	nested_vmcb->save.cs     = vmcb->save.cs;
2334	nested_vmcb->save.ss     = vmcb->save.ss;
2335	nested_vmcb->save.ds     = vmcb->save.ds;
2336	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2337	nested_vmcb->save.idtr   = vmcb->save.idtr;
2338	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2339	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2340	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2341	nested_vmcb->save.cr2    = vmcb->save.cr2;
2342	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2343	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2344	nested_vmcb->save.rip    = vmcb->save.rip;
2345	nested_vmcb->save.rsp    = vmcb->save.rsp;
2346	nested_vmcb->save.rax    = vmcb->save.rax;
2347	nested_vmcb->save.dr7    = vmcb->save.dr7;
2348	nested_vmcb->save.dr6    = vmcb->save.dr6;
2349	nested_vmcb->save.cpl    = vmcb->save.cpl;
2350
2351	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2352	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2353	nested_vmcb->control.int_state         = vmcb->control.int_state;
2354	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2355	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2356	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2357	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2358	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2359	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2360	nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2361
2362	/*
2363	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2364	 * to make sure that we do not lose injected events. So check event_inj
2365	 * here and copy it to exit_int_info if it is valid.
2366	 * Exit_int_info and event_inj can't be both valid because the case
2367	 * below only happens on a VMRUN instruction intercept which has
2368	 * no valid exit_int_info set.
2369	 */
2370	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2371		struct vmcb_control_area *nc = &nested_vmcb->control;
2372
2373		nc->exit_int_info     = vmcb->control.event_inj;
2374		nc->exit_int_info_err = vmcb->control.event_inj_err;
2375	}
2376
2377	nested_vmcb->control.tlb_ctl           = 0;
2378	nested_vmcb->control.event_inj         = 0;
2379	nested_vmcb->control.event_inj_err     = 0;
2380
2381	/* We always set V_INTR_MASKING and remember the old value in hflags */
2382	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2383		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2384
2385	/* Restore the original control entries */
2386	copy_vmcb_control_area(vmcb, hsave);
2387
2388	kvm_clear_exception_queue(&svm->vcpu);
2389	kvm_clear_interrupt_queue(&svm->vcpu);
2390
2391	svm->nested.nested_cr3 = 0;
2392
2393	/* Restore selected save entries */
2394	svm->vmcb->save.es = hsave->save.es;
2395	svm->vmcb->save.cs = hsave->save.cs;
2396	svm->vmcb->save.ss = hsave->save.ss;
2397	svm->vmcb->save.ds = hsave->save.ds;
2398	svm->vmcb->save.gdtr = hsave->save.gdtr;
2399	svm->vmcb->save.idtr = hsave->save.idtr;
2400	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2401	svm_set_efer(&svm->vcpu, hsave->save.efer);
2402	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2403	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2404	if (npt_enabled) {
2405		svm->vmcb->save.cr3 = hsave->save.cr3;
2406		svm->vcpu.arch.cr3 = hsave->save.cr3;
2407	} else {
2408		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2409	}
2410	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2411	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2412	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2413	svm->vmcb->save.dr7 = 0;
2414	svm->vmcb->save.cpl = 0;
2415	svm->vmcb->control.exit_int_info = 0;
2416
2417	mark_all_dirty(svm->vmcb);
2418
2419	nested_svm_unmap(page);
2420
2421	nested_svm_uninit_mmu_context(&svm->vcpu);
2422	kvm_mmu_reset_context(&svm->vcpu);
2423	kvm_mmu_load(&svm->vcpu);
2424
2425	return 0;
2426}
2427
2428static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2429{
2430	/*
2431	 * This function merges the msr permission bitmaps of kvm and the
2432	 * nested vmcb. It is optimized in that it only merges the parts where
2433	 * the kvm msr permission bitmap may contain zero bits
2434	 */
2435	int i;
2436
2437	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2438		return true;
2439
2440	for (i = 0; i < MSRPM_OFFSETS; i++) {
2441		u32 value, p;
2442		u64 offset;
2443
2444		if (msrpm_offsets[i] == 0xffffffff)
2445			break;
2446
2447		p      = msrpm_offsets[i];
2448		offset = svm->nested.vmcb_msrpm + (p * 4);
2449
2450		if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2451			return false;
2452
2453		svm->nested.msrpm[p] = svm->msrpm[p] | value;
2454	}
2455
2456	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2457
2458	return true;
2459}
2460
2461static bool nested_vmcb_checks(struct vmcb *vmcb)
2462{
2463	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2464		return false;
2465
2466	if (vmcb->control.asid == 0)
2467		return false;
2468
2469	if (vmcb->control.nested_ctl && !npt_enabled)
2470		return false;
2471
2472	return true;
2473}
2474
2475static bool nested_svm_vmrun(struct vcpu_svm *svm)
2476{
2477	struct vmcb *nested_vmcb;
2478	struct vmcb *hsave = svm->nested.hsave;
2479	struct vmcb *vmcb = svm->vmcb;
2480	struct page *page;
2481	u64 vmcb_gpa;
2482
2483	vmcb_gpa = svm->vmcb->save.rax;
2484
2485	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2486	if (!nested_vmcb)
2487		return false;
2488
2489	if (!nested_vmcb_checks(nested_vmcb)) {
2490		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2491		nested_vmcb->control.exit_code_hi = 0;
2492		nested_vmcb->control.exit_info_1  = 0;
2493		nested_vmcb->control.exit_info_2  = 0;
2494
2495		nested_svm_unmap(page);
2496
2497		return false;
2498	}
2499
2500	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2501			       nested_vmcb->save.rip,
2502			       nested_vmcb->control.int_ctl,
2503			       nested_vmcb->control.event_inj,
2504			       nested_vmcb->control.nested_ctl);
2505
2506	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2507				    nested_vmcb->control.intercept_cr >> 16,
2508				    nested_vmcb->control.intercept_exceptions,
2509				    nested_vmcb->control.intercept);
2510
2511	/* Clear internal status */
2512	kvm_clear_exception_queue(&svm->vcpu);
2513	kvm_clear_interrupt_queue(&svm->vcpu);
2514
2515	/*
2516	 * Save the old vmcb, so we don't need to pick what we save, but can
2517	 * restore everything when a VMEXIT occurs
2518	 */
2519	hsave->save.es     = vmcb->save.es;
2520	hsave->save.cs     = vmcb->save.cs;
2521	hsave->save.ss     = vmcb->save.ss;
2522	hsave->save.ds     = vmcb->save.ds;
2523	hsave->save.gdtr   = vmcb->save.gdtr;
2524	hsave->save.idtr   = vmcb->save.idtr;
2525	hsave->save.efer   = svm->vcpu.arch.efer;
2526	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2527	hsave->save.cr4    = svm->vcpu.arch.cr4;
2528	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2529	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2530	hsave->save.rsp    = vmcb->save.rsp;
2531	hsave->save.rax    = vmcb->save.rax;
2532	if (npt_enabled)
2533		hsave->save.cr3    = vmcb->save.cr3;
2534	else
2535		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2536
2537	copy_vmcb_control_area(hsave, vmcb);
2538
2539	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2540		svm->vcpu.arch.hflags |= HF_HIF_MASK;
2541	else
2542		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2543
2544	if (nested_vmcb->control.nested_ctl) {
2545		kvm_mmu_unload(&svm->vcpu);
2546		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2547		nested_svm_init_mmu_context(&svm->vcpu);
2548	}
2549
2550	/* Load the nested guest state */
2551	svm->vmcb->save.es = nested_vmcb->save.es;
2552	svm->vmcb->save.cs = nested_vmcb->save.cs;
2553	svm->vmcb->save.ss = nested_vmcb->save.ss;
2554	svm->vmcb->save.ds = nested_vmcb->save.ds;
2555	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2556	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2557	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2558	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2559	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2560	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2561	if (npt_enabled) {
2562		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2563		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2564	} else
2565		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2566
2567	/* Guest paging mode is active - reset mmu */
2568	kvm_mmu_reset_context(&svm->vcpu);
2569
2570	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2571	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2572	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2573	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2574
2575	/* In case we don't even reach vcpu_run, the fields are not updated */
2576	svm->vmcb->save.rax = nested_vmcb->save.rax;
2577	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2578	svm->vmcb->save.rip = nested_vmcb->save.rip;
2579	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2580	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2581	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2582
2583	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2584	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2585
2586	/* cache intercepts */
2587	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2588	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2589	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2590	svm->nested.intercept            = nested_vmcb->control.intercept;
2591
2592	svm_flush_tlb(&svm->vcpu);
2593	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2594	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2595		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2596	else
2597		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2598
2599	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2600		/* We only want the cr8 intercept bits of the guest */
2601		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2602		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2603	}
2604
2605	/* We don't want to see VMMCALLs from a nested guest */
2606	clr_intercept(svm, INTERCEPT_VMMCALL);
2607
2608	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2609	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2610	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2611	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2612	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2613	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2614
2615	nested_svm_unmap(page);
2616
2617	/* Enter Guest-Mode */
2618	enter_guest_mode(&svm->vcpu);
2619
2620	/*
2621	 * Merge guest and host intercepts - must be called  with vcpu in
2622	 * guest-mode to take affect here
2623	 */
2624	recalc_intercepts(svm);
2625
2626	svm->nested.vmcb = vmcb_gpa;
2627
2628	enable_gif(svm);
2629
2630	mark_all_dirty(svm->vmcb);
2631
2632	return true;
2633}
2634
2635static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2636{
2637	to_vmcb->save.fs = from_vmcb->save.fs;
2638	to_vmcb->save.gs = from_vmcb->save.gs;
2639	to_vmcb->save.tr = from_vmcb->save.tr;
2640	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2641	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2642	to_vmcb->save.star = from_vmcb->save.star;
2643	to_vmcb->save.lstar = from_vmcb->save.lstar;
2644	to_vmcb->save.cstar = from_vmcb->save.cstar;
2645	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2646	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2647	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2648	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2649}
2650
2651static int vmload_interception(struct vcpu_svm *svm)
2652{
2653	struct vmcb *nested_vmcb;
2654	struct page *page;
2655
2656	if (nested_svm_check_permissions(svm))
2657		return 1;
2658
2659	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2660	if (!nested_vmcb)
2661		return 1;
2662
2663	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2664	skip_emulated_instruction(&svm->vcpu);
2665
2666	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2667	nested_svm_unmap(page);
2668
2669	return 1;
2670}
2671
2672static int vmsave_interception(struct vcpu_svm *svm)
2673{
2674	struct vmcb *nested_vmcb;
2675	struct page *page;
2676
2677	if (nested_svm_check_permissions(svm))
2678		return 1;
2679
2680	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2681	if (!nested_vmcb)
2682		return 1;
2683
2684	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2685	skip_emulated_instruction(&svm->vcpu);
2686
2687	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2688	nested_svm_unmap(page);
2689
2690	return 1;
2691}
2692
2693static int vmrun_interception(struct vcpu_svm *svm)
2694{
2695	if (nested_svm_check_permissions(svm))
2696		return 1;
2697
2698	/* Save rip after vmrun instruction */
2699	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2700
2701	if (!nested_svm_vmrun(svm))
2702		return 1;
2703
2704	if (!nested_svm_vmrun_msrpm(svm))
2705		goto failed;
2706
2707	return 1;
2708
2709failed:
2710
2711	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2712	svm->vmcb->control.exit_code_hi = 0;
2713	svm->vmcb->control.exit_info_1  = 0;
2714	svm->vmcb->control.exit_info_2  = 0;
2715
2716	nested_svm_vmexit(svm);
2717
2718	return 1;
2719}
2720
2721static int stgi_interception(struct vcpu_svm *svm)
2722{
2723	if (nested_svm_check_permissions(svm))
2724		return 1;
2725
2726	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2727	skip_emulated_instruction(&svm->vcpu);
2728	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2729
2730	enable_gif(svm);
2731
2732	return 1;
2733}
2734
2735static int clgi_interception(struct vcpu_svm *svm)
2736{
2737	if (nested_svm_check_permissions(svm))
2738		return 1;
2739
2740	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2741	skip_emulated_instruction(&svm->vcpu);
2742
2743	disable_gif(svm);
2744
2745	/* After a CLGI no interrupts should come */
2746	svm_clear_vintr(svm);
2747	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2748
2749	mark_dirty(svm->vmcb, VMCB_INTR);
2750
2751	return 1;
2752}
2753
2754static int invlpga_interception(struct vcpu_svm *svm)
2755{
2756	struct kvm_vcpu *vcpu = &svm->vcpu;
2757
2758	trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2759			  vcpu->arch.regs[VCPU_REGS_RAX]);
2760
2761	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2762	kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2763
2764	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2765	skip_emulated_instruction(&svm->vcpu);
2766	return 1;
2767}
2768
2769static int skinit_interception(struct vcpu_svm *svm)
2770{
2771	trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2772
2773	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2774	return 1;
2775}
2776
2777static int xsetbv_interception(struct vcpu_svm *svm)
2778{
2779	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2780	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2781
2782	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2783		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2784		skip_emulated_instruction(&svm->vcpu);
2785	}
2786
2787	return 1;
2788}
2789
2790static int task_switch_interception(struct vcpu_svm *svm)
2791{
2792	u16 tss_selector;
2793	int reason;
2794	int int_type = svm->vmcb->control.exit_int_info &
2795		SVM_EXITINTINFO_TYPE_MASK;
2796	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2797	uint32_t type =
2798		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2799	uint32_t idt_v =
2800		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2801	bool has_error_code = false;
2802	u32 error_code = 0;
2803
2804	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2805
2806	if (svm->vmcb->control.exit_info_2 &
2807	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2808		reason = TASK_SWITCH_IRET;
2809	else if (svm->vmcb->control.exit_info_2 &
2810		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2811		reason = TASK_SWITCH_JMP;
2812	else if (idt_v)
2813		reason = TASK_SWITCH_GATE;
2814	else
2815		reason = TASK_SWITCH_CALL;
2816
2817	if (reason == TASK_SWITCH_GATE) {
2818		switch (type) {
2819		case SVM_EXITINTINFO_TYPE_NMI:
2820			svm->vcpu.arch.nmi_injected = false;
2821			break;
2822		case SVM_EXITINTINFO_TYPE_EXEPT:
2823			if (svm->vmcb->control.exit_info_2 &
2824			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2825				has_error_code = true;
2826				error_code =
2827					(u32)svm->vmcb->control.exit_info_2;
2828			}
2829			kvm_clear_exception_queue(&svm->vcpu);
2830			break;
2831		case SVM_EXITINTINFO_TYPE_INTR:
2832			kvm_clear_interrupt_queue(&svm->vcpu);
2833			break;
2834		default:
2835			break;
2836		}
2837	}
2838
2839	if (reason != TASK_SWITCH_GATE ||
2840	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2841	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2842	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2843		skip_emulated_instruction(&svm->vcpu);
2844
2845	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2846		int_vec = -1;
2847
2848	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2849				has_error_code, error_code) == EMULATE_FAIL) {
2850		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2851		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2852		svm->vcpu.run->internal.ndata = 0;
2853		return 0;
2854	}
2855	return 1;
2856}
2857
2858static int cpuid_interception(struct vcpu_svm *svm)
2859{
2860	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2861	kvm_emulate_cpuid(&svm->vcpu);
2862	return 1;
2863}
2864
2865static int iret_interception(struct vcpu_svm *svm)
2866{
2867	++svm->vcpu.stat.nmi_window_exits;
2868	clr_intercept(svm, INTERCEPT_IRET);
2869	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2870	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2871	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2872	return 1;
2873}
2874
2875static int invlpg_interception(struct vcpu_svm *svm)
2876{
2877	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2878		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2879
2880	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2881	skip_emulated_instruction(&svm->vcpu);
2882	return 1;
2883}
2884
2885static int emulate_on_interception(struct vcpu_svm *svm)
2886{
2887	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2888}
2889
2890static int rdpmc_interception(struct vcpu_svm *svm)
2891{
2892	int err;
2893
2894	if (!static_cpu_has(X86_FEATURE_NRIPS))
2895		return emulate_on_interception(svm);
2896
2897	err = kvm_rdpmc(&svm->vcpu);
2898	kvm_complete_insn_gp(&svm->vcpu, err);
2899
2900	return 1;
2901}
2902
2903bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2904{
2905	unsigned long cr0 = svm->vcpu.arch.cr0;
2906	bool ret = false;
2907	u64 intercept;
2908
2909	intercept = svm->nested.intercept;
2910
2911	if (!is_guest_mode(&svm->vcpu) ||
2912	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2913		return false;
2914
2915	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2916	val &= ~SVM_CR0_SELECTIVE_MASK;
2917
2918	if (cr0 ^ val) {
2919		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2920		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2921	}
2922
2923	return ret;
2924}
2925
2926#define CR_VALID (1ULL << 63)
2927
2928static int cr_interception(struct vcpu_svm *svm)
2929{
2930	int reg, cr;
2931	unsigned long val;
2932	int err;
2933
2934	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2935		return emulate_on_interception(svm);
2936
2937	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2938		return emulate_on_interception(svm);
2939
2940	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2941	cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2942
2943	err = 0;
2944	if (cr >= 16) { /* mov to cr */
2945		cr -= 16;
2946		val = kvm_register_read(&svm->vcpu, reg);
2947		switch (cr) {
2948		case 0:
2949			if (!check_selective_cr0_intercepted(svm, val))
2950				err = kvm_set_cr0(&svm->vcpu, val);
2951			else
2952				return 1;
2953
2954			break;
2955		case 3:
2956			err = kvm_set_cr3(&svm->vcpu, val);
2957			break;
2958		case 4:
2959			err = kvm_set_cr4(&svm->vcpu, val);
2960			break;
2961		case 8:
2962			err = kvm_set_cr8(&svm->vcpu, val);
2963			break;
2964		default:
2965			WARN(1, "unhandled write to CR%d", cr);
2966			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2967			return 1;
2968		}
2969	} else { /* mov from cr */
2970		switch (cr) {
2971		case 0:
2972			val = kvm_read_cr0(&svm->vcpu);
2973			break;
2974		case 2:
2975			val = svm->vcpu.arch.cr2;
2976			break;
2977		case 3:
2978			val = kvm_read_cr3(&svm->vcpu);
2979			break;
2980		case 4:
2981			val = kvm_read_cr4(&svm->vcpu);
2982			break;
2983		case 8:
2984			val = kvm_get_cr8(&svm->vcpu);
2985			break;
2986		default:
2987			WARN(1, "unhandled read from CR%d", cr);
2988			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2989			return 1;
2990		}
2991		kvm_register_write(&svm->vcpu, reg, val);
2992	}
2993	kvm_complete_insn_gp(&svm->vcpu, err);
2994
2995	return 1;
2996}
2997
2998static int dr_interception(struct vcpu_svm *svm)
2999{
3000	int reg, dr;
3001	unsigned long val;
3002	int err;
3003
3004	if (svm->vcpu.guest_debug == 0) {
3005		/*
3006		 * No more DR vmexits; force a reload of the debug registers
3007		 * and reenter on this instruction.  The next vmexit will
3008		 * retrieve the full state of the debug registers.
3009		 */
3010		clr_dr_intercepts(svm);
3011		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3012		return 1;
3013	}
3014
3015	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3016		return emulate_on_interception(svm);
3017
3018	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3019	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3020
3021	if (dr >= 16) { /* mov to DRn */
3022		val = kvm_register_read(&svm->vcpu, reg);
3023		kvm_set_dr(&svm->vcpu, dr - 16, val);
3024	} else {
3025		err = kvm_get_dr(&svm->vcpu, dr, &val);
3026		if (!err)
3027			kvm_register_write(&svm->vcpu, reg, val);
3028	}
3029
3030	skip_emulated_instruction(&svm->vcpu);
3031
3032	return 1;
3033}
3034
3035static int cr8_write_interception(struct vcpu_svm *svm)
3036{
3037	struct kvm_run *kvm_run = svm->vcpu.run;
3038	int r;
3039
3040	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3041	/* instruction emulation calls kvm_set_cr8() */
3042	r = cr_interception(svm);
3043	if (irqchip_in_kernel(svm->vcpu.kvm))
3044		return r;
3045	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3046		return r;
3047	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3048	return 0;
3049}
3050
3051static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3052{
3053	struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3054	return vmcb->control.tsc_offset +
3055		svm_scale_tsc(vcpu, host_tsc);
3056}
3057
3058static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3059{
3060	struct vcpu_svm *svm = to_svm(vcpu);
3061
3062	switch (ecx) {
3063	case MSR_IA32_TSC: {
3064		*data = svm->vmcb->control.tsc_offset +
3065			svm_scale_tsc(vcpu, native_read_tsc());
3066
3067		break;
3068	}
3069	case MSR_STAR:
3070		*data = svm->vmcb->save.star;
3071		break;
3072#ifdef CONFIG_X86_64
3073	case MSR_LSTAR:
3074		*data = svm->vmcb->save.lstar;
3075		break;
3076	case MSR_CSTAR:
3077		*data = svm->vmcb->save.cstar;
3078		break;
3079	case MSR_KERNEL_GS_BASE:
3080		*data = svm->vmcb->save.kernel_gs_base;
3081		break;
3082	case MSR_SYSCALL_MASK:
3083		*data = svm->vmcb->save.sfmask;
3084		break;
3085#endif
3086	case MSR_IA32_SYSENTER_CS:
3087		*data = svm->vmcb->save.sysenter_cs;
3088		break;
3089	case MSR_IA32_SYSENTER_EIP:
3090		*data = svm->sysenter_eip;
3091		break;
3092	case MSR_IA32_SYSENTER_ESP:
3093		*data = svm->sysenter_esp;
3094		break;
3095	/*
3096	 * Nobody will change the following 5 values in the VMCB so we can
3097	 * safely return them on rdmsr. They will always be 0 until LBRV is
3098	 * implemented.
3099	 */
3100	case MSR_IA32_DEBUGCTLMSR:
3101		*data = svm->vmcb->save.dbgctl;
3102		break;
3103	case MSR_IA32_LASTBRANCHFROMIP:
3104		*data = svm->vmcb->save.br_from;
3105		break;
3106	case MSR_IA32_LASTBRANCHTOIP:
3107		*data = svm->vmcb->save.br_to;
3108		break;
3109	case MSR_IA32_LASTINTFROMIP:
3110		*data = svm->vmcb->save.last_excp_from;
3111		break;
3112	case MSR_IA32_LASTINTTOIP:
3113		*data = svm->vmcb->save.last_excp_to;
3114		break;
3115	case MSR_VM_HSAVE_PA:
3116		*data = svm->nested.hsave_msr;
3117		break;
3118	case MSR_VM_CR:
3119		*data = svm->nested.vm_cr_msr;
3120		break;
3121	case MSR_IA32_UCODE_REV:
3122		*data = 0x01000065;
3123		break;
3124	default:
3125		return kvm_get_msr_common(vcpu, ecx, data);
3126	}
3127	return 0;
3128}
3129
3130static int rdmsr_interception(struct vcpu_svm *svm)
3131{
3132	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3133	u64 data;
3134
3135	if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3136		trace_kvm_msr_read_ex(ecx);
3137		kvm_inject_gp(&svm->vcpu, 0);
3138	} else {
3139		trace_kvm_msr_read(ecx, data);
3140
3141		svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3142		svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3143		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3144		skip_emulated_instruction(&svm->vcpu);
3145	}
3146	return 1;
3147}
3148
3149static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3150{
3151	struct vcpu_svm *svm = to_svm(vcpu);
3152	int svm_dis, chg_mask;
3153
3154	if (data & ~SVM_VM_CR_VALID_MASK)
3155		return 1;
3156
3157	chg_mask = SVM_VM_CR_VALID_MASK;
3158
3159	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3160		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3161
3162	svm->nested.vm_cr_msr &= ~chg_mask;
3163	svm->nested.vm_cr_msr |= (data & chg_mask);
3164
3165	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3166
3167	/* check for svm_disable while efer.svme is set */
3168	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3169		return 1;
3170
3171	return 0;
3172}
3173
3174static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3175{
3176	struct vcpu_svm *svm = to_svm(vcpu);
3177
3178	u32 ecx = msr->index;
3179	u64 data = msr->data;
3180	switch (ecx) {
3181	case MSR_IA32_TSC:
3182		kvm_write_tsc(vcpu, msr);
3183		break;
3184	case MSR_STAR:
3185		svm->vmcb->save.star = data;
3186		break;
3187#ifdef CONFIG_X86_64
3188	case MSR_LSTAR:
3189		svm->vmcb->save.lstar = data;
3190		break;
3191	case MSR_CSTAR:
3192		svm->vmcb->save.cstar = data;
3193		break;
3194	case MSR_KERNEL_GS_BASE:
3195		svm->vmcb->save.kernel_gs_base = data;
3196		break;
3197	case MSR_SYSCALL_MASK:
3198		svm->vmcb->save.sfmask = data;
3199		break;
3200#endif
3201	case MSR_IA32_SYSENTER_CS:
3202		svm->vmcb->save.sysenter_cs = data;
3203		break;
3204	case MSR_IA32_SYSENTER_EIP:
3205		svm->sysenter_eip = data;
3206		svm->vmcb->save.sysenter_eip = data;
3207		break;
3208	case MSR_IA32_SYSENTER_ESP:
3209		svm->sysenter_esp = data;
3210		svm->vmcb->save.sysenter_esp = data;
3211		break;
3212	case MSR_IA32_DEBUGCTLMSR:
3213		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3214			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3215				    __func__, data);
3216			break;
3217		}
3218		if (data & DEBUGCTL_RESERVED_BITS)
3219			return 1;
3220
3221		svm->vmcb->save.dbgctl = data;
3222		mark_dirty(svm->vmcb, VMCB_LBR);
3223		if (data & (1ULL<<0))
3224			svm_enable_lbrv(svm);
3225		else
3226			svm_disable_lbrv(svm);
3227		break;
3228	case MSR_VM_HSAVE_PA:
3229		svm->nested.hsave_msr = data;
3230		break;
3231	case MSR_VM_CR:
3232		return svm_set_vm_cr(vcpu, data);
3233	case MSR_VM_IGNNE:
3234		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3235		break;
3236	default:
3237		return kvm_set_msr_common(vcpu, msr);
3238	}
3239	return 0;
3240}
3241
3242static int wrmsr_interception(struct vcpu_svm *svm)
3243{
3244	struct msr_data msr;
3245	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3246	u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3247		| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3248
3249	msr.data = data;
3250	msr.index = ecx;
3251	msr.host_initiated = false;
3252
3253	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3254	if (kvm_set_msr(&svm->vcpu, &msr)) {
3255		trace_kvm_msr_write_ex(ecx, data);
3256		kvm_inject_gp(&svm->vcpu, 0);
3257	} else {
3258		trace_kvm_msr_write(ecx, data);
3259		skip_emulated_instruction(&svm->vcpu);
3260	}
3261	return 1;
3262}
3263
3264static int msr_interception(struct vcpu_svm *svm)
3265{
3266	if (svm->vmcb->control.exit_info_1)
3267		return wrmsr_interception(svm);
3268	else
3269		return rdmsr_interception(svm);
3270}
3271
3272static int interrupt_window_interception(struct vcpu_svm *svm)
3273{
3274	struct kvm_run *kvm_run = svm->vcpu.run;
3275
3276	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3277	svm_clear_vintr(svm);
3278	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3279	mark_dirty(svm->vmcb, VMCB_INTR);
3280	++svm->vcpu.stat.irq_window_exits;
3281	/*
3282	 * If the user space waits to inject interrupts, exit as soon as
3283	 * possible
3284	 */
3285	if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3286	    kvm_run->request_interrupt_window &&
3287	    !kvm_cpu_has_interrupt(&svm->vcpu)) {
3288		kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3289		return 0;
3290	}
3291
3292	return 1;
3293}
3294
3295static int pause_interception(struct vcpu_svm *svm)
3296{
3297	kvm_vcpu_on_spin(&(svm->vcpu));
3298	return 1;
3299}
3300
3301static int nop_interception(struct vcpu_svm *svm)
3302{
3303	skip_emulated_instruction(&(svm->vcpu));
3304	return 1;
3305}
3306
3307static int monitor_interception(struct vcpu_svm *svm)
3308{
3309	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3310	return nop_interception(svm);
3311}
3312
3313static int mwait_interception(struct vcpu_svm *svm)
3314{
3315	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3316	return nop_interception(svm);
3317}
3318
3319static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3320	[SVM_EXIT_READ_CR0]			= cr_interception,
3321	[SVM_EXIT_READ_CR3]			= cr_interception,
3322	[SVM_EXIT_READ_CR4]			= cr_interception,
3323	[SVM_EXIT_READ_CR8]			= cr_interception,
3324	[SVM_EXIT_CR0_SEL_WRITE]		= emulate_on_interception,
3325	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3326	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3327	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3328	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3329	[SVM_EXIT_READ_DR0]			= dr_interception,
3330	[SVM_EXIT_READ_DR1]			= dr_interception,
3331	[SVM_EXIT_READ_DR2]			= dr_interception,
3332	[SVM_EXIT_READ_DR3]			= dr_interception,
3333	[SVM_EXIT_READ_DR4]			= dr_interception,
3334	[SVM_EXIT_READ_DR5]			= dr_interception,
3335	[SVM_EXIT_READ_DR6]			= dr_interception,
3336	[SVM_EXIT_READ_DR7]			= dr_interception,
3337	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3338	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3339	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3340	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3341	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3342	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3343	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3344	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3345	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3346	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3347	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3348	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3349	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception,
3350	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3351	[SVM_EXIT_INTR]				= intr_interception,
3352	[SVM_EXIT_NMI]				= nmi_interception,
3353	[SVM_EXIT_SMI]				= nop_on_interception,
3354	[SVM_EXIT_INIT]				= nop_on_interception,
3355	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3356	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3357	[SVM_EXIT_CPUID]			= cpuid_interception,
3358	[SVM_EXIT_IRET]                         = iret_interception,
3359	[SVM_EXIT_INVD]                         = emulate_on_interception,
3360	[SVM_EXIT_PAUSE]			= pause_interception,
3361	[SVM_EXIT_HLT]				= halt_interception,
3362	[SVM_EXIT_INVLPG]			= invlpg_interception,
3363	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3364	[SVM_EXIT_IOIO]				= io_interception,
3365	[SVM_EXIT_MSR]				= msr_interception,
3366	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3367	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3368	[SVM_EXIT_VMRUN]			= vmrun_interception,
3369	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3370	[SVM_EXIT_VMLOAD]			= vmload_interception,
3371	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3372	[SVM_EXIT_STGI]				= stgi_interception,
3373	[SVM_EXIT_CLGI]				= clgi_interception,
3374	[SVM_EXIT_SKINIT]			= skinit_interception,
3375	[SVM_EXIT_WBINVD]                       = emulate_on_interception,
3376	[SVM_EXIT_MONITOR]			= monitor_interception,
3377	[SVM_EXIT_MWAIT]			= mwait_interception,
3378	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3379	[SVM_EXIT_NPF]				= pf_interception,
3380};
3381
3382static void dump_vmcb(struct kvm_vcpu *vcpu)
3383{
3384	struct vcpu_svm *svm = to_svm(vcpu);
3385	struct vmcb_control_area *control = &svm->vmcb->control;
3386	struct vmcb_save_area *save = &svm->vmcb->save;
3387
3388	pr_err("VMCB Control Area:\n");
3389	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3390	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3391	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3392	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3393	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3394	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3395	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3396	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3397	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3398	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3399	pr_err("%-20s%d\n", "asid:", control->asid);
3400	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3401	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3402	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3403	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3404	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3405	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3406	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3407	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3408	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3409	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3410	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3411	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3412	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3413	pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3414	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3415	pr_err("VMCB State Save Area:\n");
3416	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3417	       "es:",
3418	       save->es.selector, save->es.attrib,
3419	       save->es.limit, save->es.base);
3420	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3421	       "cs:",
3422	       save->cs.selector, save->cs.attrib,
3423	       save->cs.limit, save->cs.base);
3424	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3425	       "ss:",
3426	       save->ss.selector, save->ss.attrib,
3427	       save->ss.limit, save->ss.base);
3428	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3429	       "ds:",
3430	       save->ds.selector, save->ds.attrib,
3431	       save->ds.limit, save->ds.base);
3432	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3433	       "fs:",
3434	       save->fs.selector, save->fs.attrib,
3435	       save->fs.limit, save->fs.base);
3436	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3437	       "gs:",
3438	       save->gs.selector, save->gs.attrib,
3439	       save->gs.limit, save->gs.base);
3440	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3441	       "gdtr:",
3442	       save->gdtr.selector, save->gdtr.attrib,
3443	       save->gdtr.limit, save->gdtr.base);
3444	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3445	       "ldtr:",
3446	       save->ldtr.selector, save->ldtr.attrib,
3447	       save->ldtr.limit, save->ldtr.base);
3448	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3449	       "idtr:",
3450	       save->idtr.selector, save->idtr.attrib,
3451	       save->idtr.limit, save->idtr.base);
3452	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3453	       "tr:",
3454	       save->tr.selector, save->tr.attrib,
3455	       save->tr.limit, save->tr.base);
3456	pr_err("cpl:            %d                efer:         %016llx\n",
3457		save->cpl, save->efer);
3458	pr_err("%-15s %016llx %-13s %016llx\n",
3459	       "cr0:", save->cr0, "cr2:", save->cr2);
3460	pr_err("%-15s %016llx %-13s %016llx\n",
3461	       "cr3:", save->cr3, "cr4:", save->cr4);
3462	pr_err("%-15s %016llx %-13s %016llx\n",
3463	       "dr6:", save->dr6, "dr7:", save->dr7);
3464	pr_err("%-15s %016llx %-13s %016llx\n",
3465	       "rip:", save->rip, "rflags:", save->rflags);
3466	pr_err("%-15s %016llx %-13s %016llx\n",
3467	       "rsp:", save->rsp, "rax:", save->rax);
3468	pr_err("%-15s %016llx %-13s %016llx\n",
3469	       "star:", save->star, "lstar:", save->lstar);
3470	pr_err("%-15s %016llx %-13s %016llx\n",
3471	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3472	pr_err("%-15s %016llx %-13s %016llx\n",
3473	       "kernel_gs_base:", save->kernel_gs_base,
3474	       "sysenter_cs:", save->sysenter_cs);
3475	pr_err("%-15s %016llx %-13s %016llx\n",
3476	       "sysenter_esp:", save->sysenter_esp,
3477	       "sysenter_eip:", save->sysenter_eip);
3478	pr_err("%-15s %016llx %-13s %016llx\n",
3479	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3480	pr_err("%-15s %016llx %-13s %016llx\n",
3481	       "br_from:", save->br_from, "br_to:", save->br_to);
3482	pr_err("%-15s %016llx %-13s %016llx\n",
3483	       "excp_from:", save->last_excp_from,
3484	       "excp_to:", save->last_excp_to);
3485}
3486
3487static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3488{
3489	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3490
3491	*info1 = control->exit_info_1;
3492	*info2 = control->exit_info_2;
3493}
3494
3495static int handle_exit(struct kvm_vcpu *vcpu)
3496{
3497	struct vcpu_svm *svm = to_svm(vcpu);
3498	struct kvm_run *kvm_run = vcpu->run;
3499	u32 exit_code = svm->vmcb->control.exit_code;
3500
3501	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3502		vcpu->arch.cr0 = svm->vmcb->save.cr0;
3503	if (npt_enabled)
3504		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3505
3506	if (unlikely(svm->nested.exit_required)) {
3507		nested_svm_vmexit(svm);
3508		svm->nested.exit_required = false;
3509
3510		return 1;
3511	}
3512
3513	if (is_guest_mode(vcpu)) {
3514		int vmexit;
3515
3516		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3517					svm->vmcb->control.exit_info_1,
3518					svm->vmcb->control.exit_info_2,
3519					svm->vmcb->control.exit_int_info,
3520					svm->vmcb->control.exit_int_info_err,
3521					KVM_ISA_SVM);
3522
3523		vmexit = nested_svm_exit_special(svm);
3524
3525		if (vmexit == NESTED_EXIT_CONTINUE)
3526			vmexit = nested_svm_exit_handled(svm);
3527
3528		if (vmexit == NESTED_EXIT_DONE)
3529			return 1;
3530	}
3531
3532	svm_complete_interrupts(svm);
3533
3534	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3535		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3536		kvm_run->fail_entry.hardware_entry_failure_reason
3537			= svm->vmcb->control.exit_code;
3538		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3539		dump_vmcb(vcpu);
3540		return 0;
3541	}
3542
3543	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3544	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3545	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3546	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3547		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3548		       "exit_code 0x%x\n",
3549		       __func__, svm->vmcb->control.exit_int_info,
3550		       exit_code);
3551
3552	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3553	    || !svm_exit_handlers[exit_code]) {
3554		WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_code);
3555		kvm_queue_exception(vcpu, UD_VECTOR);
3556		return 1;
3557	}
3558
3559	return svm_exit_handlers[exit_code](svm);
3560}
3561
3562static void reload_tss(struct kvm_vcpu *vcpu)
3563{
3564	int cpu = raw_smp_processor_id();
3565
3566	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3567	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3568	load_TR_desc();
3569}
3570
3571static void pre_svm_run(struct vcpu_svm *svm)
3572{
3573	int cpu = raw_smp_processor_id();
3574
3575	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3576
3577	/* FIXME: handle wraparound of asid_generation */
3578	if (svm->asid_generation != sd->asid_generation)
3579		new_asid(svm, sd);
3580}
3581
3582static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3583{
3584	struct vcpu_svm *svm = to_svm(vcpu);
3585
3586	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3587	vcpu->arch.hflags |= HF_NMI_MASK;
3588	set_intercept(svm, INTERCEPT_IRET);
3589	++vcpu->stat.nmi_injections;
3590}
3591
3592static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3593{
3594	struct vmcb_control_area *control;
3595
3596	control = &svm->vmcb->control;
3597	control->int_vector = irq;
3598	control->int_ctl &= ~V_INTR_PRIO_MASK;
3599	control->int_ctl |= V_IRQ_MASK |
3600		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3601	mark_dirty(svm->vmcb, VMCB_INTR);
3602}
3603
3604static void svm_set_irq(struct kvm_vcpu *vcpu)
3605{
3606	struct vcpu_svm *svm = to_svm(vcpu);
3607
3608	BUG_ON(!(gif_set(svm)));
3609
3610	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3611	++vcpu->stat.irq_injections;
3612
3613	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3614		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3615}
3616
3617static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3618{
3619	struct vcpu_svm *svm = to_svm(vcpu);
3620
3621	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3622		return;
3623
3624	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3625
3626	if (irr == -1)
3627		return;
3628
3629	if (tpr >= irr)
3630		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3631}
3632
3633static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3634{
3635	return;
3636}
3637
3638static int svm_vm_has_apicv(struct kvm *kvm)
3639{
3640	return 0;
3641}
3642
3643static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3644{
3645	return;
3646}
3647
3648static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3649{
3650	return;
3651}
3652
3653static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3654{
3655	return;
3656}
3657
3658static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3659{
3660	struct vcpu_svm *svm = to_svm(vcpu);
3661	struct vmcb *vmcb = svm->vmcb;
3662	int ret;
3663	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3664	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3665	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3666
3667	return ret;
3668}
3669
3670static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3671{
3672	struct vcpu_svm *svm = to_svm(vcpu);
3673
3674	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3675}
3676
3677static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3678{
3679	struct vcpu_svm *svm = to_svm(vcpu);
3680
3681	if (masked) {
3682		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3683		set_intercept(svm, INTERCEPT_IRET);
3684	} else {
3685		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3686		clr_intercept(svm, INTERCEPT_IRET);
3687	}
3688}
3689
3690static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3691{
3692	struct vcpu_svm *svm = to_svm(vcpu);
3693	struct vmcb *vmcb = svm->vmcb;
3694	int ret;
3695
3696	if (!gif_set(svm) ||
3697	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3698		return 0;
3699
3700	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3701
3702	if (is_guest_mode(vcpu))
3703		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3704
3705	return ret;
3706}
3707
3708static void enable_irq_window(struct kvm_vcpu *vcpu)
3709{
3710	struct vcpu_svm *svm = to_svm(vcpu);
3711
3712	/*
3713	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3714	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3715	 * get that intercept, this function will be called again though and
3716	 * we'll get the vintr intercept.
3717	 */
3718	if (gif_set(svm) && nested_svm_intr(svm)) {
3719		svm_set_vintr(svm);
3720		svm_inject_irq(svm, 0x0);
3721	}
3722}
3723
3724static void enable_nmi_window(struct kvm_vcpu *vcpu)
3725{
3726	struct vcpu_svm *svm = to_svm(vcpu);
3727
3728	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3729	    == HF_NMI_MASK)
3730		return; /* IRET will cause a vm exit */
3731
3732	/*
3733	 * Something prevents NMI from been injected. Single step over possible
3734	 * problem (IRET or exception injection or interrupt shadow)
3735	 */
3736	svm->nmi_singlestep = true;
3737	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3738	update_db_bp_intercept(vcpu);
3739}
3740
3741static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3742{
3743	return 0;
3744}
3745
3746static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3747{
3748	struct vcpu_svm *svm = to_svm(vcpu);
3749
3750	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3751		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3752	else
3753		svm->asid_generation--;
3754}
3755
3756static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3757{
3758}
3759
3760static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3761{
3762	struct vcpu_svm *svm = to_svm(vcpu);
3763
3764	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3765		return;
3766
3767	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3768		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3769		kvm_set_cr8(vcpu, cr8);
3770	}
3771}
3772
3773static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3774{
3775	struct vcpu_svm *svm = to_svm(vcpu);
3776	u64 cr8;
3777
3778	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3779		return;
3780
3781	cr8 = kvm_get_cr8(vcpu);
3782	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3783	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3784}
3785
3786static void svm_complete_interrupts(struct vcpu_svm *svm)
3787{
3788	u8 vector;
3789	int type;
3790	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3791	unsigned int3_injected = svm->int3_injected;
3792
3793	svm->int3_injected = 0;
3794
3795	/*
3796	 * If we've made progress since setting HF_IRET_MASK, we've
3797	 * executed an IRET and can allow NMI injection.
3798	 */
3799	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3800	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3801		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3802		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3803	}
3804
3805	svm->vcpu.arch.nmi_injected = false;
3806	kvm_clear_exception_queue(&svm->vcpu);
3807	kvm_clear_interrupt_queue(&svm->vcpu);
3808
3809	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3810		return;
3811
3812	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3813
3814	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3815	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3816
3817	switch (type) {
3818	case SVM_EXITINTINFO_TYPE_NMI:
3819		svm->vcpu.arch.nmi_injected = true;
3820		break;
3821	case SVM_EXITINTINFO_TYPE_EXEPT:
3822		/*
3823		 * In case of software exceptions, do not reinject the vector,
3824		 * but re-execute the instruction instead. Rewind RIP first
3825		 * if we emulated INT3 before.
3826		 */
3827		if (kvm_exception_is_soft(vector)) {
3828			if (vector == BP_VECTOR && int3_injected &&
3829			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3830				kvm_rip_write(&svm->vcpu,
3831					      kvm_rip_read(&svm->vcpu) -
3832					      int3_injected);
3833			break;
3834		}
3835		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3836			u32 err = svm->vmcb->control.exit_int_info_err;
3837			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3838
3839		} else
3840			kvm_requeue_exception(&svm->vcpu, vector);
3841		break;
3842	case SVM_EXITINTINFO_TYPE_INTR:
3843		kvm_queue_interrupt(&svm->vcpu, vector, false);
3844		break;
3845	default:
3846		break;
3847	}
3848}
3849
3850static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3851{
3852	struct vcpu_svm *svm = to_svm(vcpu);
3853	struct vmcb_control_area *control = &svm->vmcb->control;
3854
3855	control->exit_int_info = control->event_inj;
3856	control->exit_int_info_err = control->event_inj_err;
3857	control->event_inj = 0;
3858	svm_complete_interrupts(svm);
3859}
3860
3861static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3862{
3863	struct vcpu_svm *svm = to_svm(vcpu);
3864
3865	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3866	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3867	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3868
3869	/*
3870	 * A vmexit emulation is required before the vcpu can be executed
3871	 * again.
3872	 */
3873	if (unlikely(svm->nested.exit_required))
3874		return;
3875
3876	pre_svm_run(svm);
3877
3878	sync_lapic_to_cr8(vcpu);
3879
3880	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3881
3882	clgi();
3883
3884	local_irq_enable();
3885
3886	asm volatile (
3887		"push %%" _ASM_BP "; \n\t"
3888		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3889		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3890		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3891		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3892		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3893		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3894#ifdef CONFIG_X86_64
3895		"mov %c[r8](%[svm]),  %%r8  \n\t"
3896		"mov %c[r9](%[svm]),  %%r9  \n\t"
3897		"mov %c[r10](%[svm]), %%r10 \n\t"
3898		"mov %c[r11](%[svm]), %%r11 \n\t"
3899		"mov %c[r12](%[svm]), %%r12 \n\t"
3900		"mov %c[r13](%[svm]), %%r13 \n\t"
3901		"mov %c[r14](%[svm]), %%r14 \n\t"
3902		"mov %c[r15](%[svm]), %%r15 \n\t"
3903#endif
3904
3905		/* Enter guest mode */
3906		"push %%" _ASM_AX " \n\t"
3907		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3908		__ex(SVM_VMLOAD) "\n\t"
3909		__ex(SVM_VMRUN) "\n\t"
3910		__ex(SVM_VMSAVE) "\n\t"
3911		"pop %%" _ASM_AX " \n\t"
3912
3913		/* Save guest registers, load host registers */
3914		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3915		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3916		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3917		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3918		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3919		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3920#ifdef CONFIG_X86_64
3921		"mov %%r8,  %c[r8](%[svm]) \n\t"
3922		"mov %%r9,  %c[r9](%[svm]) \n\t"
3923		"mov %%r10, %c[r10](%[svm]) \n\t"
3924		"mov %%r11, %c[r11](%[svm]) \n\t"
3925		"mov %%r12, %c[r12](%[svm]) \n\t"
3926		"mov %%r13, %c[r13](%[svm]) \n\t"
3927		"mov %%r14, %c[r14](%[svm]) \n\t"
3928		"mov %%r15, %c[r15](%[svm]) \n\t"
3929#endif
3930		"pop %%" _ASM_BP
3931		:
3932		: [svm]"a"(svm),
3933		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3934		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3935		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3936		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3937		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3938		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3939		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3940#ifdef CONFIG_X86_64
3941		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3942		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3943		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3944		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3945		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3946		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3947		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3948		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3949#endif
3950		: "cc", "memory"
3951#ifdef CONFIG_X86_64
3952		, "rbx", "rcx", "rdx", "rsi", "rdi"
3953		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3954#else
3955		, "ebx", "ecx", "edx", "esi", "edi"
3956#endif
3957		);
3958
3959#ifdef CONFIG_X86_64
3960	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3961#else
3962	loadsegment(fs, svm->host.fs);
3963#ifndef CONFIG_X86_32_LAZY_GS
3964	loadsegment(gs, svm->host.gs);
3965#endif
3966#endif
3967
3968	reload_tss(vcpu);
3969
3970	local_irq_disable();
3971
3972	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3973	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3974	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3975	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3976
3977	trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3978
3979	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3980		kvm_before_handle_nmi(&svm->vcpu);
3981
3982	stgi();
3983
3984	/* Any pending NMI will happen here */
3985
3986	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3987		kvm_after_handle_nmi(&svm->vcpu);
3988
3989	sync_cr8_to_lapic(vcpu);
3990
3991	svm->next_rip = 0;
3992
3993	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3994
3995	/* if exit due to PF check for async PF */
3996	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3997		svm->apf_reason = kvm_read_and_reset_pf_reason();
3998
3999	if (npt_enabled) {
4000		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4001		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4002	}
4003
4004	/*
4005	 * We need to handle MC intercepts here before the vcpu has a chance to
4006	 * change the physical cpu
4007	 */
4008	if (unlikely(svm->vmcb->control.exit_code ==
4009		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4010		svm_handle_mce(svm);
4011
4012	mark_all_clean(svm->vmcb);
4013}
4014
4015static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4016{
4017	struct vcpu_svm *svm = to_svm(vcpu);
4018
4019	svm->vmcb->save.cr3 = root;
4020	mark_dirty(svm->vmcb, VMCB_CR);
4021	svm_flush_tlb(vcpu);
4022}
4023
4024static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4025{
4026	struct vcpu_svm *svm = to_svm(vcpu);
4027
4028	svm->vmcb->control.nested_cr3 = root;
4029	mark_dirty(svm->vmcb, VMCB_NPT);
4030
4031	/* Also sync guest cr3 here in case we live migrate */
4032	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4033	mark_dirty(svm->vmcb, VMCB_CR);
4034
4035	svm_flush_tlb(vcpu);
4036}
4037
4038static int is_disabled(void)
4039{
4040	u64 vm_cr;
4041
4042	rdmsrl(MSR_VM_CR, vm_cr);
4043	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4044		return 1;
4045
4046	return 0;
4047}
4048
4049static void
4050svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4051{
4052	/*
4053	 * Patch in the VMMCALL instruction:
4054	 */
4055	hypercall[0] = 0x0f;
4056	hypercall[1] = 0x01;
4057	hypercall[2] = 0xd9;
4058}
4059
4060static void svm_check_processor_compat(void *rtn)
4061{
4062	*(int *)rtn = 0;
4063}
4064
4065static bool svm_cpu_has_accelerated_tpr(void)
4066{
4067	return false;
4068}
4069
4070static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4071{
4072	return 0;
4073}
4074
4075static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4076{
4077}
4078
4079static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4080{
4081	switch (func) {
4082	case 0x80000001:
4083		if (nested)
4084			entry->ecx |= (1 << 2); /* Set SVM bit */
4085		break;
4086	case 0x8000000A:
4087		entry->eax = 1; /* SVM revision 1 */
4088		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4089				   ASID emulation to nested SVM */
4090		entry->ecx = 0; /* Reserved */
4091		entry->edx = 0; /* Per default do not support any
4092				   additional features */
4093
4094		/* Support next_rip if host supports it */
4095		if (boot_cpu_has(X86_FEATURE_NRIPS))
4096			entry->edx |= SVM_FEATURE_NRIP;
4097
4098		/* Support NPT for the guest if enabled */
4099		if (npt_enabled)
4100			entry->edx |= SVM_FEATURE_NPT;
4101
4102		break;
4103	}
4104}
4105
4106static int svm_get_lpage_level(void)
4107{
4108	return PT_PDPE_LEVEL;
4109}
4110
4111static bool svm_rdtscp_supported(void)
4112{
4113	return false;
4114}
4115
4116static bool svm_invpcid_supported(void)
4117{
4118	return false;
4119}
4120
4121static bool svm_mpx_supported(void)
4122{
4123	return false;
4124}
4125
4126static bool svm_has_wbinvd_exit(void)
4127{
4128	return true;
4129}
4130
4131static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4132{
4133	struct vcpu_svm *svm = to_svm(vcpu);
4134
4135	set_exception_intercept(svm, NM_VECTOR);
4136	update_cr0_intercept(svm);
4137}
4138
4139#define PRE_EX(exit)  { .exit_code = (exit), \
4140			.stage = X86_ICPT_PRE_EXCEPT, }
4141#define POST_EX(exit) { .exit_code = (exit), \
4142			.stage = X86_ICPT_POST_EXCEPT, }
4143#define POST_MEM(exit) { .exit_code = (exit), \
4144			.stage = X86_ICPT_POST_MEMACCESS, }
4145
4146static const struct __x86_intercept {
4147	u32 exit_code;
4148	enum x86_intercept_stage stage;
4149} x86_intercept_map[] = {
4150	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4151	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4152	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4153	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4154	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4155	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4156	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4157	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4158	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4159	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4160	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4161	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4162	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4163	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4164	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4165	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4166	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4167	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4168	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4169	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4170	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4171	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4172	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4173	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4174	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4175	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4176	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4177	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4178	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4179	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4180	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4181	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4182	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4183	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4184	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4185	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4186	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4187	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4188	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4189	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4190	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4191	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4192	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4193	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4194	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4195	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4196};
4197
4198#undef PRE_EX
4199#undef POST_EX
4200#undef POST_MEM
4201
4202static int svm_check_intercept(struct kvm_vcpu *vcpu,
4203			       struct x86_instruction_info *info,
4204			       enum x86_intercept_stage stage)
4205{
4206	struct vcpu_svm *svm = to_svm(vcpu);
4207	int vmexit, ret = X86EMUL_CONTINUE;
4208	struct __x86_intercept icpt_info;
4209	struct vmcb *vmcb = svm->vmcb;
4210
4211	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4212		goto out;
4213
4214	icpt_info = x86_intercept_map[info->intercept];
4215
4216	if (stage != icpt_info.stage)
4217		goto out;
4218
4219	switch (icpt_info.exit_code) {
4220	case SVM_EXIT_READ_CR0:
4221		if (info->intercept == x86_intercept_cr_read)
4222			icpt_info.exit_code += info->modrm_reg;
4223		break;
4224	case SVM_EXIT_WRITE_CR0: {
4225		unsigned long cr0, val;
4226		u64 intercept;
4227
4228		if (info->intercept == x86_intercept_cr_write)
4229			icpt_info.exit_code += info->modrm_reg;
4230
4231		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4232		    info->intercept == x86_intercept_clts)
4233			break;
4234
4235		intercept = svm->nested.intercept;
4236
4237		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4238			break;
4239
4240		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4241		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4242
4243		if (info->intercept == x86_intercept_lmsw) {
4244			cr0 &= 0xfUL;
4245			val &= 0xfUL;
4246			/* lmsw can't clear PE - catch this here */
4247			if (cr0 & X86_CR0_PE)
4248				val |= X86_CR0_PE;
4249		}
4250
4251		if (cr0 ^ val)
4252			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4253
4254		break;
4255	}
4256	case SVM_EXIT_READ_DR0:
4257	case SVM_EXIT_WRITE_DR0:
4258		icpt_info.exit_code += info->modrm_reg;
4259		break;
4260	case SVM_EXIT_MSR:
4261		if (info->intercept == x86_intercept_wrmsr)
4262			vmcb->control.exit_info_1 = 1;
4263		else
4264			vmcb->control.exit_info_1 = 0;
4265		break;
4266	case SVM_EXIT_PAUSE:
4267		/*
4268		 * We get this for NOP only, but pause
4269		 * is rep not, check this here
4270		 */
4271		if (info->rep_prefix != REPE_PREFIX)
4272			goto out;
4273	case SVM_EXIT_IOIO: {
4274		u64 exit_info;
4275		u32 bytes;
4276
4277		if (info->intercept == x86_intercept_in ||
4278		    info->intercept == x86_intercept_ins) {
4279			exit_info = ((info->src_val & 0xffff) << 16) |
4280				SVM_IOIO_TYPE_MASK;
4281			bytes = info->dst_bytes;
4282		} else {
4283			exit_info = (info->dst_val & 0xffff) << 16;
4284			bytes = info->src_bytes;
4285		}
4286
4287		if (info->intercept == x86_intercept_outs ||
4288		    info->intercept == x86_intercept_ins)
4289			exit_info |= SVM_IOIO_STR_MASK;
4290
4291		if (info->rep_prefix)
4292			exit_info |= SVM_IOIO_REP_MASK;
4293
4294		bytes = min(bytes, 4u);
4295
4296		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4297
4298		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4299
4300		vmcb->control.exit_info_1 = exit_info;
4301		vmcb->control.exit_info_2 = info->next_rip;
4302
4303		break;
4304	}
4305	default:
4306		break;
4307	}
4308
4309	vmcb->control.next_rip  = info->next_rip;
4310	vmcb->control.exit_code = icpt_info.exit_code;
4311	vmexit = nested_svm_exit_handled(svm);
4312
4313	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4314					   : X86EMUL_CONTINUE;
4315
4316out:
4317	return ret;
4318}
4319
4320static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4321{
4322	local_irq_enable();
4323}
4324
4325static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4326{
4327}
4328
4329static struct kvm_x86_ops svm_x86_ops = {
4330	.cpu_has_kvm_support = has_svm,
4331	.disabled_by_bios = is_disabled,
4332	.hardware_setup = svm_hardware_setup,
4333	.hardware_unsetup = svm_hardware_unsetup,
4334	.check_processor_compatibility = svm_check_processor_compat,
4335	.hardware_enable = svm_hardware_enable,
4336	.hardware_disable = svm_hardware_disable,
4337	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4338
4339	.vcpu_create = svm_create_vcpu,
4340	.vcpu_free = svm_free_vcpu,
4341	.vcpu_reset = svm_vcpu_reset,
4342
4343	.prepare_guest_switch = svm_prepare_guest_switch,
4344	.vcpu_load = svm_vcpu_load,
4345	.vcpu_put = svm_vcpu_put,
4346
4347	.update_db_bp_intercept = update_db_bp_intercept,
4348	.get_msr = svm_get_msr,
4349	.set_msr = svm_set_msr,
4350	.get_segment_base = svm_get_segment_base,
4351	.get_segment = svm_get_segment,
4352	.set_segment = svm_set_segment,
4353	.get_cpl = svm_get_cpl,
4354	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4355	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4356	.decache_cr3 = svm_decache_cr3,
4357	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4358	.set_cr0 = svm_set_cr0,
4359	.set_cr3 = svm_set_cr3,
4360	.set_cr4 = svm_set_cr4,
4361	.set_efer = svm_set_efer,
4362	.get_idt = svm_get_idt,
4363	.set_idt = svm_set_idt,
4364	.get_gdt = svm_get_gdt,
4365	.set_gdt = svm_set_gdt,
4366	.get_dr6 = svm_get_dr6,
4367	.set_dr6 = svm_set_dr6,
4368	.set_dr7 = svm_set_dr7,
4369	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4370	.cache_reg = svm_cache_reg,
4371	.get_rflags = svm_get_rflags,
4372	.set_rflags = svm_set_rflags,
4373	.fpu_deactivate = svm_fpu_deactivate,
4374
4375	.tlb_flush = svm_flush_tlb,
4376
4377	.run = svm_vcpu_run,
4378	.handle_exit = handle_exit,
4379	.skip_emulated_instruction = skip_emulated_instruction,
4380	.set_interrupt_shadow = svm_set_interrupt_shadow,
4381	.get_interrupt_shadow = svm_get_interrupt_shadow,
4382	.patch_hypercall = svm_patch_hypercall,
4383	.set_irq = svm_set_irq,
4384	.set_nmi = svm_inject_nmi,
4385	.queue_exception = svm_queue_exception,
4386	.cancel_injection = svm_cancel_injection,
4387	.interrupt_allowed = svm_interrupt_allowed,
4388	.nmi_allowed = svm_nmi_allowed,
4389	.get_nmi_mask = svm_get_nmi_mask,
4390	.set_nmi_mask = svm_set_nmi_mask,
4391	.enable_nmi_window = enable_nmi_window,
4392	.enable_irq_window = enable_irq_window,
4393	.update_cr8_intercept = update_cr8_intercept,
4394	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4395	.vm_has_apicv = svm_vm_has_apicv,
4396	.load_eoi_exitmap = svm_load_eoi_exitmap,
4397	.hwapic_isr_update = svm_hwapic_isr_update,
4398	.sync_pir_to_irr = svm_sync_pir_to_irr,
4399
4400	.set_tss_addr = svm_set_tss_addr,
4401	.get_tdp_level = get_npt_level,
4402	.get_mt_mask = svm_get_mt_mask,
4403
4404	.get_exit_info = svm_get_exit_info,
4405
4406	.get_lpage_level = svm_get_lpage_level,
4407
4408	.cpuid_update = svm_cpuid_update,
4409
4410	.rdtscp_supported = svm_rdtscp_supported,
4411	.invpcid_supported = svm_invpcid_supported,
4412	.mpx_supported = svm_mpx_supported,
4413
4414	.set_supported_cpuid = svm_set_supported_cpuid,
4415
4416	.has_wbinvd_exit = svm_has_wbinvd_exit,
4417
4418	.set_tsc_khz = svm_set_tsc_khz,
4419	.read_tsc_offset = svm_read_tsc_offset,
4420	.write_tsc_offset = svm_write_tsc_offset,
4421	.adjust_tsc_offset = svm_adjust_tsc_offset,
4422	.compute_tsc_offset = svm_compute_tsc_offset,
4423	.read_l1_tsc = svm_read_l1_tsc,
4424
4425	.set_tdp_cr3 = set_tdp_cr3,
4426
4427	.check_intercept = svm_check_intercept,
4428	.handle_external_intr = svm_handle_external_intr,
4429
4430	.sched_in = svm_sched_in,
4431};
4432
4433static int __init svm_init(void)
4434{
4435	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4436			__alignof__(struct vcpu_svm), THIS_MODULE);
4437}
4438
4439static void __exit svm_exit(void)
4440{
4441	kvm_exit();
4442}
4443
4444module_init(svm_init)
4445module_exit(svm_exit)
4446