1/*
2 * Driver for the Octeon bootbus compact flash.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2005 - 2012 Cavium Inc.
9 * Copyright (C) 2008 Wind River Systems
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/libata.h>
15#include <linux/hrtimer.h>
16#include <linux/slab.h>
17#include <linux/irq.h>
18#include <linux/of.h>
19#include <linux/of_platform.h>
20#include <linux/platform_device.h>
21#include <scsi/scsi_host.h>
22
23#include <asm/byteorder.h>
24#include <asm/octeon/octeon.h>
25
26/*
27 * The Octeon bootbus compact flash interface is connected in at least
28 * 3 different configurations on various evaluation boards:
29 *
30 * -- 8  bits no irq, no DMA
31 * -- 16 bits no irq, no DMA
32 * -- 16 bits True IDE mode with DMA, but no irq.
33 *
34 * In the last case the DMA engine can generate an interrupt when the
35 * transfer is complete.  For the first two cases only PIO is supported.
36 *
37 */
38
39#define DRV_NAME	"pata_octeon_cf"
40#define DRV_VERSION	"2.2"
41
42/* Poll interval in nS. */
43#define OCTEON_CF_BUSY_POLL_INTERVAL 500000
44
45#define DMA_CFG 0
46#define DMA_TIM 0x20
47#define DMA_INT 0x38
48#define DMA_INT_EN 0x50
49
50struct octeon_cf_port {
51	struct hrtimer delayed_finish;
52	struct ata_port *ap;
53	int dma_finished;
54	void		*c0;
55	unsigned int cs0;
56	unsigned int cs1;
57	bool is_true_ide;
58	u64 dma_base;
59};
60
61static struct scsi_host_template octeon_cf_sht = {
62	ATA_PIO_SHT(DRV_NAME),
63};
64
65static int enable_dma;
66module_param(enable_dma, int, 0444);
67MODULE_PARM_DESC(enable_dma,
68		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
69
70/**
71 * Convert nanosecond based time to setting used in the
72 * boot bus timing register, based on timing multiple
73 */
74static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
75{
76	unsigned int val;
77
78	/*
79	 * Compute # of eclock periods to get desired duration in
80	 * nanoseconds.
81	 */
82	val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
83			  1000 * tim_mult);
84
85	return val;
86}
87
88static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
89{
90	union cvmx_mio_boot_reg_cfgx reg_cfg;
91	unsigned int tim_mult;
92
93	switch (multiplier) {
94	case 8:
95		tim_mult = 3;
96		break;
97	case 4:
98		tim_mult = 0;
99		break;
100	case 2:
101		tim_mult = 2;
102		break;
103	default:
104		tim_mult = 1;
105		break;
106	}
107
108	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
109	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
110	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
111	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
112	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
113	reg_cfg.s.we_ext = 0;	/* No write enable extension */
114	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
115	reg_cfg.s.en = 1;	/* Enable this region */
116	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
117	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
118	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
119}
120
121/**
122 * Called after libata determines the needed PIO mode. This
123 * function programs the Octeon bootbus regions to support the
124 * timing requirements of the PIO mode.
125 *
126 * @ap:     ATA port information
127 * @dev:    ATA device
128 */
129static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
130{
131	struct octeon_cf_port *cf_port = ap->private_data;
132	union cvmx_mio_boot_reg_timx reg_tim;
133	int T;
134	struct ata_timing timing;
135
136	unsigned int div;
137	int use_iordy;
138	int trh;
139	int pause;
140	/* These names are timing parameters from the ATA spec */
141	int t1;
142	int t2;
143	int t2i;
144
145	/*
146	 * A divisor value of four will overflow the timing fields at
147	 * clock rates greater than 800MHz
148	 */
149	if (octeon_get_io_clock_rate() <= 800000000)
150		div = 4;
151	else
152		div = 8;
153	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
154
155	if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
156		BUG();
157
158	t1 = timing.setup;
159	if (t1)
160		t1--;
161	t2 = timing.active;
162	if (t2)
163		t2--;
164	t2i = timing.act8b;
165	if (t2i)
166		t2i--;
167
168	trh = ns_to_tim_reg(div, 20);
169	if (trh)
170		trh--;
171
172	pause = (int)timing.cycle - (int)timing.active -
173		(int)timing.setup - trh;
174	if (pause < 0)
175		pause = 0;
176	if (pause)
177		pause--;
178
179	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
180	if (cf_port->is_true_ide)
181		/* True IDE mode, program both chip selects.  */
182		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
183
184
185	use_iordy = ata_pio_need_iordy(dev);
186
187	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
188	/* Disable page mode */
189	reg_tim.s.pagem = 0;
190	/* Enable dynamic timing */
191	reg_tim.s.waitm = use_iordy;
192	/* Pages are disabled */
193	reg_tim.s.pages = 0;
194	/* We don't use multiplexed address mode */
195	reg_tim.s.ale = 0;
196	/* Not used */
197	reg_tim.s.page = 0;
198	/* Time after IORDY to coninue to assert the data */
199	reg_tim.s.wait = 0;
200	/* Time to wait to complete the cycle. */
201	reg_tim.s.pause = pause;
202	/* How long to hold after a write to de-assert CE. */
203	reg_tim.s.wr_hld = trh;
204	/* How long to wait after a read to de-assert CE. */
205	reg_tim.s.rd_hld = trh;
206	/* How long write enable is asserted */
207	reg_tim.s.we = t2;
208	/* How long read enable is asserted */
209	reg_tim.s.oe = t2;
210	/* Time after CE that read/write starts */
211	reg_tim.s.ce = ns_to_tim_reg(div, 5);
212	/* Time before CE that address is valid */
213	reg_tim.s.adr = 0;
214
215	/* Program the bootbus region timing for the data port chip select. */
216	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
217	if (cf_port->is_true_ide)
218		/* True IDE mode, program both chip selects.  */
219		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
220			       reg_tim.u64);
221}
222
223static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
224{
225	struct octeon_cf_port *cf_port = ap->private_data;
226	union cvmx_mio_boot_pin_defs pin_defs;
227	union cvmx_mio_boot_dma_timx dma_tim;
228	unsigned int oe_a;
229	unsigned int oe_n;
230	unsigned int dma_ackh;
231	unsigned int dma_arq;
232	unsigned int pause;
233	unsigned int T0, Tkr, Td;
234	unsigned int tim_mult;
235	int c;
236
237	const struct ata_timing *timing;
238
239	timing = ata_timing_find_mode(dev->dma_mode);
240	T0	= timing->cycle;
241	Td	= timing->active;
242	Tkr	= timing->recover;
243	dma_ackh = timing->dmack_hold;
244
245	dma_tim.u64 = 0;
246	/* dma_tim.s.tim_mult = 0 --> 4x */
247	tim_mult = 4;
248
249	/* not spec'ed, value in eclocks, not affected by tim_mult */
250	dma_arq = 8;
251	pause = 25 - dma_arq * 1000 /
252		(octeon_get_io_clock_rate() / 1000000); /* Tz */
253
254	oe_a = Td;
255	/* Tkr from cf spec, lengthened to meet T0 */
256	oe_n = max(T0 - oe_a, Tkr);
257
258	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
259
260	/* DMA channel number. */
261	c = (cf_port->dma_base & 8) >> 3;
262
263	/* Invert the polarity if the default is 0*/
264	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
265
266	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
267	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
268
269	/*
270	 * This is tI, C.F. spec. says 0, but Sony CF card requires
271	 * more, we use 20 nS.
272	 */
273	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
274	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
275
276	dma_tim.s.dmarq = dma_arq;
277	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
278
279	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
280
281	/*  writes only */
282	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
283	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
284
285	pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
286		 ns_to_tim_reg(tim_mult, 60));
287	pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
288		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
289		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
290
291	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
292}
293
294/**
295 * Handle an 8 bit I/O request.
296 *
297 * @dev:        Device to access
298 * @buffer:     Data buffer
299 * @buflen:     Length of the buffer.
300 * @rw:         True to write.
301 */
302static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
303					 unsigned char *buffer,
304					 unsigned int buflen,
305					 int rw)
306{
307	struct ata_port *ap		= dev->link->ap;
308	void __iomem *data_addr		= ap->ioaddr.data_addr;
309	unsigned long words;
310	int count;
311
312	words = buflen;
313	if (rw) {
314		count = 16;
315		while (words--) {
316			iowrite8(*buffer, data_addr);
317			buffer++;
318			/*
319			 * Every 16 writes do a read so the bootbus
320			 * FIFO doesn't fill up.
321			 */
322			if (--count == 0) {
323				ioread8(ap->ioaddr.altstatus_addr);
324				count = 16;
325			}
326		}
327	} else {
328		ioread8_rep(data_addr, buffer, words);
329	}
330	return buflen;
331}
332
333/**
334 * Handle a 16 bit I/O request.
335 *
336 * @dev:        Device to access
337 * @buffer:     Data buffer
338 * @buflen:     Length of the buffer.
339 * @rw:         True to write.
340 */
341static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
342					  unsigned char *buffer,
343					  unsigned int buflen,
344					  int rw)
345{
346	struct ata_port *ap		= dev->link->ap;
347	void __iomem *data_addr		= ap->ioaddr.data_addr;
348	unsigned long words;
349	int count;
350
351	words = buflen / 2;
352	if (rw) {
353		count = 16;
354		while (words--) {
355			iowrite16(*(uint16_t *)buffer, data_addr);
356			buffer += sizeof(uint16_t);
357			/*
358			 * Every 16 writes do a read so the bootbus
359			 * FIFO doesn't fill up.
360			 */
361			if (--count == 0) {
362				ioread8(ap->ioaddr.altstatus_addr);
363				count = 16;
364			}
365		}
366	} else {
367		while (words--) {
368			*(uint16_t *)buffer = ioread16(data_addr);
369			buffer += sizeof(uint16_t);
370		}
371	}
372	/* Transfer trailing 1 byte, if any. */
373	if (unlikely(buflen & 0x01)) {
374		__le16 align_buf[1] = { 0 };
375
376		if (rw == READ) {
377			align_buf[0] = cpu_to_le16(ioread16(data_addr));
378			memcpy(buffer, align_buf, 1);
379		} else {
380			memcpy(align_buf, buffer, 1);
381			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
382		}
383		words++;
384	}
385	return buflen;
386}
387
388/**
389 * Read the taskfile for 16bit non-True IDE only.
390 */
391static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
392{
393	u16 blob;
394	/* The base of the registers is at ioaddr.data_addr. */
395	void __iomem *base = ap->ioaddr.data_addr;
396
397	blob = __raw_readw(base + 0xc);
398	tf->feature = blob >> 8;
399
400	blob = __raw_readw(base + 2);
401	tf->nsect = blob & 0xff;
402	tf->lbal = blob >> 8;
403
404	blob = __raw_readw(base + 4);
405	tf->lbam = blob & 0xff;
406	tf->lbah = blob >> 8;
407
408	blob = __raw_readw(base + 6);
409	tf->device = blob & 0xff;
410	tf->command = blob >> 8;
411
412	if (tf->flags & ATA_TFLAG_LBA48) {
413		if (likely(ap->ioaddr.ctl_addr)) {
414			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
415
416			blob = __raw_readw(base + 0xc);
417			tf->hob_feature = blob >> 8;
418
419			blob = __raw_readw(base + 2);
420			tf->hob_nsect = blob & 0xff;
421			tf->hob_lbal = blob >> 8;
422
423			blob = __raw_readw(base + 4);
424			tf->hob_lbam = blob & 0xff;
425			tf->hob_lbah = blob >> 8;
426
427			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
428			ap->last_ctl = tf->ctl;
429		} else {
430			WARN_ON(1);
431		}
432	}
433}
434
435static u8 octeon_cf_check_status16(struct ata_port *ap)
436{
437	u16 blob;
438	void __iomem *base = ap->ioaddr.data_addr;
439
440	blob = __raw_readw(base + 6);
441	return blob >> 8;
442}
443
444static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
445				 unsigned long deadline)
446{
447	struct ata_port *ap = link->ap;
448	void __iomem *base = ap->ioaddr.data_addr;
449	int rc;
450	u8 err;
451
452	DPRINTK("about to softreset\n");
453	__raw_writew(ap->ctl, base + 0xe);
454	udelay(20);
455	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
456	udelay(20);
457	__raw_writew(ap->ctl, base + 0xe);
458
459	rc = ata_sff_wait_after_reset(link, 1, deadline);
460	if (rc) {
461		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
462		return rc;
463	}
464
465	/* determine by signature whether we have ATA or ATAPI devices */
466	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
467	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
468	return 0;
469}
470
471/**
472 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
473 * not loaded, we do this as part of octeon_cf_exec_command16.
474 */
475static void octeon_cf_tf_load16(struct ata_port *ap,
476				const struct ata_taskfile *tf)
477{
478	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
479	/* The base of the registers is at ioaddr.data_addr. */
480	void __iomem *base = ap->ioaddr.data_addr;
481
482	if (tf->ctl != ap->last_ctl) {
483		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
484		ap->last_ctl = tf->ctl;
485		ata_wait_idle(ap);
486	}
487	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
488		__raw_writew(tf->hob_feature << 8, base + 0xc);
489		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
490		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
491		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
492			tf->hob_feature,
493			tf->hob_nsect,
494			tf->hob_lbal,
495			tf->hob_lbam,
496			tf->hob_lbah);
497	}
498	if (is_addr) {
499		__raw_writew(tf->feature << 8, base + 0xc);
500		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
501		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
502		VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
503			tf->feature,
504			tf->nsect,
505			tf->lbal,
506			tf->lbam,
507			tf->lbah);
508	}
509	ata_wait_idle(ap);
510}
511
512
513static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
514{
515/*  There is only one device, do nothing. */
516	return;
517}
518
519/*
520 * Issue ATA command to host controller.  The device_addr is also sent
521 * as it must be written in a combined write with the command.
522 */
523static void octeon_cf_exec_command16(struct ata_port *ap,
524				const struct ata_taskfile *tf)
525{
526	/* The base of the registers is at ioaddr.data_addr. */
527	void __iomem *base = ap->ioaddr.data_addr;
528	u16 blob;
529
530	if (tf->flags & ATA_TFLAG_DEVICE) {
531		VPRINTK("device 0x%X\n", tf->device);
532		blob = tf->device;
533	} else {
534		blob = 0;
535	}
536
537	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
538	blob |= (tf->command << 8);
539	__raw_writew(blob, base + 6);
540
541
542	ata_wait_idle(ap);
543}
544
545static void octeon_cf_ata_port_noaction(struct ata_port *ap)
546{
547}
548
549static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
550{
551	struct ata_port *ap = qc->ap;
552	struct octeon_cf_port *cf_port;
553
554	cf_port = ap->private_data;
555	DPRINTK("ENTER\n");
556	/* issue r/w command */
557	qc->cursg = qc->sg;
558	cf_port->dma_finished = 0;
559	ap->ops->sff_exec_command(ap, &qc->tf);
560	DPRINTK("EXIT\n");
561}
562
563/**
564 * Start a DMA transfer that was already setup
565 *
566 * @qc:     Information about the DMA
567 */
568static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
569{
570	struct octeon_cf_port *cf_port = qc->ap->private_data;
571	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
572	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
573	struct scatterlist *sg;
574
575	VPRINTK("%d scatterlists\n", qc->n_elem);
576
577	/* Get the scatter list entry we need to DMA into */
578	sg = qc->cursg;
579	BUG_ON(!sg);
580
581	/*
582	 * Clear the DMA complete status.
583	 */
584	mio_boot_dma_int.u64 = 0;
585	mio_boot_dma_int.s.done = 1;
586	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
587
588	/* Enable the interrupt.  */
589	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
590
591	/* Set the direction of the DMA */
592	mio_boot_dma_cfg.u64 = 0;
593#ifdef __LITTLE_ENDIAN
594	mio_boot_dma_cfg.s.endian = 1;
595#endif
596	mio_boot_dma_cfg.s.en = 1;
597	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
598
599	/*
600	 * Don't stop the DMA if the device deasserts DMARQ. Many
601	 * compact flashes deassert DMARQ for a short time between
602	 * sectors. Instead of stopping and restarting the DMA, we'll
603	 * let the hardware do it. If the DMA is really stopped early
604	 * due to an error condition, a later timeout will force us to
605	 * stop.
606	 */
607	mio_boot_dma_cfg.s.clr = 0;
608
609	/* Size is specified in 16bit words and minus one notation */
610	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
611
612	/* We need to swap the high and low bytes of every 16 bits */
613	mio_boot_dma_cfg.s.swap8 = 1;
614
615	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
616
617	VPRINTK("%s %d bytes address=%p\n",
618		(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
619		(void *)(unsigned long)mio_boot_dma_cfg.s.adr);
620
621	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
622}
623
624/**
625 *
626 *	LOCKING:
627 *	spin_lock_irqsave(host lock)
628 *
629 */
630static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
631					struct ata_queued_cmd *qc)
632{
633	struct ata_eh_info *ehi = &ap->link.eh_info;
634	struct octeon_cf_port *cf_port = ap->private_data;
635	union cvmx_mio_boot_dma_cfgx dma_cfg;
636	union cvmx_mio_boot_dma_intx dma_int;
637	u8 status;
638
639	VPRINTK("ata%u: protocol %d task_state %d\n",
640		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
641
642
643	if (ap->hsm_task_state != HSM_ST_LAST)
644		return 0;
645
646	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
647	if (dma_cfg.s.size != 0xfffff) {
648		/* Error, the transfer was not complete.  */
649		qc->err_mask |= AC_ERR_HOST_BUS;
650		ap->hsm_task_state = HSM_ST_ERR;
651	}
652
653	/* Stop and clear the dma engine.  */
654	dma_cfg.u64 = 0;
655	dma_cfg.s.size = -1;
656	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
657
658	/* Disable the interrupt.  */
659	dma_int.u64 = 0;
660	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
661
662	/* Clear the DMA complete status */
663	dma_int.s.done = 1;
664	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
665
666	status = ap->ops->sff_check_status(ap);
667
668	ata_sff_hsm_move(ap, qc, status, 0);
669
670	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
671		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
672
673	return 1;
674}
675
676/*
677 * Check if any queued commands have more DMAs, if so start the next
678 * transfer, else do end of transfer handling.
679 */
680static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
681{
682	struct ata_host *host = dev_instance;
683	struct octeon_cf_port *cf_port;
684	int i;
685	unsigned int handled = 0;
686	unsigned long flags;
687
688	spin_lock_irqsave(&host->lock, flags);
689
690	DPRINTK("ENTER\n");
691	for (i = 0; i < host->n_ports; i++) {
692		u8 status;
693		struct ata_port *ap;
694		struct ata_queued_cmd *qc;
695		union cvmx_mio_boot_dma_intx dma_int;
696		union cvmx_mio_boot_dma_cfgx dma_cfg;
697
698		ap = host->ports[i];
699		cf_port = ap->private_data;
700
701		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
702		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
703
704		qc = ata_qc_from_tag(ap, ap->link.active_tag);
705
706		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
707			continue;
708
709		if (dma_int.s.done && !dma_cfg.s.en) {
710			if (!sg_is_last(qc->cursg)) {
711				qc->cursg = sg_next(qc->cursg);
712				handled = 1;
713				octeon_cf_dma_start(qc);
714				continue;
715			} else {
716				cf_port->dma_finished = 1;
717			}
718		}
719		if (!cf_port->dma_finished)
720			continue;
721		status = ioread8(ap->ioaddr.altstatus_addr);
722		if (status & (ATA_BUSY | ATA_DRQ)) {
723			/*
724			 * We are busy, try to handle it later.  This
725			 * is the DMA finished interrupt, and it could
726			 * take a little while for the card to be
727			 * ready for more commands.
728			 */
729			/* Clear DMA irq. */
730			dma_int.u64 = 0;
731			dma_int.s.done = 1;
732			cvmx_write_csr(cf_port->dma_base + DMA_INT,
733				       dma_int.u64);
734			hrtimer_start_range_ns(&cf_port->delayed_finish,
735					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
736					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
737					       HRTIMER_MODE_REL);
738			handled = 1;
739		} else {
740			handled |= octeon_cf_dma_finished(ap, qc);
741		}
742	}
743	spin_unlock_irqrestore(&host->lock, flags);
744	DPRINTK("EXIT\n");
745	return IRQ_RETVAL(handled);
746}
747
748static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
749{
750	struct octeon_cf_port *cf_port = container_of(hrt,
751						      struct octeon_cf_port,
752						      delayed_finish);
753	struct ata_port *ap = cf_port->ap;
754	struct ata_host *host = ap->host;
755	struct ata_queued_cmd *qc;
756	unsigned long flags;
757	u8 status;
758	enum hrtimer_restart rv = HRTIMER_NORESTART;
759
760	spin_lock_irqsave(&host->lock, flags);
761
762	/*
763	 * If the port is not waiting for completion, it must have
764	 * handled it previously.  The hsm_task_state is
765	 * protected by host->lock.
766	 */
767	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
768		goto out;
769
770	status = ioread8(ap->ioaddr.altstatus_addr);
771	if (status & (ATA_BUSY | ATA_DRQ)) {
772		/* Still busy, try again. */
773		hrtimer_forward_now(hrt,
774				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
775		rv = HRTIMER_RESTART;
776		goto out;
777	}
778	qc = ata_qc_from_tag(ap, ap->link.active_tag);
779	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
780		octeon_cf_dma_finished(ap, qc);
781out:
782	spin_unlock_irqrestore(&host->lock, flags);
783	return rv;
784}
785
786static void octeon_cf_dev_config(struct ata_device *dev)
787{
788	/*
789	 * A maximum of 2^20 - 1 16 bit transfers are possible with
790	 * the bootbus DMA.  So we need to throttle max_sectors to
791	 * (2^12 - 1 == 4095) to assure that this can never happen.
792	 */
793	dev->max_sectors = min(dev->max_sectors, 4095U);
794}
795
796/*
797 * We don't do ATAPI DMA so return 0.
798 */
799static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
800{
801	return 0;
802}
803
804static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
805{
806	struct ata_port *ap = qc->ap;
807
808	switch (qc->tf.protocol) {
809	case ATA_PROT_DMA:
810		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
811
812		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
813		octeon_cf_dma_setup(qc);	    /* set up dma */
814		octeon_cf_dma_start(qc);	    /* initiate dma */
815		ap->hsm_task_state = HSM_ST_LAST;
816		break;
817
818	case ATAPI_PROT_DMA:
819		dev_err(ap->dev, "Error, ATAPI not supported\n");
820		BUG();
821
822	default:
823		return ata_sff_qc_issue(qc);
824	}
825
826	return 0;
827}
828
829static struct ata_port_operations octeon_cf_ops = {
830	.inherits		= &ata_sff_port_ops,
831	.check_atapi_dma	= octeon_cf_check_atapi_dma,
832	.qc_prep		= ata_noop_qc_prep,
833	.qc_issue		= octeon_cf_qc_issue,
834	.sff_dev_select		= octeon_cf_dev_select,
835	.sff_irq_on		= octeon_cf_ata_port_noaction,
836	.sff_irq_clear		= octeon_cf_ata_port_noaction,
837	.cable_detect		= ata_cable_40wire,
838	.set_piomode		= octeon_cf_set_piomode,
839	.set_dmamode		= octeon_cf_set_dmamode,
840	.dev_config		= octeon_cf_dev_config,
841};
842
843static int octeon_cf_probe(struct platform_device *pdev)
844{
845	struct resource *res_cs0, *res_cs1;
846
847	bool is_16bit;
848	const __be32 *cs_num;
849	struct property *reg_prop;
850	int n_addr, n_size, reg_len;
851	struct device_node *node;
852	const void *prop;
853	void __iomem *cs0;
854	void __iomem *cs1 = NULL;
855	struct ata_host *host;
856	struct ata_port *ap;
857	int irq = 0;
858	irq_handler_t irq_handler = NULL;
859	void __iomem *base;
860	struct octeon_cf_port *cf_port;
861	int rv = -ENOMEM;
862
863
864	node = pdev->dev.of_node;
865	if (node == NULL)
866		return -EINVAL;
867
868	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
869	if (!cf_port)
870		return -ENOMEM;
871
872	cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL);
873
874	prop = of_get_property(node, "cavium,bus-width", NULL);
875	if (prop)
876		is_16bit = (be32_to_cpup(prop) == 16);
877	else
878		is_16bit = false;
879
880	n_addr = of_n_addr_cells(node);
881	n_size = of_n_size_cells(node);
882
883	reg_prop = of_find_property(node, "reg", &reg_len);
884	if (!reg_prop || reg_len < sizeof(__be32))
885		return -EINVAL;
886
887	cs_num = reg_prop->value;
888	cf_port->cs0 = be32_to_cpup(cs_num);
889
890	if (cf_port->is_true_ide) {
891		struct device_node *dma_node;
892		dma_node = of_parse_phandle(node,
893					    "cavium,dma-engine-handle", 0);
894		if (dma_node) {
895			struct platform_device *dma_dev;
896			dma_dev = of_find_device_by_node(dma_node);
897			if (dma_dev) {
898				struct resource *res_dma;
899				int i;
900				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
901				if (!res_dma) {
902					of_node_put(dma_node);
903					return -EINVAL;
904				}
905				cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start,
906									 resource_size(res_dma));
907				if (!cf_port->dma_base) {
908					of_node_put(dma_node);
909					return -EINVAL;
910				}
911
912				irq_handler = octeon_cf_interrupt;
913				i = platform_get_irq(dma_dev, 0);
914				if (i > 0)
915					irq = i;
916			}
917			of_node_put(dma_node);
918		}
919		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
920		if (!res_cs1)
921			return -EINVAL;
922
923		cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
924					   resource_size(res_cs1));
925		if (!cs1)
926			return rv;
927
928		if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
929			return -EINVAL;
930
931		cs_num += n_addr + n_size;
932		cf_port->cs1 = be32_to_cpup(cs_num);
933	}
934
935	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
936	if (!res_cs0)
937		return -EINVAL;
938
939	cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
940				   resource_size(res_cs0));
941	if (!cs0)
942		return rv;
943
944	/* allocate host */
945	host = ata_host_alloc(&pdev->dev, 1);
946	if (!host)
947		return rv;
948
949	ap = host->ports[0];
950	ap->private_data = cf_port;
951	pdev->dev.platform_data = cf_port;
952	cf_port->ap = ap;
953	ap->ops = &octeon_cf_ops;
954	ap->pio_mask = ATA_PIO6;
955	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
956
957	if (!is_16bit) {
958		base = cs0 + 0x800;
959		ap->ioaddr.cmd_addr	= base;
960		ata_sff_std_ports(&ap->ioaddr);
961
962		ap->ioaddr.altstatus_addr = base + 0xe;
963		ap->ioaddr.ctl_addr	= base + 0xe;
964		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
965	} else if (cf_port->is_true_ide) {
966		base = cs0;
967		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
968		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
969		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
970		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
971		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
972		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
973		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
974		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
975		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
976		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
977		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
978		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
979		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
980		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
981
982		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
983
984		/* True IDE mode needs a timer to poll for not-busy.  */
985		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
986			     HRTIMER_MODE_REL);
987		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
988	} else {
989		/* 16 bit but not True IDE */
990		base = cs0 + 0x800;
991		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
992		octeon_cf_ops.softreset		= octeon_cf_softreset16;
993		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
994		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
995		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
996		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
997
998		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
999		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
1000		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
1001		ap->ioaddr.ctl_addr	= base + 0xe;
1002		ap->ioaddr.altstatus_addr = base + 0xe;
1003	}
1004	cf_port->c0 = ap->ioaddr.ctl_addr;
1005
1006	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1007	if (rv)
1008		return rv;
1009
1010	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1011
1012	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1013		 is_16bit ? 16 : 8,
1014		 cf_port->is_true_ide ? ", True IDE" : "");
1015
1016	return ata_host_activate(host, irq, irq_handler,
1017				 IRQF_SHARED, &octeon_cf_sht);
1018}
1019
1020static void octeon_cf_shutdown(struct device *dev)
1021{
1022	union cvmx_mio_boot_dma_cfgx dma_cfg;
1023	union cvmx_mio_boot_dma_intx dma_int;
1024
1025	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1026
1027	if (cf_port->dma_base) {
1028		/* Stop and clear the dma engine.  */
1029		dma_cfg.u64 = 0;
1030		dma_cfg.s.size = -1;
1031		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1032
1033		/* Disable the interrupt.  */
1034		dma_int.u64 = 0;
1035		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1036
1037		/* Clear the DMA complete status */
1038		dma_int.s.done = 1;
1039		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1040
1041		__raw_writeb(0, cf_port->c0);
1042		udelay(20);
1043		__raw_writeb(ATA_SRST, cf_port->c0);
1044		udelay(20);
1045		__raw_writeb(0, cf_port->c0);
1046		mdelay(100);
1047	}
1048}
1049
1050static struct of_device_id octeon_cf_match[] = {
1051	{
1052		.compatible = "cavium,ebt3000-compact-flash",
1053	},
1054	{},
1055};
1056MODULE_DEVICE_TABLE(of, octeon_i2c_match);
1057
1058static struct platform_driver octeon_cf_driver = {
1059	.probe		= octeon_cf_probe,
1060	.driver		= {
1061		.name	= DRV_NAME,
1062		.owner	= THIS_MODULE,
1063		.of_match_table = octeon_cf_match,
1064		.shutdown = octeon_cf_shutdown
1065	},
1066};
1067
1068static int __init octeon_cf_init(void)
1069{
1070	return platform_driver_register(&octeon_cf_driver);
1071}
1072
1073
1074MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1075MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1076MODULE_LICENSE("GPL");
1077MODULE_VERSION(DRV_VERSION);
1078MODULE_ALIAS("platform:" DRV_NAME);
1079
1080module_init(octeon_cf_init);
1081