1/*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 *          Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10#include <linux/seq_file.h>
11#include <linux/bootmem.h>
12#include <linux/debugfs.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/mm.h>
17#include <linux/fs.h>
18#include <linux/rbtree.h>
19
20#include <asm/cacheflush.h>
21#include <asm/processor.h>
22#include <asm/tlbflush.h>
23#include <asm/x86_init.h>
24#include <asm/pgtable.h>
25#include <asm/fcntl.h>
26#include <asm/e820.h>
27#include <asm/mtrr.h>
28#include <asm/page.h>
29#include <asm/msr.h>
30#include <asm/pat.h>
31#include <asm/io.h>
32
33#include "pat_internal.h"
34
35#ifdef CONFIG_X86_PAT
36int __read_mostly pat_enabled = 1;
37
38static inline void pat_disable(const char *reason)
39{
40	pat_enabled = 0;
41	printk(KERN_INFO "%s\n", reason);
42}
43
44static int __init nopat(char *str)
45{
46	pat_disable("PAT support disabled.");
47	return 0;
48}
49early_param("nopat", nopat);
50#else
51static inline void pat_disable(const char *reason)
52{
53	(void)reason;
54}
55#endif
56
57
58int pat_debug_enable;
59
60static int __init pat_debug_setup(char *str)
61{
62	pat_debug_enable = 1;
63	return 0;
64}
65__setup("debugpat", pat_debug_setup);
66
67static u64 __read_mostly boot_pat_state;
68
69enum {
70	PAT_UC = 0,		/* uncached */
71	PAT_WC = 1,		/* Write combining */
72	PAT_WT = 4,		/* Write Through */
73	PAT_WP = 5,		/* Write Protected */
74	PAT_WB = 6,		/* Write Back (default) */
75	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
76};
77
78#define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
79
80void pat_init(void)
81{
82	u64 pat;
83	bool boot_cpu = !boot_pat_state;
84
85	if (!pat_enabled)
86		return;
87
88	if (!cpu_has_pat) {
89		if (!boot_pat_state) {
90			pat_disable("PAT not supported by CPU.");
91			return;
92		} else {
93			/*
94			 * If this happens we are on a secondary CPU, but
95			 * switched to PAT on the boot CPU. We have no way to
96			 * undo PAT.
97			 */
98			printk(KERN_ERR "PAT enabled, "
99			       "but not supported by secondary CPU\n");
100			BUG();
101		}
102	}
103
104	/* Set PWT to Write-Combining. All other bits stay the same */
105	/*
106	 * PTE encoding used in Linux:
107	 *      PAT
108	 *      |PCD
109	 *      ||PWT
110	 *      |||
111	 *      000 WB		_PAGE_CACHE_WB
112	 *      001 WC		_PAGE_CACHE_WC
113	 *      010 UC-		_PAGE_CACHE_UC_MINUS
114	 *      011 UC		_PAGE_CACHE_UC
115	 * PAT bit unused
116	 */
117	pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
118	      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119
120	/* Boot CPU check */
121	if (!boot_pat_state)
122		rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123
124	wrmsrl(MSR_IA32_CR_PAT, pat);
125
126	if (boot_cpu)
127		printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
128		       smp_processor_id(), boot_pat_state, pat);
129}
130
131#undef PAT
132
133static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
134
135/*
136 * Does intersection of PAT memory type and MTRR memory type and returns
137 * the resulting memory type as PAT understands it.
138 * (Type in pat and mtrr will not have same value)
139 * The intersection is based on "Effective Memory Type" tables in IA-32
140 * SDM vol 3a
141 */
142static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
143{
144	/*
145	 * Look for MTRR hint to get the effective type in case where PAT
146	 * request is for WB.
147	 */
148	if (req_type == _PAGE_CACHE_WB) {
149		u8 mtrr_type;
150
151		mtrr_type = mtrr_type_lookup(start, end);
152		if (mtrr_type != MTRR_TYPE_WRBACK)
153			return _PAGE_CACHE_UC_MINUS;
154
155		return _PAGE_CACHE_WB;
156	}
157
158	return req_type;
159}
160
161struct pagerange_state {
162	unsigned long		cur_pfn;
163	int			ram;
164	int			not_ram;
165};
166
167static int
168pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
169{
170	struct pagerange_state *state = arg;
171
172	state->not_ram	|= initial_pfn > state->cur_pfn;
173	state->ram	|= total_nr_pages > 0;
174	state->cur_pfn	 = initial_pfn + total_nr_pages;
175
176	return state->ram && state->not_ram;
177}
178
179static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
180{
181	int ret = 0;
182	unsigned long start_pfn = start >> PAGE_SHIFT;
183	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
184	struct pagerange_state state = {start_pfn, 0, 0};
185
186	/*
187	 * For legacy reasons, physical address range in the legacy ISA
188	 * region is tracked as non-RAM. This will allow users of
189	 * /dev/mem to map portions of legacy ISA region, even when
190	 * some of those portions are listed(or not even listed) with
191	 * different e820 types(RAM/reserved/..)
192	 */
193	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
194		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
195
196	if (start_pfn < end_pfn) {
197		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
198				&state, pagerange_is_ram_callback);
199	}
200
201	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
202}
203
204/*
205 * For RAM pages, we use page flags to mark the pages with appropriate type.
206 * Here we do two pass:
207 * - Find the memtype of all the pages in the range, look for any conflicts
208 * - In case of no conflicts, set the new memtype for pages in the range
209 */
210static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
211				  unsigned long *new_type)
212{
213	struct page *page;
214	u64 pfn;
215
216	if (req_type == _PAGE_CACHE_UC) {
217		/* We do not support strong UC */
218		WARN_ON_ONCE(1);
219		req_type = _PAGE_CACHE_UC_MINUS;
220	}
221
222	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
223		unsigned long type;
224
225		page = pfn_to_page(pfn);
226		type = get_page_memtype(page);
227		if (type != -1) {
228			printk(KERN_INFO "reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%lx, req 0x%lx\n",
229				start, end - 1, type, req_type);
230			if (new_type)
231				*new_type = type;
232
233			return -EBUSY;
234		}
235	}
236
237	if (new_type)
238		*new_type = req_type;
239
240	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
241		page = pfn_to_page(pfn);
242		set_page_memtype(page, req_type);
243	}
244	return 0;
245}
246
247static int free_ram_pages_type(u64 start, u64 end)
248{
249	struct page *page;
250	u64 pfn;
251
252	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
253		page = pfn_to_page(pfn);
254		set_page_memtype(page, -1);
255	}
256	return 0;
257}
258
259/*
260 * req_type typically has one of the:
261 * - _PAGE_CACHE_WB
262 * - _PAGE_CACHE_WC
263 * - _PAGE_CACHE_UC_MINUS
264 * - _PAGE_CACHE_UC
265 *
266 * If new_type is NULL, function will return an error if it cannot reserve the
267 * region with req_type. If new_type is non-NULL, function will return
268 * available type in new_type in case of no error. In case of any error
269 * it will return a negative return value.
270 */
271int reserve_memtype(u64 start, u64 end, unsigned long req_type,
272		    unsigned long *new_type)
273{
274	struct memtype *new;
275	unsigned long actual_type;
276	int is_range_ram;
277	int err = 0;
278
279	BUG_ON(start >= end); /* end is exclusive */
280
281	if (!pat_enabled) {
282		/* This is identical to page table setting without PAT */
283		if (new_type) {
284			if (req_type == _PAGE_CACHE_WC)
285				*new_type = _PAGE_CACHE_UC_MINUS;
286			else
287				*new_type = req_type & _PAGE_CACHE_MASK;
288		}
289		return 0;
290	}
291
292	/* Low ISA region is always mapped WB in page table. No need to track */
293	if (x86_platform.is_untracked_pat_range(start, end)) {
294		if (new_type)
295			*new_type = _PAGE_CACHE_WB;
296		return 0;
297	}
298
299	/*
300	 * Call mtrr_lookup to get the type hint. This is an
301	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
302	 * tools and ACPI tools). Use WB request for WB memory and use
303	 * UC_MINUS otherwise.
304	 */
305	actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
306
307	if (new_type)
308		*new_type = actual_type;
309
310	is_range_ram = pat_pagerange_is_ram(start, end);
311	if (is_range_ram == 1) {
312
313		err = reserve_ram_pages_type(start, end, req_type, new_type);
314
315		return err;
316	} else if (is_range_ram < 0) {
317		return -EINVAL;
318	}
319
320	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
321	if (!new)
322		return -ENOMEM;
323
324	new->start	= start;
325	new->end	= end;
326	new->type	= actual_type;
327
328	spin_lock(&memtype_lock);
329
330	err = rbt_memtype_check_insert(new, new_type);
331	if (err) {
332		printk(KERN_INFO "reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
333		       start, end - 1,
334		       cattr_name(new->type), cattr_name(req_type));
335		kfree(new);
336		spin_unlock(&memtype_lock);
337
338		return err;
339	}
340
341	spin_unlock(&memtype_lock);
342
343	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
344		start, end - 1, cattr_name(new->type), cattr_name(req_type),
345		new_type ? cattr_name(*new_type) : "-");
346
347	return err;
348}
349
350int free_memtype(u64 start, u64 end)
351{
352	int err = -EINVAL;
353	int is_range_ram;
354	struct memtype *entry;
355
356	if (!pat_enabled)
357		return 0;
358
359	/* Low ISA region is always mapped WB. No need to track */
360	if (x86_platform.is_untracked_pat_range(start, end))
361		return 0;
362
363	is_range_ram = pat_pagerange_is_ram(start, end);
364	if (is_range_ram == 1) {
365
366		err = free_ram_pages_type(start, end);
367
368		return err;
369	} else if (is_range_ram < 0) {
370		return -EINVAL;
371	}
372
373	spin_lock(&memtype_lock);
374	entry = rbt_memtype_erase(start, end);
375	spin_unlock(&memtype_lock);
376
377	if (!entry) {
378		printk(KERN_INFO "%s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
379		       current->comm, current->pid, start, end - 1);
380		return -EINVAL;
381	}
382
383	kfree(entry);
384
385	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
386
387	return 0;
388}
389
390
391/**
392 * lookup_memtype - Looksup the memory type for a physical address
393 * @paddr: physical address of which memory type needs to be looked up
394 *
395 * Only to be called when PAT is enabled
396 *
397 * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
398 * _PAGE_CACHE_UC
399 */
400static unsigned long lookup_memtype(u64 paddr)
401{
402	int rettype = _PAGE_CACHE_WB;
403	struct memtype *entry;
404
405	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
406		return rettype;
407
408	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
409		struct page *page;
410		page = pfn_to_page(paddr >> PAGE_SHIFT);
411		rettype = get_page_memtype(page);
412		/*
413		 * -1 from get_page_memtype() implies RAM page is in its
414		 * default state and not reserved, and hence of type WB
415		 */
416		if (rettype == -1)
417			rettype = _PAGE_CACHE_WB;
418
419		return rettype;
420	}
421
422	spin_lock(&memtype_lock);
423
424	entry = rbt_memtype_lookup(paddr);
425	if (entry != NULL)
426		rettype = entry->type;
427	else
428		rettype = _PAGE_CACHE_UC_MINUS;
429
430	spin_unlock(&memtype_lock);
431	return rettype;
432}
433
434/**
435 * io_reserve_memtype - Request a memory type mapping for a region of memory
436 * @start: start (physical address) of the region
437 * @end: end (physical address) of the region
438 * @type: A pointer to memtype, with requested type. On success, requested
439 * or any other compatible type that was available for the region is returned
440 *
441 * On success, returns 0
442 * On failure, returns non-zero
443 */
444int io_reserve_memtype(resource_size_t start, resource_size_t end,
445			unsigned long *type)
446{
447	resource_size_t size = end - start;
448	unsigned long req_type = *type;
449	unsigned long new_type;
450	int ret;
451
452	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
453
454	ret = reserve_memtype(start, end, req_type, &new_type);
455	if (ret)
456		goto out_err;
457
458	if (!is_new_memtype_allowed(start, size, req_type, new_type))
459		goto out_free;
460
461	if (kernel_map_sync_memtype(start, size, new_type) < 0)
462		goto out_free;
463
464	*type = new_type;
465	return 0;
466
467out_free:
468	free_memtype(start, end);
469	ret = -EBUSY;
470out_err:
471	return ret;
472}
473
474/**
475 * io_free_memtype - Release a memory type mapping for a region of memory
476 * @start: start (physical address) of the region
477 * @end: end (physical address) of the region
478 */
479void io_free_memtype(resource_size_t start, resource_size_t end)
480{
481	free_memtype(start, end);
482}
483
484pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
485				unsigned long size, pgprot_t vma_prot)
486{
487	return vma_prot;
488}
489
490#ifdef CONFIG_STRICT_DEVMEM
491/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
492static inline int range_is_allowed(unsigned long pfn, unsigned long size)
493{
494	return 1;
495}
496#else
497/* This check is needed to avoid cache aliasing when PAT is enabled */
498static inline int range_is_allowed(unsigned long pfn, unsigned long size)
499{
500	u64 from = ((u64)pfn) << PAGE_SHIFT;
501	u64 to = from + size;
502	u64 cursor = from;
503
504	if (!pat_enabled)
505		return 1;
506
507	while (cursor < to) {
508		if (!devmem_is_allowed(pfn)) {
509			printk(KERN_INFO "Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx]\n",
510				current->comm, from, to - 1);
511			return 0;
512		}
513		cursor += PAGE_SIZE;
514		pfn++;
515	}
516	return 1;
517}
518#endif /* CONFIG_STRICT_DEVMEM */
519
520int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
521				unsigned long size, pgprot_t *vma_prot)
522{
523	unsigned long flags = _PAGE_CACHE_WB;
524
525	if (!range_is_allowed(pfn, size))
526		return 0;
527
528	if (file->f_flags & O_DSYNC)
529		flags = _PAGE_CACHE_UC_MINUS;
530
531#ifdef CONFIG_X86_32
532	/*
533	 * On the PPro and successors, the MTRRs are used to set
534	 * memory types for physical addresses outside main memory,
535	 * so blindly setting UC or PWT on those pages is wrong.
536	 * For Pentiums and earlier, the surround logic should disable
537	 * caching for the high addresses through the KEN pin, but
538	 * we maintain the tradition of paranoia in this code.
539	 */
540	if (!pat_enabled &&
541	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
542	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
543	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
544	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
545	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
546		flags = _PAGE_CACHE_UC;
547	}
548#endif
549
550	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
551			     flags);
552	return 1;
553}
554
555/*
556 * Change the memory type for the physial address range in kernel identity
557 * mapping space if that range is a part of identity map.
558 */
559int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
560{
561	unsigned long id_sz;
562
563	if (base > __pa(high_memory-1))
564		return 0;
565
566	/*
567	 * some areas in the middle of the kernel identity range
568	 * are not mapped, like the PCI space.
569	 */
570	if (!page_is_ram(base >> PAGE_SHIFT))
571		return 0;
572
573	id_sz = (__pa(high_memory-1) <= base + size) ?
574				__pa(high_memory) - base :
575				size;
576
577	if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
578		printk(KERN_INFO "%s:%d ioremap_change_attr failed %s "
579			"for [mem %#010Lx-%#010Lx]\n",
580			current->comm, current->pid,
581			cattr_name(flags),
582			base, (unsigned long long)(base + size-1));
583		return -EINVAL;
584	}
585	return 0;
586}
587
588/*
589 * Internal interface to reserve a range of physical memory with prot.
590 * Reserved non RAM regions only and after successful reserve_memtype,
591 * this func also keeps identity mapping (if any) in sync with this new prot.
592 */
593static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
594				int strict_prot)
595{
596	int is_ram = 0;
597	int ret;
598	unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
599	unsigned long flags = want_flags;
600
601	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
602
603	/*
604	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
605	 * track of number of mappings of RAM pages. We can assert that
606	 * the type requested matches the type of first page in the range.
607	 */
608	if (is_ram) {
609		if (!pat_enabled)
610			return 0;
611
612		flags = lookup_memtype(paddr);
613		if (want_flags != flags) {
614			printk(KERN_WARNING "%s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
615				current->comm, current->pid,
616				cattr_name(want_flags),
617				(unsigned long long)paddr,
618				(unsigned long long)(paddr + size - 1),
619				cattr_name(flags));
620			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
621					      (~_PAGE_CACHE_MASK)) |
622					     flags);
623		}
624		return 0;
625	}
626
627	ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
628	if (ret)
629		return ret;
630
631	if (flags != want_flags) {
632		if (strict_prot ||
633		    !is_new_memtype_allowed(paddr, size, want_flags, flags)) {
634			free_memtype(paddr, paddr + size);
635			printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
636				" for [mem %#010Lx-%#010Lx], got %s\n",
637				current->comm, current->pid,
638				cattr_name(want_flags),
639				(unsigned long long)paddr,
640				(unsigned long long)(paddr + size - 1),
641				cattr_name(flags));
642			return -EINVAL;
643		}
644		/*
645		 * We allow returning different type than the one requested in
646		 * non strict case.
647		 */
648		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
649				      (~_PAGE_CACHE_MASK)) |
650				     flags);
651	}
652
653	if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
654		free_memtype(paddr, paddr + size);
655		return -EINVAL;
656	}
657	return 0;
658}
659
660/*
661 * Internal interface to free a range of physical memory.
662 * Frees non RAM regions only.
663 */
664static void free_pfn_range(u64 paddr, unsigned long size)
665{
666	int is_ram;
667
668	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
669	if (is_ram == 0)
670		free_memtype(paddr, paddr + size);
671}
672
673/*
674 * track_pfn_copy is called when vma that is covering the pfnmap gets
675 * copied through copy_page_range().
676 *
677 * If the vma has a linear pfn mapping for the entire range, we get the prot
678 * from pte and reserve the entire vma range with single reserve_pfn_range call.
679 */
680int track_pfn_copy(struct vm_area_struct *vma)
681{
682	resource_size_t paddr;
683	unsigned long prot;
684	unsigned long vma_size = vma->vm_end - vma->vm_start;
685	pgprot_t pgprot;
686
687	if (vma->vm_flags & VM_PAT) {
688		/*
689		 * reserve the whole chunk covered by vma. We need the
690		 * starting address and protection from pte.
691		 */
692		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
693			WARN_ON_ONCE(1);
694			return -EINVAL;
695		}
696		pgprot = __pgprot(prot);
697		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
698	}
699
700	return 0;
701}
702
703/*
704 * prot is passed in as a parameter for the new mapping. If the vma has a
705 * linear pfn mapping for the entire range reserve the entire vma range with
706 * single reserve_pfn_range call.
707 */
708int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
709		    unsigned long pfn, unsigned long addr, unsigned long size)
710{
711	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
712	unsigned long flags;
713
714	/* reserve the whole chunk starting from paddr */
715	if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
716		int ret;
717
718		ret = reserve_pfn_range(paddr, size, prot, 0);
719		if (!ret)
720			vma->vm_flags |= VM_PAT;
721		return ret;
722	}
723
724	if (!pat_enabled)
725		return 0;
726
727	/*
728	 * For anything smaller than the vma size we set prot based on the
729	 * lookup.
730	 */
731	flags = lookup_memtype(paddr);
732
733	/* Check memtype for the remaining pages */
734	while (size > PAGE_SIZE) {
735		size -= PAGE_SIZE;
736		paddr += PAGE_SIZE;
737		if (flags != lookup_memtype(paddr))
738			return -EINVAL;
739	}
740
741	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
742			 flags);
743
744	return 0;
745}
746
747int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
748		     unsigned long pfn)
749{
750	unsigned long flags;
751
752	if (!pat_enabled)
753		return 0;
754
755	/* Set prot based on lookup */
756	flags = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
757	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
758			 flags);
759
760	return 0;
761}
762
763/*
764 * untrack_pfn is called while unmapping a pfnmap for a region.
765 * untrack can be called for a specific region indicated by pfn and size or
766 * can be for the entire vma (in which case pfn, size are zero).
767 */
768void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
769		 unsigned long size)
770{
771	resource_size_t paddr;
772	unsigned long prot;
773
774	if (!(vma->vm_flags & VM_PAT))
775		return;
776
777	/* free the chunk starting from pfn or the whole chunk */
778	paddr = (resource_size_t)pfn << PAGE_SHIFT;
779	if (!paddr && !size) {
780		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
781			WARN_ON_ONCE(1);
782			return;
783		}
784
785		size = vma->vm_end - vma->vm_start;
786	}
787	free_pfn_range(paddr, size);
788	vma->vm_flags &= ~VM_PAT;
789}
790
791pgprot_t pgprot_writecombine(pgprot_t prot)
792{
793	if (pat_enabled)
794		return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
795	else
796		return pgprot_noncached(prot);
797}
798EXPORT_SYMBOL_GPL(pgprot_writecombine);
799
800#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
801
802static struct memtype *memtype_get_idx(loff_t pos)
803{
804	struct memtype *print_entry;
805	int ret;
806
807	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
808	if (!print_entry)
809		return NULL;
810
811	spin_lock(&memtype_lock);
812	ret = rbt_memtype_copy_nth_element(print_entry, pos);
813	spin_unlock(&memtype_lock);
814
815	if (!ret) {
816		return print_entry;
817	} else {
818		kfree(print_entry);
819		return NULL;
820	}
821}
822
823static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
824{
825	if (*pos == 0) {
826		++*pos;
827		seq_printf(seq, "PAT memtype list:\n");
828	}
829
830	return memtype_get_idx(*pos);
831}
832
833static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
834{
835	++*pos;
836	return memtype_get_idx(*pos);
837}
838
839static void memtype_seq_stop(struct seq_file *seq, void *v)
840{
841}
842
843static int memtype_seq_show(struct seq_file *seq, void *v)
844{
845	struct memtype *print_entry = (struct memtype *)v;
846
847	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
848			print_entry->start, print_entry->end);
849	kfree(print_entry);
850
851	return 0;
852}
853
854static const struct seq_operations memtype_seq_ops = {
855	.start = memtype_seq_start,
856	.next  = memtype_seq_next,
857	.stop  = memtype_seq_stop,
858	.show  = memtype_seq_show,
859};
860
861static int memtype_seq_open(struct inode *inode, struct file *file)
862{
863	return seq_open(file, &memtype_seq_ops);
864}
865
866static const struct file_operations memtype_fops = {
867	.open    = memtype_seq_open,
868	.read    = seq_read,
869	.llseek  = seq_lseek,
870	.release = seq_release,
871};
872
873static int __init pat_memtype_list_init(void)
874{
875	if (pat_enabled) {
876		debugfs_create_file("pat_memtype_list", S_IRUSR,
877				    arch_debugfs_dir, NULL, &memtype_fops);
878	}
879	return 0;
880}
881
882late_initcall(pat_memtype_list_init);
883
884#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
885