1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23#include <linux/crash_dump.h>
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42	unsigned int i;
43
44	for (i = 0; i < hctx->ctx_map.map_size; i++)
45		if (hctx->ctx_map.map[i].word)
46			return true;
47
48	return false;
49}
50
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52					      struct blk_mq_ctx *ctx)
53{
54	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx)	\
58	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64				     struct blk_mq_ctx *ctx)
65{
66	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73				      struct blk_mq_ctx *ctx)
74{
75	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78}
79
80static int blk_mq_queue_enter(struct request_queue *q)
81{
82	while (true) {
83		int ret;
84
85		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86			return 0;
87
88		ret = wait_event_interruptible(q->mq_freeze_wq,
89				!q->mq_freeze_depth || blk_queue_dying(q));
90		if (blk_queue_dying(q))
91			return -ENODEV;
92		if (ret)
93			return ret;
94	}
95}
96
97static void blk_mq_queue_exit(struct request_queue *q)
98{
99	percpu_ref_put(&q->mq_usage_counter);
100}
101
102static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103{
104	struct request_queue *q =
105		container_of(ref, struct request_queue, mq_usage_counter);
106
107	wake_up_all(&q->mq_freeze_wq);
108}
109
110static void blk_mq_freeze_queue_start(struct request_queue *q)
111{
112	bool freeze;
113
114	spin_lock_irq(q->queue_lock);
115	freeze = !q->mq_freeze_depth++;
116	spin_unlock_irq(q->queue_lock);
117
118	if (freeze) {
119		percpu_ref_kill(&q->mq_usage_counter);
120		blk_mq_run_queues(q, false);
121	}
122}
123
124static void blk_mq_freeze_queue_wait(struct request_queue *q)
125{
126	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127}
128
129/*
130 * Guarantee no request is in use, so we can change any data structure of
131 * the queue afterward.
132 */
133void blk_mq_freeze_queue(struct request_queue *q)
134{
135	blk_mq_freeze_queue_start(q);
136	blk_mq_freeze_queue_wait(q);
137}
138
139static void blk_mq_unfreeze_queue(struct request_queue *q)
140{
141	bool wake;
142
143	spin_lock_irq(q->queue_lock);
144	wake = !--q->mq_freeze_depth;
145	WARN_ON_ONCE(q->mq_freeze_depth < 0);
146	spin_unlock_irq(q->queue_lock);
147	if (wake) {
148		percpu_ref_reinit(&q->mq_usage_counter);
149		wake_up_all(&q->mq_freeze_wq);
150	}
151}
152
153bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
154{
155	return blk_mq_has_free_tags(hctx->tags);
156}
157EXPORT_SYMBOL(blk_mq_can_queue);
158
159static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
160			       struct request *rq, unsigned int rw_flags)
161{
162	if (blk_queue_io_stat(q))
163		rw_flags |= REQ_IO_STAT;
164
165	INIT_LIST_HEAD(&rq->queuelist);
166	/* csd/requeue_work/fifo_time is initialized before use */
167	rq->q = q;
168	rq->mq_ctx = ctx;
169	rq->cmd_flags |= rw_flags;
170	/* do not touch atomic flags, it needs atomic ops against the timer */
171	rq->cpu = -1;
172	INIT_HLIST_NODE(&rq->hash);
173	RB_CLEAR_NODE(&rq->rb_node);
174	rq->rq_disk = NULL;
175	rq->part = NULL;
176	rq->start_time = jiffies;
177#ifdef CONFIG_BLK_CGROUP
178	rq->rl = NULL;
179	set_start_time_ns(rq);
180	rq->io_start_time_ns = 0;
181#endif
182	rq->nr_phys_segments = 0;
183#if defined(CONFIG_BLK_DEV_INTEGRITY)
184	rq->nr_integrity_segments = 0;
185#endif
186	rq->special = NULL;
187	/* tag was already set */
188	rq->errors = 0;
189
190	rq->cmd = rq->__cmd;
191
192	rq->extra_len = 0;
193	rq->sense_len = 0;
194	rq->resid_len = 0;
195	rq->sense = NULL;
196
197	INIT_LIST_HEAD(&rq->timeout_list);
198	rq->timeout = 0;
199
200	rq->end_io = NULL;
201	rq->end_io_data = NULL;
202	rq->next_rq = NULL;
203
204	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
205}
206
207static struct request *
208__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
209{
210	struct request *rq;
211	unsigned int tag;
212
213	tag = blk_mq_get_tag(data);
214	if (tag != BLK_MQ_TAG_FAIL) {
215		rq = data->hctx->tags->rqs[tag];
216
217		if (blk_mq_tag_busy(data->hctx)) {
218			rq->cmd_flags = REQ_MQ_INFLIGHT;
219			atomic_inc(&data->hctx->nr_active);
220		}
221
222		rq->tag = tag;
223		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
224		return rq;
225	}
226
227	return NULL;
228}
229
230struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
231		bool reserved)
232{
233	struct blk_mq_ctx *ctx;
234	struct blk_mq_hw_ctx *hctx;
235	struct request *rq;
236	struct blk_mq_alloc_data alloc_data;
237	int ret;
238
239	ret = blk_mq_queue_enter(q);
240	if (ret)
241		return ERR_PTR(ret);
242
243	ctx = blk_mq_get_ctx(q);
244	hctx = q->mq_ops->map_queue(q, ctx->cpu);
245	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
246			reserved, ctx, hctx);
247
248	rq = __blk_mq_alloc_request(&alloc_data, rw);
249	if (!rq && (gfp & __GFP_WAIT)) {
250		__blk_mq_run_hw_queue(hctx);
251		blk_mq_put_ctx(ctx);
252
253		ctx = blk_mq_get_ctx(q);
254		hctx = q->mq_ops->map_queue(q, ctx->cpu);
255		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
256				hctx);
257		rq =  __blk_mq_alloc_request(&alloc_data, rw);
258		ctx = alloc_data.ctx;
259	}
260	blk_mq_put_ctx(ctx);
261	if (!rq)
262		return ERR_PTR(-EWOULDBLOCK);
263	return rq;
264}
265EXPORT_SYMBOL(blk_mq_alloc_request);
266
267static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
268				  struct blk_mq_ctx *ctx, struct request *rq)
269{
270	const int tag = rq->tag;
271	struct request_queue *q = rq->q;
272
273	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
274		atomic_dec(&hctx->nr_active);
275	rq->cmd_flags = 0;
276
277	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
278	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
279	blk_mq_queue_exit(q);
280}
281
282void blk_mq_free_request(struct request *rq)
283{
284	struct blk_mq_ctx *ctx = rq->mq_ctx;
285	struct blk_mq_hw_ctx *hctx;
286	struct request_queue *q = rq->q;
287
288	ctx->rq_completed[rq_is_sync(rq)]++;
289
290	hctx = q->mq_ops->map_queue(q, ctx->cpu);
291	__blk_mq_free_request(hctx, ctx, rq);
292}
293
294inline void __blk_mq_end_request(struct request *rq, int error)
295{
296	blk_account_io_done(rq);
297
298	if (rq->end_io) {
299		rq->end_io(rq, error);
300	} else {
301		if (unlikely(blk_bidi_rq(rq)))
302			blk_mq_free_request(rq->next_rq);
303		blk_mq_free_request(rq);
304	}
305}
306EXPORT_SYMBOL(__blk_mq_end_request);
307
308void blk_mq_end_request(struct request *rq, int error)
309{
310	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
311		BUG();
312	__blk_mq_end_request(rq, error);
313}
314EXPORT_SYMBOL(blk_mq_end_request);
315
316static void __blk_mq_complete_request_remote(void *data)
317{
318	struct request *rq = data;
319
320	rq->q->softirq_done_fn(rq);
321}
322
323static void blk_mq_ipi_complete_request(struct request *rq)
324{
325	struct blk_mq_ctx *ctx = rq->mq_ctx;
326	bool shared = false;
327	int cpu;
328
329	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
330		rq->q->softirq_done_fn(rq);
331		return;
332	}
333
334	cpu = get_cpu();
335	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
336		shared = cpus_share_cache(cpu, ctx->cpu);
337
338	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
339		rq->csd.func = __blk_mq_complete_request_remote;
340		rq->csd.info = rq;
341		rq->csd.flags = 0;
342		smp_call_function_single_async(ctx->cpu, &rq->csd);
343	} else {
344		rq->q->softirq_done_fn(rq);
345	}
346	put_cpu();
347}
348
349void __blk_mq_complete_request(struct request *rq)
350{
351	struct request_queue *q = rq->q;
352
353	if (!q->softirq_done_fn)
354		blk_mq_end_request(rq, rq->errors);
355	else
356		blk_mq_ipi_complete_request(rq);
357}
358
359/**
360 * blk_mq_complete_request - end I/O on a request
361 * @rq:		the request being processed
362 *
363 * Description:
364 *	Ends all I/O on a request. It does not handle partial completions.
365 *	The actual completion happens out-of-order, through a IPI handler.
366 **/
367void blk_mq_complete_request(struct request *rq)
368{
369	struct request_queue *q = rq->q;
370
371	if (unlikely(blk_should_fake_timeout(q)))
372		return;
373	if (!blk_mark_rq_complete(rq))
374		__blk_mq_complete_request(rq);
375}
376EXPORT_SYMBOL(blk_mq_complete_request);
377
378void blk_mq_start_request(struct request *rq)
379{
380	struct request_queue *q = rq->q;
381
382	trace_block_rq_issue(q, rq);
383
384	rq->resid_len = blk_rq_bytes(rq);
385	if (unlikely(blk_bidi_rq(rq)))
386		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
387
388	blk_add_timer(rq);
389
390	/*
391	 * Ensure that ->deadline is visible before set the started
392	 * flag and clear the completed flag.
393	 */
394	smp_mb__before_atomic();
395
396	/*
397	 * Mark us as started and clear complete. Complete might have been
398	 * set if requeue raced with timeout, which then marked it as
399	 * complete. So be sure to clear complete again when we start
400	 * the request, otherwise we'll ignore the completion event.
401	 */
402	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
403		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
404	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
405		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
406
407	if (q->dma_drain_size && blk_rq_bytes(rq)) {
408		/*
409		 * Make sure space for the drain appears.  We know we can do
410		 * this because max_hw_segments has been adjusted to be one
411		 * fewer than the device can handle.
412		 */
413		rq->nr_phys_segments++;
414	}
415}
416EXPORT_SYMBOL(blk_mq_start_request);
417
418static void __blk_mq_requeue_request(struct request *rq)
419{
420	struct request_queue *q = rq->q;
421
422	trace_block_rq_requeue(q, rq);
423
424	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
425		if (q->dma_drain_size && blk_rq_bytes(rq))
426			rq->nr_phys_segments--;
427	}
428}
429
430void blk_mq_requeue_request(struct request *rq)
431{
432	__blk_mq_requeue_request(rq);
433
434	BUG_ON(blk_queued_rq(rq));
435	blk_mq_add_to_requeue_list(rq, true);
436}
437EXPORT_SYMBOL(blk_mq_requeue_request);
438
439static void blk_mq_requeue_work(struct work_struct *work)
440{
441	struct request_queue *q =
442		container_of(work, struct request_queue, requeue_work);
443	LIST_HEAD(rq_list);
444	struct request *rq, *next;
445	unsigned long flags;
446
447	spin_lock_irqsave(&q->requeue_lock, flags);
448	list_splice_init(&q->requeue_list, &rq_list);
449	spin_unlock_irqrestore(&q->requeue_lock, flags);
450
451	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
452		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
453			continue;
454
455		rq->cmd_flags &= ~REQ_SOFTBARRIER;
456		list_del_init(&rq->queuelist);
457		blk_mq_insert_request(rq, true, false, false);
458	}
459
460	while (!list_empty(&rq_list)) {
461		rq = list_entry(rq_list.next, struct request, queuelist);
462		list_del_init(&rq->queuelist);
463		blk_mq_insert_request(rq, false, false, false);
464	}
465
466	/*
467	 * Use the start variant of queue running here, so that running
468	 * the requeue work will kick stopped queues.
469	 */
470	blk_mq_start_hw_queues(q);
471}
472
473void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
474{
475	struct request_queue *q = rq->q;
476	unsigned long flags;
477
478	/*
479	 * We abuse this flag that is otherwise used by the I/O scheduler to
480	 * request head insertation from the workqueue.
481	 */
482	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
483
484	spin_lock_irqsave(&q->requeue_lock, flags);
485	if (at_head) {
486		rq->cmd_flags |= REQ_SOFTBARRIER;
487		list_add(&rq->queuelist, &q->requeue_list);
488	} else {
489		list_add_tail(&rq->queuelist, &q->requeue_list);
490	}
491	spin_unlock_irqrestore(&q->requeue_lock, flags);
492}
493EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
494
495void blk_mq_kick_requeue_list(struct request_queue *q)
496{
497	kblockd_schedule_work(&q->requeue_work);
498}
499EXPORT_SYMBOL(blk_mq_kick_requeue_list);
500
501static inline bool is_flush_request(struct request *rq,
502		struct blk_flush_queue *fq, unsigned int tag)
503{
504	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
505			fq->flush_rq->tag == tag);
506}
507
508struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
509{
510	struct request *rq = tags->rqs[tag];
511	/* mq_ctx of flush rq is always cloned from the corresponding req */
512	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
513
514	if (!is_flush_request(rq, fq, tag))
515		return rq;
516
517	return fq->flush_rq;
518}
519EXPORT_SYMBOL(blk_mq_tag_to_rq);
520
521struct blk_mq_timeout_data {
522	unsigned long next;
523	unsigned int next_set;
524};
525
526void blk_mq_rq_timed_out(struct request *req, bool reserved)
527{
528	struct blk_mq_ops *ops = req->q->mq_ops;
529	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
530
531	/*
532	 * We know that complete is set at this point. If STARTED isn't set
533	 * anymore, then the request isn't active and the "timeout" should
534	 * just be ignored. This can happen due to the bitflag ordering.
535	 * Timeout first checks if STARTED is set, and if it is, assumes
536	 * the request is active. But if we race with completion, then
537	 * we both flags will get cleared. So check here again, and ignore
538	 * a timeout event with a request that isn't active.
539	 */
540	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
541		return;
542
543	if (ops->timeout)
544		ret = ops->timeout(req, reserved);
545
546	switch (ret) {
547	case BLK_EH_HANDLED:
548		__blk_mq_complete_request(req);
549		break;
550	case BLK_EH_RESET_TIMER:
551		blk_add_timer(req);
552		blk_clear_rq_complete(req);
553		break;
554	case BLK_EH_NOT_HANDLED:
555		break;
556	default:
557		printk(KERN_ERR "block: bad eh return: %d\n", ret);
558		break;
559	}
560}
561
562static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
563		struct request *rq, void *priv, bool reserved)
564{
565	struct blk_mq_timeout_data *data = priv;
566
567	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
568		return;
569
570	if (time_after_eq(jiffies, rq->deadline)) {
571		if (!blk_mark_rq_complete(rq))
572			blk_mq_rq_timed_out(rq, reserved);
573	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
574		data->next = rq->deadline;
575		data->next_set = 1;
576	}
577}
578
579static void blk_mq_rq_timer(unsigned long priv)
580{
581	struct request_queue *q = (struct request_queue *)priv;
582	struct blk_mq_timeout_data data = {
583		.next		= 0,
584		.next_set	= 0,
585	};
586	struct blk_mq_hw_ctx *hctx;
587	int i;
588
589	queue_for_each_hw_ctx(q, hctx, i) {
590		/*
591		 * If not software queues are currently mapped to this
592		 * hardware queue, there's nothing to check
593		 */
594		if (!hctx->nr_ctx || !hctx->tags)
595			continue;
596
597		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
598	}
599
600	if (data.next_set) {
601		data.next = blk_rq_timeout(round_jiffies_up(data.next));
602		mod_timer(&q->timeout, data.next);
603	} else {
604		queue_for_each_hw_ctx(q, hctx, i)
605			blk_mq_tag_idle(hctx);
606	}
607}
608
609/*
610 * Reverse check our software queue for entries that we could potentially
611 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
612 * too much time checking for merges.
613 */
614static bool blk_mq_attempt_merge(struct request_queue *q,
615				 struct blk_mq_ctx *ctx, struct bio *bio)
616{
617	struct request *rq;
618	int checked = 8;
619
620	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
621		int el_ret;
622
623		if (!checked--)
624			break;
625
626		if (!blk_rq_merge_ok(rq, bio))
627			continue;
628
629		el_ret = blk_try_merge(rq, bio);
630		if (el_ret == ELEVATOR_BACK_MERGE) {
631			if (bio_attempt_back_merge(q, rq, bio)) {
632				ctx->rq_merged++;
633				return true;
634			}
635			break;
636		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
637			if (bio_attempt_front_merge(q, rq, bio)) {
638				ctx->rq_merged++;
639				return true;
640			}
641			break;
642		}
643	}
644
645	return false;
646}
647
648/*
649 * Process software queues that have been marked busy, splicing them
650 * to the for-dispatch
651 */
652static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
653{
654	struct blk_mq_ctx *ctx;
655	int i;
656
657	for (i = 0; i < hctx->ctx_map.map_size; i++) {
658		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
659		unsigned int off, bit;
660
661		if (!bm->word)
662			continue;
663
664		bit = 0;
665		off = i * hctx->ctx_map.bits_per_word;
666		do {
667			bit = find_next_bit(&bm->word, bm->depth, bit);
668			if (bit >= bm->depth)
669				break;
670
671			ctx = hctx->ctxs[bit + off];
672			clear_bit(bit, &bm->word);
673			spin_lock(&ctx->lock);
674			list_splice_tail_init(&ctx->rq_list, list);
675			spin_unlock(&ctx->lock);
676
677			bit++;
678		} while (1);
679	}
680}
681
682/*
683 * Run this hardware queue, pulling any software queues mapped to it in.
684 * Note that this function currently has various problems around ordering
685 * of IO. In particular, we'd like FIFO behaviour on handling existing
686 * items on the hctx->dispatch list. Ignore that for now.
687 */
688static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
689{
690	struct request_queue *q = hctx->queue;
691	struct request *rq;
692	LIST_HEAD(rq_list);
693	int queued;
694
695	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
696
697	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
698		return;
699
700	hctx->run++;
701
702	/*
703	 * Touch any software queue that has pending entries.
704	 */
705	flush_busy_ctxs(hctx, &rq_list);
706
707	/*
708	 * If we have previous entries on our dispatch list, grab them
709	 * and stuff them at the front for more fair dispatch.
710	 */
711	if (!list_empty_careful(&hctx->dispatch)) {
712		spin_lock(&hctx->lock);
713		if (!list_empty(&hctx->dispatch))
714			list_splice_init(&hctx->dispatch, &rq_list);
715		spin_unlock(&hctx->lock);
716	}
717
718	/*
719	 * Now process all the entries, sending them to the driver.
720	 */
721	queued = 0;
722	while (!list_empty(&rq_list)) {
723		int ret;
724
725		rq = list_first_entry(&rq_list, struct request, queuelist);
726		list_del_init(&rq->queuelist);
727
728		ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
729		switch (ret) {
730		case BLK_MQ_RQ_QUEUE_OK:
731			queued++;
732			continue;
733		case BLK_MQ_RQ_QUEUE_BUSY:
734			list_add(&rq->queuelist, &rq_list);
735			__blk_mq_requeue_request(rq);
736			break;
737		default:
738			pr_err("blk-mq: bad return on queue: %d\n", ret);
739		case BLK_MQ_RQ_QUEUE_ERROR:
740			rq->errors = -EIO;
741			blk_mq_end_request(rq, rq->errors);
742			break;
743		}
744
745		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
746			break;
747	}
748
749	if (!queued)
750		hctx->dispatched[0]++;
751	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
752		hctx->dispatched[ilog2(queued) + 1]++;
753
754	/*
755	 * Any items that need requeuing? Stuff them into hctx->dispatch,
756	 * that is where we will continue on next queue run.
757	 */
758	if (!list_empty(&rq_list)) {
759		spin_lock(&hctx->lock);
760		list_splice(&rq_list, &hctx->dispatch);
761		spin_unlock(&hctx->lock);
762	}
763}
764
765/*
766 * It'd be great if the workqueue API had a way to pass
767 * in a mask and had some smarts for more clever placement.
768 * For now we just round-robin here, switching for every
769 * BLK_MQ_CPU_WORK_BATCH queued items.
770 */
771static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
772{
773	int cpu = hctx->next_cpu;
774
775	if (--hctx->next_cpu_batch <= 0) {
776		int next_cpu;
777
778		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
779		if (next_cpu >= nr_cpu_ids)
780			next_cpu = cpumask_first(hctx->cpumask);
781
782		hctx->next_cpu = next_cpu;
783		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
784	}
785
786	return cpu;
787}
788
789void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
790{
791	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
792		return;
793
794	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
795		__blk_mq_run_hw_queue(hctx);
796	else if (hctx->queue->nr_hw_queues == 1)
797		kblockd_schedule_delayed_work(&hctx->run_work, 0);
798	else {
799		unsigned int cpu;
800
801		cpu = blk_mq_hctx_next_cpu(hctx);
802		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
803	}
804}
805
806void blk_mq_run_queues(struct request_queue *q, bool async)
807{
808	struct blk_mq_hw_ctx *hctx;
809	int i;
810
811	queue_for_each_hw_ctx(q, hctx, i) {
812		if ((!blk_mq_hctx_has_pending(hctx) &&
813		    list_empty_careful(&hctx->dispatch)) ||
814		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
815			continue;
816
817		preempt_disable();
818		blk_mq_run_hw_queue(hctx, async);
819		preempt_enable();
820	}
821}
822EXPORT_SYMBOL(blk_mq_run_queues);
823
824void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
825{
826	cancel_delayed_work(&hctx->run_work);
827	cancel_delayed_work(&hctx->delay_work);
828	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
829}
830EXPORT_SYMBOL(blk_mq_stop_hw_queue);
831
832void blk_mq_stop_hw_queues(struct request_queue *q)
833{
834	struct blk_mq_hw_ctx *hctx;
835	int i;
836
837	queue_for_each_hw_ctx(q, hctx, i)
838		blk_mq_stop_hw_queue(hctx);
839}
840EXPORT_SYMBOL(blk_mq_stop_hw_queues);
841
842void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
843{
844	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
845
846	preempt_disable();
847	blk_mq_run_hw_queue(hctx, false);
848	preempt_enable();
849}
850EXPORT_SYMBOL(blk_mq_start_hw_queue);
851
852void blk_mq_start_hw_queues(struct request_queue *q)
853{
854	struct blk_mq_hw_ctx *hctx;
855	int i;
856
857	queue_for_each_hw_ctx(q, hctx, i)
858		blk_mq_start_hw_queue(hctx);
859}
860EXPORT_SYMBOL(blk_mq_start_hw_queues);
861
862
863void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
864{
865	struct blk_mq_hw_ctx *hctx;
866	int i;
867
868	queue_for_each_hw_ctx(q, hctx, i) {
869		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
870			continue;
871
872		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
873		preempt_disable();
874		blk_mq_run_hw_queue(hctx, async);
875		preempt_enable();
876	}
877}
878EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
879
880static void blk_mq_run_work_fn(struct work_struct *work)
881{
882	struct blk_mq_hw_ctx *hctx;
883
884	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
885
886	__blk_mq_run_hw_queue(hctx);
887}
888
889static void blk_mq_delay_work_fn(struct work_struct *work)
890{
891	struct blk_mq_hw_ctx *hctx;
892
893	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
894
895	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
896		__blk_mq_run_hw_queue(hctx);
897}
898
899void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
900{
901	unsigned long tmo = msecs_to_jiffies(msecs);
902
903	if (hctx->queue->nr_hw_queues == 1)
904		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
905	else {
906		unsigned int cpu;
907
908		cpu = blk_mq_hctx_next_cpu(hctx);
909		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
910	}
911}
912EXPORT_SYMBOL(blk_mq_delay_queue);
913
914static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
915				    struct request *rq, bool at_head)
916{
917	struct blk_mq_ctx *ctx = rq->mq_ctx;
918
919	trace_block_rq_insert(hctx->queue, rq);
920
921	if (at_head)
922		list_add(&rq->queuelist, &ctx->rq_list);
923	else
924		list_add_tail(&rq->queuelist, &ctx->rq_list);
925
926	blk_mq_hctx_mark_pending(hctx, ctx);
927}
928
929void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
930		bool async)
931{
932	struct request_queue *q = rq->q;
933	struct blk_mq_hw_ctx *hctx;
934	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
935
936	current_ctx = blk_mq_get_ctx(q);
937	if (!cpu_online(ctx->cpu))
938		rq->mq_ctx = ctx = current_ctx;
939
940	hctx = q->mq_ops->map_queue(q, ctx->cpu);
941
942	spin_lock(&ctx->lock);
943	__blk_mq_insert_request(hctx, rq, at_head);
944	spin_unlock(&ctx->lock);
945
946	if (run_queue)
947		blk_mq_run_hw_queue(hctx, async);
948
949	blk_mq_put_ctx(current_ctx);
950}
951
952static void blk_mq_insert_requests(struct request_queue *q,
953				     struct blk_mq_ctx *ctx,
954				     struct list_head *list,
955				     int depth,
956				     bool from_schedule)
957
958{
959	struct blk_mq_hw_ctx *hctx;
960	struct blk_mq_ctx *current_ctx;
961
962	trace_block_unplug(q, depth, !from_schedule);
963
964	current_ctx = blk_mq_get_ctx(q);
965
966	if (!cpu_online(ctx->cpu))
967		ctx = current_ctx;
968	hctx = q->mq_ops->map_queue(q, ctx->cpu);
969
970	/*
971	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
972	 * offline now
973	 */
974	spin_lock(&ctx->lock);
975	while (!list_empty(list)) {
976		struct request *rq;
977
978		rq = list_first_entry(list, struct request, queuelist);
979		list_del_init(&rq->queuelist);
980		rq->mq_ctx = ctx;
981		__blk_mq_insert_request(hctx, rq, false);
982	}
983	spin_unlock(&ctx->lock);
984
985	blk_mq_run_hw_queue(hctx, from_schedule);
986	blk_mq_put_ctx(current_ctx);
987}
988
989static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
990{
991	struct request *rqa = container_of(a, struct request, queuelist);
992	struct request *rqb = container_of(b, struct request, queuelist);
993
994	return !(rqa->mq_ctx < rqb->mq_ctx ||
995		 (rqa->mq_ctx == rqb->mq_ctx &&
996		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
997}
998
999void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1000{
1001	struct blk_mq_ctx *this_ctx;
1002	struct request_queue *this_q;
1003	struct request *rq;
1004	LIST_HEAD(list);
1005	LIST_HEAD(ctx_list);
1006	unsigned int depth;
1007
1008	list_splice_init(&plug->mq_list, &list);
1009
1010	list_sort(NULL, &list, plug_ctx_cmp);
1011
1012	this_q = NULL;
1013	this_ctx = NULL;
1014	depth = 0;
1015
1016	while (!list_empty(&list)) {
1017		rq = list_entry_rq(list.next);
1018		list_del_init(&rq->queuelist);
1019		BUG_ON(!rq->q);
1020		if (rq->mq_ctx != this_ctx) {
1021			if (this_ctx) {
1022				blk_mq_insert_requests(this_q, this_ctx,
1023							&ctx_list, depth,
1024							from_schedule);
1025			}
1026
1027			this_ctx = rq->mq_ctx;
1028			this_q = rq->q;
1029			depth = 0;
1030		}
1031
1032		depth++;
1033		list_add_tail(&rq->queuelist, &ctx_list);
1034	}
1035
1036	/*
1037	 * If 'this_ctx' is set, we know we have entries to complete
1038	 * on 'ctx_list'. Do those.
1039	 */
1040	if (this_ctx) {
1041		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1042				       from_schedule);
1043	}
1044}
1045
1046static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1047{
1048	init_request_from_bio(rq, bio);
1049
1050	if (blk_do_io_stat(rq))
1051		blk_account_io_start(rq, 1);
1052}
1053
1054static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1055{
1056	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1057		!blk_queue_nomerges(hctx->queue);
1058}
1059
1060static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1061					 struct blk_mq_ctx *ctx,
1062					 struct request *rq, struct bio *bio)
1063{
1064	if (!hctx_allow_merges(hctx)) {
1065		blk_mq_bio_to_request(rq, bio);
1066		spin_lock(&ctx->lock);
1067insert_rq:
1068		__blk_mq_insert_request(hctx, rq, false);
1069		spin_unlock(&ctx->lock);
1070		return false;
1071	} else {
1072		struct request_queue *q = hctx->queue;
1073
1074		spin_lock(&ctx->lock);
1075		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1076			blk_mq_bio_to_request(rq, bio);
1077			goto insert_rq;
1078		}
1079
1080		spin_unlock(&ctx->lock);
1081		__blk_mq_free_request(hctx, ctx, rq);
1082		return true;
1083	}
1084}
1085
1086struct blk_map_ctx {
1087	struct blk_mq_hw_ctx *hctx;
1088	struct blk_mq_ctx *ctx;
1089};
1090
1091static struct request *blk_mq_map_request(struct request_queue *q,
1092					  struct bio *bio,
1093					  struct blk_map_ctx *data)
1094{
1095	struct blk_mq_hw_ctx *hctx;
1096	struct blk_mq_ctx *ctx;
1097	struct request *rq;
1098	int rw = bio_data_dir(bio);
1099	struct blk_mq_alloc_data alloc_data;
1100
1101	if (unlikely(blk_mq_queue_enter(q))) {
1102		bio_endio(bio, -EIO);
1103		return NULL;
1104	}
1105
1106	ctx = blk_mq_get_ctx(q);
1107	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1108
1109	if (rw_is_sync(bio->bi_rw))
1110		rw |= REQ_SYNC;
1111
1112	trace_block_getrq(q, bio, rw);
1113	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1114			hctx);
1115	rq = __blk_mq_alloc_request(&alloc_data, rw);
1116	if (unlikely(!rq)) {
1117		__blk_mq_run_hw_queue(hctx);
1118		blk_mq_put_ctx(ctx);
1119		trace_block_sleeprq(q, bio, rw);
1120
1121		ctx = blk_mq_get_ctx(q);
1122		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1123		blk_mq_set_alloc_data(&alloc_data, q,
1124				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1125		rq = __blk_mq_alloc_request(&alloc_data, rw);
1126		ctx = alloc_data.ctx;
1127		hctx = alloc_data.hctx;
1128	}
1129
1130	hctx->queued++;
1131	data->hctx = hctx;
1132	data->ctx = ctx;
1133	return rq;
1134}
1135
1136/*
1137 * Multiple hardware queue variant. This will not use per-process plugs,
1138 * but will attempt to bypass the hctx queueing if we can go straight to
1139 * hardware for SYNC IO.
1140 */
1141static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1142{
1143	const int is_sync = rw_is_sync(bio->bi_rw);
1144	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1145	struct blk_map_ctx data;
1146	struct request *rq;
1147
1148	blk_queue_bounce(q, &bio);
1149
1150	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1151		bio_endio(bio, -EIO);
1152		return;
1153	}
1154
1155	rq = blk_mq_map_request(q, bio, &data);
1156	if (unlikely(!rq))
1157		return;
1158
1159	if (unlikely(is_flush_fua)) {
1160		blk_mq_bio_to_request(rq, bio);
1161		blk_insert_flush(rq);
1162		goto run_queue;
1163	}
1164
1165	if (is_sync) {
1166		int ret;
1167
1168		blk_mq_bio_to_request(rq, bio);
1169
1170		/*
1171		 * For OK queue, we are done. For error, kill it. Any other
1172		 * error (busy), just add it to our list as we previously
1173		 * would have done
1174		 */
1175		ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1176		if (ret == BLK_MQ_RQ_QUEUE_OK)
1177			goto done;
1178		else {
1179			__blk_mq_requeue_request(rq);
1180
1181			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1182				rq->errors = -EIO;
1183				blk_mq_end_request(rq, rq->errors);
1184				goto done;
1185			}
1186		}
1187	}
1188
1189	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1190		/*
1191		 * For a SYNC request, send it to the hardware immediately. For
1192		 * an ASYNC request, just ensure that we run it later on. The
1193		 * latter allows for merging opportunities and more efficient
1194		 * dispatching.
1195		 */
1196run_queue:
1197		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1198	}
1199done:
1200	blk_mq_put_ctx(data.ctx);
1201}
1202
1203/*
1204 * Single hardware queue variant. This will attempt to use any per-process
1205 * plug for merging and IO deferral.
1206 */
1207static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1208{
1209	const int is_sync = rw_is_sync(bio->bi_rw);
1210	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1211	unsigned int use_plug, request_count = 0;
1212	struct blk_map_ctx data;
1213	struct request *rq;
1214
1215	/*
1216	 * If we have multiple hardware queues, just go directly to
1217	 * one of those for sync IO.
1218	 */
1219	use_plug = !is_flush_fua && !is_sync;
1220
1221	blk_queue_bounce(q, &bio);
1222
1223	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1224		bio_endio(bio, -EIO);
1225		return;
1226	}
1227
1228	if (use_plug && !blk_queue_nomerges(q) &&
1229	    blk_attempt_plug_merge(q, bio, &request_count))
1230		return;
1231
1232	rq = blk_mq_map_request(q, bio, &data);
1233	if (unlikely(!rq))
1234		return;
1235
1236	if (unlikely(is_flush_fua)) {
1237		blk_mq_bio_to_request(rq, bio);
1238		blk_insert_flush(rq);
1239		goto run_queue;
1240	}
1241
1242	/*
1243	 * A task plug currently exists. Since this is completely lockless,
1244	 * utilize that to temporarily store requests until the task is
1245	 * either done or scheduled away.
1246	 */
1247	if (use_plug) {
1248		struct blk_plug *plug = current->plug;
1249
1250		if (plug) {
1251			blk_mq_bio_to_request(rq, bio);
1252			if (list_empty(&plug->mq_list))
1253				trace_block_plug(q);
1254			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1255				blk_flush_plug_list(plug, false);
1256				trace_block_plug(q);
1257			}
1258			list_add_tail(&rq->queuelist, &plug->mq_list);
1259			blk_mq_put_ctx(data.ctx);
1260			return;
1261		}
1262	}
1263
1264	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1265		/*
1266		 * For a SYNC request, send it to the hardware immediately. For
1267		 * an ASYNC request, just ensure that we run it later on. The
1268		 * latter allows for merging opportunities and more efficient
1269		 * dispatching.
1270		 */
1271run_queue:
1272		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1273	}
1274
1275	blk_mq_put_ctx(data.ctx);
1276}
1277
1278/*
1279 * Default mapping to a software queue, since we use one per CPU.
1280 */
1281struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1282{
1283	return q->queue_hw_ctx[q->mq_map[cpu]];
1284}
1285EXPORT_SYMBOL(blk_mq_map_queue);
1286
1287static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1288		struct blk_mq_tags *tags, unsigned int hctx_idx)
1289{
1290	struct page *page;
1291
1292	if (tags->rqs && set->ops->exit_request) {
1293		int i;
1294
1295		for (i = 0; i < tags->nr_tags; i++) {
1296			if (!tags->rqs[i])
1297				continue;
1298			set->ops->exit_request(set->driver_data, tags->rqs[i],
1299						hctx_idx, i);
1300			tags->rqs[i] = NULL;
1301		}
1302	}
1303
1304	while (!list_empty(&tags->page_list)) {
1305		page = list_first_entry(&tags->page_list, struct page, lru);
1306		list_del_init(&page->lru);
1307		__free_pages(page, page->private);
1308	}
1309
1310	kfree(tags->rqs);
1311
1312	blk_mq_free_tags(tags);
1313}
1314
1315static size_t order_to_size(unsigned int order)
1316{
1317	return (size_t)PAGE_SIZE << order;
1318}
1319
1320static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1321		unsigned int hctx_idx)
1322{
1323	struct blk_mq_tags *tags;
1324	unsigned int i, j, entries_per_page, max_order = 4;
1325	size_t rq_size, left;
1326
1327	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1328				set->numa_node);
1329	if (!tags)
1330		return NULL;
1331
1332	INIT_LIST_HEAD(&tags->page_list);
1333
1334	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1335				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1336				 set->numa_node);
1337	if (!tags->rqs) {
1338		blk_mq_free_tags(tags);
1339		return NULL;
1340	}
1341
1342	/*
1343	 * rq_size is the size of the request plus driver payload, rounded
1344	 * to the cacheline size
1345	 */
1346	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1347				cache_line_size());
1348	left = rq_size * set->queue_depth;
1349
1350	for (i = 0; i < set->queue_depth; ) {
1351		int this_order = max_order;
1352		struct page *page;
1353		int to_do;
1354		void *p;
1355
1356		while (left < order_to_size(this_order - 1) && this_order)
1357			this_order--;
1358
1359		do {
1360			page = alloc_pages_node(set->numa_node,
1361				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1362				this_order);
1363			if (page)
1364				break;
1365			if (!this_order--)
1366				break;
1367			if (order_to_size(this_order) < rq_size)
1368				break;
1369		} while (1);
1370
1371		if (!page)
1372			goto fail;
1373
1374		page->private = this_order;
1375		list_add_tail(&page->lru, &tags->page_list);
1376
1377		p = page_address(page);
1378		entries_per_page = order_to_size(this_order) / rq_size;
1379		to_do = min(entries_per_page, set->queue_depth - i);
1380		left -= to_do * rq_size;
1381		for (j = 0; j < to_do; j++) {
1382			tags->rqs[i] = p;
1383			tags->rqs[i]->atomic_flags = 0;
1384			tags->rqs[i]->cmd_flags = 0;
1385			if (set->ops->init_request) {
1386				if (set->ops->init_request(set->driver_data,
1387						tags->rqs[i], hctx_idx, i,
1388						set->numa_node)) {
1389					tags->rqs[i] = NULL;
1390					goto fail;
1391				}
1392			}
1393
1394			p += rq_size;
1395			i++;
1396		}
1397	}
1398
1399	return tags;
1400
1401fail:
1402	blk_mq_free_rq_map(set, tags, hctx_idx);
1403	return NULL;
1404}
1405
1406static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1407{
1408	kfree(bitmap->map);
1409}
1410
1411static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1412{
1413	unsigned int bpw = 8, total, num_maps, i;
1414
1415	bitmap->bits_per_word = bpw;
1416
1417	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1418	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1419					GFP_KERNEL, node);
1420	if (!bitmap->map)
1421		return -ENOMEM;
1422
1423	bitmap->map_size = num_maps;
1424
1425	total = nr_cpu_ids;
1426	for (i = 0; i < num_maps; i++) {
1427		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1428		total -= bitmap->map[i].depth;
1429	}
1430
1431	return 0;
1432}
1433
1434static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1435{
1436	struct request_queue *q = hctx->queue;
1437	struct blk_mq_ctx *ctx;
1438	LIST_HEAD(tmp);
1439
1440	/*
1441	 * Move ctx entries to new CPU, if this one is going away.
1442	 */
1443	ctx = __blk_mq_get_ctx(q, cpu);
1444
1445	spin_lock(&ctx->lock);
1446	if (!list_empty(&ctx->rq_list)) {
1447		list_splice_init(&ctx->rq_list, &tmp);
1448		blk_mq_hctx_clear_pending(hctx, ctx);
1449	}
1450	spin_unlock(&ctx->lock);
1451
1452	if (list_empty(&tmp))
1453		return NOTIFY_OK;
1454
1455	ctx = blk_mq_get_ctx(q);
1456	spin_lock(&ctx->lock);
1457
1458	while (!list_empty(&tmp)) {
1459		struct request *rq;
1460
1461		rq = list_first_entry(&tmp, struct request, queuelist);
1462		rq->mq_ctx = ctx;
1463		list_move_tail(&rq->queuelist, &ctx->rq_list);
1464	}
1465
1466	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1467	blk_mq_hctx_mark_pending(hctx, ctx);
1468
1469	spin_unlock(&ctx->lock);
1470
1471	blk_mq_run_hw_queue(hctx, true);
1472	blk_mq_put_ctx(ctx);
1473	return NOTIFY_OK;
1474}
1475
1476static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1477{
1478	struct request_queue *q = hctx->queue;
1479	struct blk_mq_tag_set *set = q->tag_set;
1480
1481	if (set->tags[hctx->queue_num])
1482		return NOTIFY_OK;
1483
1484	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1485	if (!set->tags[hctx->queue_num])
1486		return NOTIFY_STOP;
1487
1488	hctx->tags = set->tags[hctx->queue_num];
1489	return NOTIFY_OK;
1490}
1491
1492static int blk_mq_hctx_notify(void *data, unsigned long action,
1493			      unsigned int cpu)
1494{
1495	struct blk_mq_hw_ctx *hctx = data;
1496
1497	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1498		return blk_mq_hctx_cpu_offline(hctx, cpu);
1499	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1500		return blk_mq_hctx_cpu_online(hctx, cpu);
1501
1502	return NOTIFY_OK;
1503}
1504
1505static void blk_mq_exit_hctx(struct request_queue *q,
1506		struct blk_mq_tag_set *set,
1507		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1508{
1509	unsigned flush_start_tag = set->queue_depth;
1510
1511	blk_mq_tag_idle(hctx);
1512
1513	if (set->ops->exit_request)
1514		set->ops->exit_request(set->driver_data,
1515				       hctx->fq->flush_rq, hctx_idx,
1516				       flush_start_tag + hctx_idx);
1517
1518	if (set->ops->exit_hctx)
1519		set->ops->exit_hctx(hctx, hctx_idx);
1520
1521	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1522	blk_free_flush_queue(hctx->fq);
1523	kfree(hctx->ctxs);
1524	blk_mq_free_bitmap(&hctx->ctx_map);
1525}
1526
1527static void blk_mq_exit_hw_queues(struct request_queue *q,
1528		struct blk_mq_tag_set *set, int nr_queue)
1529{
1530	struct blk_mq_hw_ctx *hctx;
1531	unsigned int i;
1532
1533	queue_for_each_hw_ctx(q, hctx, i) {
1534		if (i == nr_queue)
1535			break;
1536		blk_mq_exit_hctx(q, set, hctx, i);
1537	}
1538}
1539
1540static void blk_mq_free_hw_queues(struct request_queue *q,
1541		struct blk_mq_tag_set *set)
1542{
1543	struct blk_mq_hw_ctx *hctx;
1544	unsigned int i;
1545
1546	queue_for_each_hw_ctx(q, hctx, i) {
1547		free_cpumask_var(hctx->cpumask);
1548		kfree(hctx);
1549	}
1550}
1551
1552static int blk_mq_init_hctx(struct request_queue *q,
1553		struct blk_mq_tag_set *set,
1554		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1555{
1556	int node;
1557	unsigned flush_start_tag = set->queue_depth;
1558
1559	node = hctx->numa_node;
1560	if (node == NUMA_NO_NODE)
1561		node = hctx->numa_node = set->numa_node;
1562
1563	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1564	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1565	spin_lock_init(&hctx->lock);
1566	INIT_LIST_HEAD(&hctx->dispatch);
1567	hctx->queue = q;
1568	hctx->queue_num = hctx_idx;
1569	hctx->flags = set->flags;
1570	hctx->cmd_size = set->cmd_size;
1571
1572	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1573					blk_mq_hctx_notify, hctx);
1574	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1575
1576	hctx->tags = set->tags[hctx_idx];
1577
1578	/*
1579	 * Allocate space for all possible cpus to avoid allocation at
1580	 * runtime
1581	 */
1582	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1583					GFP_KERNEL, node);
1584	if (!hctx->ctxs)
1585		goto unregister_cpu_notifier;
1586
1587	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1588		goto free_ctxs;
1589
1590	hctx->nr_ctx = 0;
1591
1592	if (set->ops->init_hctx &&
1593	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1594		goto free_bitmap;
1595
1596	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1597	if (!hctx->fq)
1598		goto exit_hctx;
1599
1600	if (set->ops->init_request &&
1601	    set->ops->init_request(set->driver_data,
1602				   hctx->fq->flush_rq, hctx_idx,
1603				   flush_start_tag + hctx_idx, node))
1604		goto free_fq;
1605
1606	return 0;
1607
1608 free_fq:
1609	kfree(hctx->fq);
1610 exit_hctx:
1611	if (set->ops->exit_hctx)
1612		set->ops->exit_hctx(hctx, hctx_idx);
1613 free_bitmap:
1614	blk_mq_free_bitmap(&hctx->ctx_map);
1615 free_ctxs:
1616	kfree(hctx->ctxs);
1617 unregister_cpu_notifier:
1618	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1619
1620	return -1;
1621}
1622
1623static int blk_mq_init_hw_queues(struct request_queue *q,
1624		struct blk_mq_tag_set *set)
1625{
1626	struct blk_mq_hw_ctx *hctx;
1627	unsigned int i;
1628
1629	/*
1630	 * Initialize hardware queues
1631	 */
1632	queue_for_each_hw_ctx(q, hctx, i) {
1633		if (blk_mq_init_hctx(q, set, hctx, i))
1634			break;
1635	}
1636
1637	if (i == q->nr_hw_queues)
1638		return 0;
1639
1640	/*
1641	 * Init failed
1642	 */
1643	blk_mq_exit_hw_queues(q, set, i);
1644
1645	return 1;
1646}
1647
1648static void blk_mq_init_cpu_queues(struct request_queue *q,
1649				   unsigned int nr_hw_queues)
1650{
1651	unsigned int i;
1652
1653	for_each_possible_cpu(i) {
1654		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1655		struct blk_mq_hw_ctx *hctx;
1656
1657		memset(__ctx, 0, sizeof(*__ctx));
1658		__ctx->cpu = i;
1659		spin_lock_init(&__ctx->lock);
1660		INIT_LIST_HEAD(&__ctx->rq_list);
1661		__ctx->queue = q;
1662
1663		/* If the cpu isn't online, the cpu is mapped to first hctx */
1664		if (!cpu_online(i))
1665			continue;
1666
1667		hctx = q->mq_ops->map_queue(q, i);
1668		cpumask_set_cpu(i, hctx->cpumask);
1669		hctx->nr_ctx++;
1670
1671		/*
1672		 * Set local node, IFF we have more than one hw queue. If
1673		 * not, we remain on the home node of the device
1674		 */
1675		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1676			hctx->numa_node = cpu_to_node(i);
1677	}
1678}
1679
1680static void blk_mq_map_swqueue(struct request_queue *q)
1681{
1682	unsigned int i;
1683	struct blk_mq_hw_ctx *hctx;
1684	struct blk_mq_ctx *ctx;
1685
1686	queue_for_each_hw_ctx(q, hctx, i) {
1687		cpumask_clear(hctx->cpumask);
1688		hctx->nr_ctx = 0;
1689	}
1690
1691	/*
1692	 * Map software to hardware queues
1693	 */
1694	queue_for_each_ctx(q, ctx, i) {
1695		/* If the cpu isn't online, the cpu is mapped to first hctx */
1696		if (!cpu_online(i))
1697			continue;
1698
1699		hctx = q->mq_ops->map_queue(q, i);
1700		cpumask_set_cpu(i, hctx->cpumask);
1701		ctx->index_hw = hctx->nr_ctx;
1702		hctx->ctxs[hctx->nr_ctx++] = ctx;
1703	}
1704
1705	queue_for_each_hw_ctx(q, hctx, i) {
1706		/*
1707		 * If no software queues are mapped to this hardware queue,
1708		 * disable it and free the request entries.
1709		 */
1710		if (!hctx->nr_ctx) {
1711			struct blk_mq_tag_set *set = q->tag_set;
1712
1713			if (set->tags[i]) {
1714				blk_mq_free_rq_map(set, set->tags[i], i);
1715				set->tags[i] = NULL;
1716				hctx->tags = NULL;
1717			}
1718			continue;
1719		}
1720
1721		/*
1722		 * Initialize batch roundrobin counts
1723		 */
1724		hctx->next_cpu = cpumask_first(hctx->cpumask);
1725		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1726	}
1727}
1728
1729static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1730{
1731	struct blk_mq_hw_ctx *hctx;
1732	struct request_queue *q;
1733	bool shared;
1734	int i;
1735
1736	if (set->tag_list.next == set->tag_list.prev)
1737		shared = false;
1738	else
1739		shared = true;
1740
1741	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1742		blk_mq_freeze_queue(q);
1743
1744		queue_for_each_hw_ctx(q, hctx, i) {
1745			if (shared)
1746				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1747			else
1748				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1749		}
1750		blk_mq_unfreeze_queue(q);
1751	}
1752}
1753
1754static void blk_mq_del_queue_tag_set(struct request_queue *q)
1755{
1756	struct blk_mq_tag_set *set = q->tag_set;
1757
1758	mutex_lock(&set->tag_list_lock);
1759	list_del_init(&q->tag_set_list);
1760	blk_mq_update_tag_set_depth(set);
1761	mutex_unlock(&set->tag_list_lock);
1762}
1763
1764static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1765				     struct request_queue *q)
1766{
1767	q->tag_set = set;
1768
1769	mutex_lock(&set->tag_list_lock);
1770	list_add_tail(&q->tag_set_list, &set->tag_list);
1771	blk_mq_update_tag_set_depth(set);
1772	mutex_unlock(&set->tag_list_lock);
1773}
1774
1775struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1776{
1777	struct blk_mq_hw_ctx **hctxs;
1778	struct blk_mq_ctx __percpu *ctx;
1779	struct request_queue *q;
1780	unsigned int *map;
1781	int i;
1782
1783	ctx = alloc_percpu(struct blk_mq_ctx);
1784	if (!ctx)
1785		return ERR_PTR(-ENOMEM);
1786
1787	/*
1788	 * If a crashdump is active, then we are potentially in a very
1789	 * memory constrained environment. Limit us to 1 queue and
1790	 * 64 tags to prevent using too much memory.
1791	 */
1792	if (is_kdump_kernel()) {
1793		set->nr_hw_queues = 1;
1794		set->queue_depth = min(64U, set->queue_depth);
1795	}
1796
1797	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1798			set->numa_node);
1799
1800	if (!hctxs)
1801		goto err_percpu;
1802
1803	map = blk_mq_make_queue_map(set);
1804	if (!map)
1805		goto err_map;
1806
1807	for (i = 0; i < set->nr_hw_queues; i++) {
1808		int node = blk_mq_hw_queue_to_node(map, i);
1809
1810		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1811					GFP_KERNEL, node);
1812		if (!hctxs[i])
1813			goto err_hctxs;
1814
1815		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1816						node))
1817			goto err_hctxs;
1818
1819		atomic_set(&hctxs[i]->nr_active, 0);
1820		hctxs[i]->numa_node = node;
1821		hctxs[i]->queue_num = i;
1822	}
1823
1824	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1825	if (!q)
1826		goto err_hctxs;
1827
1828	/*
1829	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1830	 * See blk_register_queue() for details.
1831	 */
1832	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1833			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1834		goto err_map;
1835
1836	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1837	blk_queue_rq_timeout(q, 30000);
1838
1839	q->nr_queues = nr_cpu_ids;
1840	q->nr_hw_queues = set->nr_hw_queues;
1841	q->mq_map = map;
1842
1843	q->queue_ctx = ctx;
1844	q->queue_hw_ctx = hctxs;
1845
1846	q->mq_ops = set->ops;
1847	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1848
1849	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1850		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1851
1852	q->sg_reserved_size = INT_MAX;
1853
1854	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1855	INIT_LIST_HEAD(&q->requeue_list);
1856	spin_lock_init(&q->requeue_lock);
1857
1858	if (q->nr_hw_queues > 1)
1859		blk_queue_make_request(q, blk_mq_make_request);
1860	else
1861		blk_queue_make_request(q, blk_sq_make_request);
1862
1863	if (set->timeout)
1864		blk_queue_rq_timeout(q, set->timeout);
1865
1866	/*
1867	 * Do this after blk_queue_make_request() overrides it...
1868	 */
1869	q->nr_requests = set->queue_depth;
1870
1871	if (set->ops->complete)
1872		blk_queue_softirq_done(q, set->ops->complete);
1873
1874	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1875
1876	if (blk_mq_init_hw_queues(q, set))
1877		goto err_hw;
1878
1879	mutex_lock(&all_q_mutex);
1880	list_add_tail(&q->all_q_node, &all_q_list);
1881	mutex_unlock(&all_q_mutex);
1882
1883	blk_mq_add_queue_tag_set(set, q);
1884
1885	blk_mq_map_swqueue(q);
1886
1887	return q;
1888
1889err_hw:
1890	blk_cleanup_queue(q);
1891err_hctxs:
1892	kfree(map);
1893	for (i = 0; i < set->nr_hw_queues; i++) {
1894		if (!hctxs[i])
1895			break;
1896		free_cpumask_var(hctxs[i]->cpumask);
1897		kfree(hctxs[i]);
1898	}
1899err_map:
1900	kfree(hctxs);
1901err_percpu:
1902	free_percpu(ctx);
1903	return ERR_PTR(-ENOMEM);
1904}
1905EXPORT_SYMBOL(blk_mq_init_queue);
1906
1907void blk_mq_free_queue(struct request_queue *q)
1908{
1909	struct blk_mq_tag_set	*set = q->tag_set;
1910
1911	blk_mq_del_queue_tag_set(q);
1912
1913	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1914	blk_mq_free_hw_queues(q, set);
1915
1916	percpu_ref_exit(&q->mq_usage_counter);
1917
1918	free_percpu(q->queue_ctx);
1919	kfree(q->queue_hw_ctx);
1920	kfree(q->mq_map);
1921
1922	q->queue_ctx = NULL;
1923	q->queue_hw_ctx = NULL;
1924	q->mq_map = NULL;
1925
1926	mutex_lock(&all_q_mutex);
1927	list_del_init(&q->all_q_node);
1928	mutex_unlock(&all_q_mutex);
1929}
1930
1931/* Basically redo blk_mq_init_queue with queue frozen */
1932static void blk_mq_queue_reinit(struct request_queue *q)
1933{
1934	WARN_ON_ONCE(!q->mq_freeze_depth);
1935
1936	blk_mq_sysfs_unregister(q);
1937
1938	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1939
1940	/*
1941	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1942	 * we should change hctx numa_node according to new topology (this
1943	 * involves free and re-allocate memory, worthy doing?)
1944	 */
1945
1946	blk_mq_map_swqueue(q);
1947
1948	blk_mq_sysfs_register(q);
1949}
1950
1951static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1952				      unsigned long action, void *hcpu)
1953{
1954	struct request_queue *q;
1955
1956	/*
1957	 * Before new mappings are established, hotadded cpu might already
1958	 * start handling requests. This doesn't break anything as we map
1959	 * offline CPUs to first hardware queue. We will re-init the queue
1960	 * below to get optimal settings.
1961	 */
1962	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1963	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1964		return NOTIFY_OK;
1965
1966	mutex_lock(&all_q_mutex);
1967
1968	/*
1969	 * We need to freeze and reinit all existing queues.  Freezing
1970	 * involves synchronous wait for an RCU grace period and doing it
1971	 * one by one may take a long time.  Start freezing all queues in
1972	 * one swoop and then wait for the completions so that freezing can
1973	 * take place in parallel.
1974	 */
1975	list_for_each_entry(q, &all_q_list, all_q_node)
1976		blk_mq_freeze_queue_start(q);
1977	list_for_each_entry(q, &all_q_list, all_q_node)
1978		blk_mq_freeze_queue_wait(q);
1979
1980	list_for_each_entry(q, &all_q_list, all_q_node)
1981		blk_mq_queue_reinit(q);
1982
1983	list_for_each_entry(q, &all_q_list, all_q_node)
1984		blk_mq_unfreeze_queue(q);
1985
1986	mutex_unlock(&all_q_mutex);
1987	return NOTIFY_OK;
1988}
1989
1990static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1991{
1992	int i;
1993
1994	for (i = 0; i < set->nr_hw_queues; i++) {
1995		set->tags[i] = blk_mq_init_rq_map(set, i);
1996		if (!set->tags[i])
1997			goto out_unwind;
1998	}
1999
2000	return 0;
2001
2002out_unwind:
2003	while (--i >= 0)
2004		blk_mq_free_rq_map(set, set->tags[i], i);
2005
2006	return -ENOMEM;
2007}
2008
2009/*
2010 * Allocate the request maps associated with this tag_set. Note that this
2011 * may reduce the depth asked for, if memory is tight. set->queue_depth
2012 * will be updated to reflect the allocated depth.
2013 */
2014static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2015{
2016	unsigned int depth;
2017	int err;
2018
2019	depth = set->queue_depth;
2020	do {
2021		err = __blk_mq_alloc_rq_maps(set);
2022		if (!err)
2023			break;
2024
2025		set->queue_depth >>= 1;
2026		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2027			err = -ENOMEM;
2028			break;
2029		}
2030	} while (set->queue_depth);
2031
2032	if (!set->queue_depth || err) {
2033		pr_err("blk-mq: failed to allocate request map\n");
2034		return -ENOMEM;
2035	}
2036
2037	if (depth != set->queue_depth)
2038		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2039						depth, set->queue_depth);
2040
2041	return 0;
2042}
2043
2044/*
2045 * Alloc a tag set to be associated with one or more request queues.
2046 * May fail with EINVAL for various error conditions. May adjust the
2047 * requested depth down, if if it too large. In that case, the set
2048 * value will be stored in set->queue_depth.
2049 */
2050int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2051{
2052	if (!set->nr_hw_queues)
2053		return -EINVAL;
2054	if (!set->queue_depth)
2055		return -EINVAL;
2056	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2057		return -EINVAL;
2058
2059	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2060		return -EINVAL;
2061
2062	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2063		pr_info("blk-mq: reduced tag depth to %u\n",
2064			BLK_MQ_MAX_DEPTH);
2065		set->queue_depth = BLK_MQ_MAX_DEPTH;
2066	}
2067
2068	set->tags = kmalloc_node(set->nr_hw_queues *
2069				 sizeof(struct blk_mq_tags *),
2070				 GFP_KERNEL, set->numa_node);
2071	if (!set->tags)
2072		return -ENOMEM;
2073
2074	if (blk_mq_alloc_rq_maps(set))
2075		goto enomem;
2076
2077	mutex_init(&set->tag_list_lock);
2078	INIT_LIST_HEAD(&set->tag_list);
2079
2080	return 0;
2081enomem:
2082	kfree(set->tags);
2083	set->tags = NULL;
2084	return -ENOMEM;
2085}
2086EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2087
2088void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2089{
2090	int i;
2091
2092	for (i = 0; i < set->nr_hw_queues; i++) {
2093		if (set->tags[i])
2094			blk_mq_free_rq_map(set, set->tags[i], i);
2095	}
2096
2097	kfree(set->tags);
2098	set->tags = NULL;
2099}
2100EXPORT_SYMBOL(blk_mq_free_tag_set);
2101
2102int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2103{
2104	struct blk_mq_tag_set *set = q->tag_set;
2105	struct blk_mq_hw_ctx *hctx;
2106	int i, ret;
2107
2108	if (!set || nr > set->queue_depth)
2109		return -EINVAL;
2110
2111	ret = 0;
2112	queue_for_each_hw_ctx(q, hctx, i) {
2113		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2114		if (ret)
2115			break;
2116	}
2117
2118	if (!ret)
2119		q->nr_requests = nr;
2120
2121	return ret;
2122}
2123
2124void blk_mq_disable_hotplug(void)
2125{
2126	mutex_lock(&all_q_mutex);
2127}
2128
2129void blk_mq_enable_hotplug(void)
2130{
2131	mutex_unlock(&all_q_mutex);
2132}
2133
2134static int __init blk_mq_init(void)
2135{
2136	blk_mq_cpu_init();
2137
2138	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2139
2140	return 0;
2141}
2142subsys_initcall(blk_mq_init);
2143