1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/of.h>
19#include <linux/rbtree.h>
20#include <linux/sched.h>
21
22#define CREATE_TRACE_POINTS
23#include <trace/events/regmap.h>
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used.  For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36			       unsigned int mask, unsigned int val,
37			       bool *change);
38
39static int _regmap_bus_reg_read(void *context, unsigned int reg,
40				unsigned int *val);
41static int _regmap_bus_read(void *context, unsigned int reg,
42			    unsigned int *val);
43static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44				       unsigned int val);
45static int _regmap_bus_reg_write(void *context, unsigned int reg,
46				 unsigned int val);
47static int _regmap_bus_raw_write(void *context, unsigned int reg,
48				 unsigned int val);
49
50bool regmap_reg_in_ranges(unsigned int reg,
51			  const struct regmap_range *ranges,
52			  unsigned int nranges)
53{
54	const struct regmap_range *r;
55	int i;
56
57	for (i = 0, r = ranges; i < nranges; i++, r++)
58		if (regmap_reg_in_range(reg, r))
59			return true;
60	return false;
61}
62EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63
64bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65			      const struct regmap_access_table *table)
66{
67	/* Check "no ranges" first */
68	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69		return false;
70
71	/* In case zero "yes ranges" are supplied, any reg is OK */
72	if (!table->n_yes_ranges)
73		return true;
74
75	return regmap_reg_in_ranges(reg, table->yes_ranges,
76				    table->n_yes_ranges);
77}
78EXPORT_SYMBOL_GPL(regmap_check_range_table);
79
80bool regmap_writeable(struct regmap *map, unsigned int reg)
81{
82	if (map->max_register && reg > map->max_register)
83		return false;
84
85	if (map->writeable_reg)
86		return map->writeable_reg(map->dev, reg);
87
88	if (map->wr_table)
89		return regmap_check_range_table(map, reg, map->wr_table);
90
91	return true;
92}
93
94bool regmap_readable(struct regmap *map, unsigned int reg)
95{
96	if (map->max_register && reg > map->max_register)
97		return false;
98
99	if (map->format.format_write)
100		return false;
101
102	if (map->readable_reg)
103		return map->readable_reg(map->dev, reg);
104
105	if (map->rd_table)
106		return regmap_check_range_table(map, reg, map->rd_table);
107
108	return true;
109}
110
111bool regmap_volatile(struct regmap *map, unsigned int reg)
112{
113	if (!map->format.format_write && !regmap_readable(map, reg))
114		return false;
115
116	if (map->volatile_reg)
117		return map->volatile_reg(map->dev, reg);
118
119	if (map->volatile_table)
120		return regmap_check_range_table(map, reg, map->volatile_table);
121
122	if (map->cache_ops)
123		return false;
124	else
125		return true;
126}
127
128bool regmap_precious(struct regmap *map, unsigned int reg)
129{
130	if (!regmap_readable(map, reg))
131		return false;
132
133	if (map->precious_reg)
134		return map->precious_reg(map->dev, reg);
135
136	if (map->precious_table)
137		return regmap_check_range_table(map, reg, map->precious_table);
138
139	return false;
140}
141
142static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143	size_t num)
144{
145	unsigned int i;
146
147	for (i = 0; i < num; i++)
148		if (!regmap_volatile(map, reg + i))
149			return false;
150
151	return true;
152}
153
154static void regmap_format_2_6_write(struct regmap *map,
155				     unsigned int reg, unsigned int val)
156{
157	u8 *out = map->work_buf;
158
159	*out = (reg << 6) | val;
160}
161
162static void regmap_format_4_12_write(struct regmap *map,
163				     unsigned int reg, unsigned int val)
164{
165	__be16 *out = map->work_buf;
166	*out = cpu_to_be16((reg << 12) | val);
167}
168
169static void regmap_format_7_9_write(struct regmap *map,
170				    unsigned int reg, unsigned int val)
171{
172	__be16 *out = map->work_buf;
173	*out = cpu_to_be16((reg << 9) | val);
174}
175
176static void regmap_format_10_14_write(struct regmap *map,
177				    unsigned int reg, unsigned int val)
178{
179	u8 *out = map->work_buf;
180
181	out[2] = val;
182	out[1] = (val >> 8) | (reg << 6);
183	out[0] = reg >> 2;
184}
185
186static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187{
188	u8 *b = buf;
189
190	b[0] = val << shift;
191}
192
193static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194{
195	__be16 *b = buf;
196
197	b[0] = cpu_to_be16(val << shift);
198}
199
200static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201{
202	__le16 *b = buf;
203
204	b[0] = cpu_to_le16(val << shift);
205}
206
207static void regmap_format_16_native(void *buf, unsigned int val,
208				    unsigned int shift)
209{
210	*(u16 *)buf = val << shift;
211}
212
213static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214{
215	u8 *b = buf;
216
217	val <<= shift;
218
219	b[0] = val >> 16;
220	b[1] = val >> 8;
221	b[2] = val;
222}
223
224static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225{
226	__be32 *b = buf;
227
228	b[0] = cpu_to_be32(val << shift);
229}
230
231static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232{
233	__le32 *b = buf;
234
235	b[0] = cpu_to_le32(val << shift);
236}
237
238static void regmap_format_32_native(void *buf, unsigned int val,
239				    unsigned int shift)
240{
241	*(u32 *)buf = val << shift;
242}
243
244static void regmap_parse_inplace_noop(void *buf)
245{
246}
247
248static unsigned int regmap_parse_8(const void *buf)
249{
250	const u8 *b = buf;
251
252	return b[0];
253}
254
255static unsigned int regmap_parse_16_be(const void *buf)
256{
257	const __be16 *b = buf;
258
259	return be16_to_cpu(b[0]);
260}
261
262static unsigned int regmap_parse_16_le(const void *buf)
263{
264	const __le16 *b = buf;
265
266	return le16_to_cpu(b[0]);
267}
268
269static void regmap_parse_16_be_inplace(void *buf)
270{
271	__be16 *b = buf;
272
273	b[0] = be16_to_cpu(b[0]);
274}
275
276static void regmap_parse_16_le_inplace(void *buf)
277{
278	__le16 *b = buf;
279
280	b[0] = le16_to_cpu(b[0]);
281}
282
283static unsigned int regmap_parse_16_native(const void *buf)
284{
285	return *(u16 *)buf;
286}
287
288static unsigned int regmap_parse_24(const void *buf)
289{
290	const u8 *b = buf;
291	unsigned int ret = b[2];
292	ret |= ((unsigned int)b[1]) << 8;
293	ret |= ((unsigned int)b[0]) << 16;
294
295	return ret;
296}
297
298static unsigned int regmap_parse_32_be(const void *buf)
299{
300	const __be32 *b = buf;
301
302	return be32_to_cpu(b[0]);
303}
304
305static unsigned int regmap_parse_32_le(const void *buf)
306{
307	const __le32 *b = buf;
308
309	return le32_to_cpu(b[0]);
310}
311
312static void regmap_parse_32_be_inplace(void *buf)
313{
314	__be32 *b = buf;
315
316	b[0] = be32_to_cpu(b[0]);
317}
318
319static void regmap_parse_32_le_inplace(void *buf)
320{
321	__le32 *b = buf;
322
323	b[0] = le32_to_cpu(b[0]);
324}
325
326static unsigned int regmap_parse_32_native(const void *buf)
327{
328	return *(u32 *)buf;
329}
330
331static void regmap_lock_mutex(void *__map)
332{
333	struct regmap *map = __map;
334	mutex_lock(&map->mutex);
335}
336
337static void regmap_unlock_mutex(void *__map)
338{
339	struct regmap *map = __map;
340	mutex_unlock(&map->mutex);
341}
342
343static void regmap_lock_spinlock(void *__map)
344__acquires(&map->spinlock)
345{
346	struct regmap *map = __map;
347	unsigned long flags;
348
349	spin_lock_irqsave(&map->spinlock, flags);
350	map->spinlock_flags = flags;
351}
352
353static void regmap_unlock_spinlock(void *__map)
354__releases(&map->spinlock)
355{
356	struct regmap *map = __map;
357	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358}
359
360static void dev_get_regmap_release(struct device *dev, void *res)
361{
362	/*
363	 * We don't actually have anything to do here; the goal here
364	 * is not to manage the regmap but to provide a simple way to
365	 * get the regmap back given a struct device.
366	 */
367}
368
369static bool _regmap_range_add(struct regmap *map,
370			      struct regmap_range_node *data)
371{
372	struct rb_root *root = &map->range_tree;
373	struct rb_node **new = &(root->rb_node), *parent = NULL;
374
375	while (*new) {
376		struct regmap_range_node *this =
377			container_of(*new, struct regmap_range_node, node);
378
379		parent = *new;
380		if (data->range_max < this->range_min)
381			new = &((*new)->rb_left);
382		else if (data->range_min > this->range_max)
383			new = &((*new)->rb_right);
384		else
385			return false;
386	}
387
388	rb_link_node(&data->node, parent, new);
389	rb_insert_color(&data->node, root);
390
391	return true;
392}
393
394static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395						      unsigned int reg)
396{
397	struct rb_node *node = map->range_tree.rb_node;
398
399	while (node) {
400		struct regmap_range_node *this =
401			container_of(node, struct regmap_range_node, node);
402
403		if (reg < this->range_min)
404			node = node->rb_left;
405		else if (reg > this->range_max)
406			node = node->rb_right;
407		else
408			return this;
409	}
410
411	return NULL;
412}
413
414static void regmap_range_exit(struct regmap *map)
415{
416	struct rb_node *next;
417	struct regmap_range_node *range_node;
418
419	next = rb_first(&map->range_tree);
420	while (next) {
421		range_node = rb_entry(next, struct regmap_range_node, node);
422		next = rb_next(&range_node->node);
423		rb_erase(&range_node->node, &map->range_tree);
424		kfree(range_node);
425	}
426
427	kfree(map->selector_work_buf);
428}
429
430int regmap_attach_dev(struct device *dev, struct regmap *map,
431		      const struct regmap_config *config)
432{
433	struct regmap **m;
434
435	map->dev = dev;
436
437	regmap_debugfs_init(map, config->name);
438
439	/* Add a devres resource for dev_get_regmap() */
440	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441	if (!m) {
442		regmap_debugfs_exit(map);
443		return -ENOMEM;
444	}
445	*m = map;
446	devres_add(dev, m);
447
448	return 0;
449}
450EXPORT_SYMBOL_GPL(regmap_attach_dev);
451
452static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453					const struct regmap_config *config)
454{
455	enum regmap_endian endian;
456
457	/* Retrieve the endianness specification from the regmap config */
458	endian = config->reg_format_endian;
459
460	/* If the regmap config specified a non-default value, use that */
461	if (endian != REGMAP_ENDIAN_DEFAULT)
462		return endian;
463
464	/* Retrieve the endianness specification from the bus config */
465	if (bus && bus->reg_format_endian_default)
466		endian = bus->reg_format_endian_default;
467
468	/* If the bus specified a non-default value, use that */
469	if (endian != REGMAP_ENDIAN_DEFAULT)
470		return endian;
471
472	/* Use this if no other value was found */
473	return REGMAP_ENDIAN_BIG;
474}
475
476static enum regmap_endian regmap_get_val_endian(struct device *dev,
477					const struct regmap_bus *bus,
478					const struct regmap_config *config)
479{
480	struct device_node *np;
481	enum regmap_endian endian;
482
483	/* Retrieve the endianness specification from the regmap config */
484	endian = config->val_format_endian;
485
486	/* If the regmap config specified a non-default value, use that */
487	if (endian != REGMAP_ENDIAN_DEFAULT)
488		return endian;
489
490	/* If the dev and dev->of_node exist try to get endianness from DT */
491	if (dev && dev->of_node) {
492		np = dev->of_node;
493
494		/* Parse the device's DT node for an endianness specification */
495		if (of_property_read_bool(np, "big-endian"))
496			endian = REGMAP_ENDIAN_BIG;
497		else if (of_property_read_bool(np, "little-endian"))
498			endian = REGMAP_ENDIAN_LITTLE;
499
500		/* If the endianness was specified in DT, use that */
501		if (endian != REGMAP_ENDIAN_DEFAULT)
502			return endian;
503	}
504
505	/* Retrieve the endianness specification from the bus config */
506	if (bus && bus->val_format_endian_default)
507		endian = bus->val_format_endian_default;
508
509	/* If the bus specified a non-default value, use that */
510	if (endian != REGMAP_ENDIAN_DEFAULT)
511		return endian;
512
513	/* Use this if no other value was found */
514	return REGMAP_ENDIAN_BIG;
515}
516
517/**
518 * regmap_init(): Initialise register map
519 *
520 * @dev: Device that will be interacted with
521 * @bus: Bus-specific callbacks to use with device
522 * @bus_context: Data passed to bus-specific callbacks
523 * @config: Configuration for register map
524 *
525 * The return value will be an ERR_PTR() on error or a valid pointer to
526 * a struct regmap.  This function should generally not be called
527 * directly, it should be called by bus-specific init functions.
528 */
529struct regmap *regmap_init(struct device *dev,
530			   const struct regmap_bus *bus,
531			   void *bus_context,
532			   const struct regmap_config *config)
533{
534	struct regmap *map;
535	int ret = -EINVAL;
536	enum regmap_endian reg_endian, val_endian;
537	int i, j;
538
539	if (!config)
540		goto err;
541
542	map = kzalloc(sizeof(*map), GFP_KERNEL);
543	if (map == NULL) {
544		ret = -ENOMEM;
545		goto err;
546	}
547
548	if (config->lock && config->unlock) {
549		map->lock = config->lock;
550		map->unlock = config->unlock;
551		map->lock_arg = config->lock_arg;
552	} else {
553		if ((bus && bus->fast_io) ||
554		    config->fast_io) {
555			spin_lock_init(&map->spinlock);
556			map->lock = regmap_lock_spinlock;
557			map->unlock = regmap_unlock_spinlock;
558		} else {
559			mutex_init(&map->mutex);
560			map->lock = regmap_lock_mutex;
561			map->unlock = regmap_unlock_mutex;
562		}
563		map->lock_arg = map;
564	}
565	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
566	map->format.pad_bytes = config->pad_bits / 8;
567	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
568	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
569			config->val_bits + config->pad_bits, 8);
570	map->reg_shift = config->pad_bits % 8;
571	if (config->reg_stride)
572		map->reg_stride = config->reg_stride;
573	else
574		map->reg_stride = 1;
575	map->use_single_rw = config->use_single_rw;
576	map->can_multi_write = config->can_multi_write;
577	map->dev = dev;
578	map->bus = bus;
579	map->bus_context = bus_context;
580	map->max_register = config->max_register;
581	map->wr_table = config->wr_table;
582	map->rd_table = config->rd_table;
583	map->volatile_table = config->volatile_table;
584	map->precious_table = config->precious_table;
585	map->writeable_reg = config->writeable_reg;
586	map->readable_reg = config->readable_reg;
587	map->volatile_reg = config->volatile_reg;
588	map->precious_reg = config->precious_reg;
589	map->cache_type = config->cache_type;
590	map->name = config->name;
591
592	spin_lock_init(&map->async_lock);
593	INIT_LIST_HEAD(&map->async_list);
594	INIT_LIST_HEAD(&map->async_free);
595	init_waitqueue_head(&map->async_waitq);
596
597	if (config->read_flag_mask || config->write_flag_mask) {
598		map->read_flag_mask = config->read_flag_mask;
599		map->write_flag_mask = config->write_flag_mask;
600	} else if (bus) {
601		map->read_flag_mask = bus->read_flag_mask;
602	}
603
604	if (!bus) {
605		map->reg_read  = config->reg_read;
606		map->reg_write = config->reg_write;
607
608		map->defer_caching = false;
609		goto skip_format_initialization;
610	} else if (!bus->read || !bus->write) {
611		map->reg_read = _regmap_bus_reg_read;
612		map->reg_write = _regmap_bus_reg_write;
613
614		map->defer_caching = false;
615		goto skip_format_initialization;
616	} else {
617		map->reg_read  = _regmap_bus_read;
618	}
619
620	reg_endian = regmap_get_reg_endian(bus, config);
621	val_endian = regmap_get_val_endian(dev, bus, config);
622
623	switch (config->reg_bits + map->reg_shift) {
624	case 2:
625		switch (config->val_bits) {
626		case 6:
627			map->format.format_write = regmap_format_2_6_write;
628			break;
629		default:
630			goto err_map;
631		}
632		break;
633
634	case 4:
635		switch (config->val_bits) {
636		case 12:
637			map->format.format_write = regmap_format_4_12_write;
638			break;
639		default:
640			goto err_map;
641		}
642		break;
643
644	case 7:
645		switch (config->val_bits) {
646		case 9:
647			map->format.format_write = regmap_format_7_9_write;
648			break;
649		default:
650			goto err_map;
651		}
652		break;
653
654	case 10:
655		switch (config->val_bits) {
656		case 14:
657			map->format.format_write = regmap_format_10_14_write;
658			break;
659		default:
660			goto err_map;
661		}
662		break;
663
664	case 8:
665		map->format.format_reg = regmap_format_8;
666		break;
667
668	case 16:
669		switch (reg_endian) {
670		case REGMAP_ENDIAN_BIG:
671			map->format.format_reg = regmap_format_16_be;
672			break;
673		case REGMAP_ENDIAN_NATIVE:
674			map->format.format_reg = regmap_format_16_native;
675			break;
676		default:
677			goto err_map;
678		}
679		break;
680
681	case 24:
682		if (reg_endian != REGMAP_ENDIAN_BIG)
683			goto err_map;
684		map->format.format_reg = regmap_format_24;
685		break;
686
687	case 32:
688		switch (reg_endian) {
689		case REGMAP_ENDIAN_BIG:
690			map->format.format_reg = regmap_format_32_be;
691			break;
692		case REGMAP_ENDIAN_NATIVE:
693			map->format.format_reg = regmap_format_32_native;
694			break;
695		default:
696			goto err_map;
697		}
698		break;
699
700	default:
701		goto err_map;
702	}
703
704	if (val_endian == REGMAP_ENDIAN_NATIVE)
705		map->format.parse_inplace = regmap_parse_inplace_noop;
706
707	switch (config->val_bits) {
708	case 8:
709		map->format.format_val = regmap_format_8;
710		map->format.parse_val = regmap_parse_8;
711		map->format.parse_inplace = regmap_parse_inplace_noop;
712		break;
713	case 16:
714		switch (val_endian) {
715		case REGMAP_ENDIAN_BIG:
716			map->format.format_val = regmap_format_16_be;
717			map->format.parse_val = regmap_parse_16_be;
718			map->format.parse_inplace = regmap_parse_16_be_inplace;
719			break;
720		case REGMAP_ENDIAN_LITTLE:
721			map->format.format_val = regmap_format_16_le;
722			map->format.parse_val = regmap_parse_16_le;
723			map->format.parse_inplace = regmap_parse_16_le_inplace;
724			break;
725		case REGMAP_ENDIAN_NATIVE:
726			map->format.format_val = regmap_format_16_native;
727			map->format.parse_val = regmap_parse_16_native;
728			break;
729		default:
730			goto err_map;
731		}
732		break;
733	case 24:
734		if (val_endian != REGMAP_ENDIAN_BIG)
735			goto err_map;
736		map->format.format_val = regmap_format_24;
737		map->format.parse_val = regmap_parse_24;
738		break;
739	case 32:
740		switch (val_endian) {
741		case REGMAP_ENDIAN_BIG:
742			map->format.format_val = regmap_format_32_be;
743			map->format.parse_val = regmap_parse_32_be;
744			map->format.parse_inplace = regmap_parse_32_be_inplace;
745			break;
746		case REGMAP_ENDIAN_LITTLE:
747			map->format.format_val = regmap_format_32_le;
748			map->format.parse_val = regmap_parse_32_le;
749			map->format.parse_inplace = regmap_parse_32_le_inplace;
750			break;
751		case REGMAP_ENDIAN_NATIVE:
752			map->format.format_val = regmap_format_32_native;
753			map->format.parse_val = regmap_parse_32_native;
754			break;
755		default:
756			goto err_map;
757		}
758		break;
759	}
760
761	if (map->format.format_write) {
762		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
763		    (val_endian != REGMAP_ENDIAN_BIG))
764			goto err_map;
765		map->use_single_rw = true;
766	}
767
768	if (!map->format.format_write &&
769	    !(map->format.format_reg && map->format.format_val))
770		goto err_map;
771
772	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
773	if (map->work_buf == NULL) {
774		ret = -ENOMEM;
775		goto err_map;
776	}
777
778	if (map->format.format_write) {
779		map->defer_caching = false;
780		map->reg_write = _regmap_bus_formatted_write;
781	} else if (map->format.format_val) {
782		map->defer_caching = true;
783		map->reg_write = _regmap_bus_raw_write;
784	}
785
786skip_format_initialization:
787
788	map->range_tree = RB_ROOT;
789	for (i = 0; i < config->num_ranges; i++) {
790		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
791		struct regmap_range_node *new;
792
793		/* Sanity check */
794		if (range_cfg->range_max < range_cfg->range_min) {
795			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
796				range_cfg->range_max, range_cfg->range_min);
797			goto err_range;
798		}
799
800		if (range_cfg->range_max > map->max_register) {
801			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
802				range_cfg->range_max, map->max_register);
803			goto err_range;
804		}
805
806		if (range_cfg->selector_reg > map->max_register) {
807			dev_err(map->dev,
808				"Invalid range %d: selector out of map\n", i);
809			goto err_range;
810		}
811
812		if (range_cfg->window_len == 0) {
813			dev_err(map->dev, "Invalid range %d: window_len 0\n",
814				i);
815			goto err_range;
816		}
817
818		/* Make sure, that this register range has no selector
819		   or data window within its boundary */
820		for (j = 0; j < config->num_ranges; j++) {
821			unsigned sel_reg = config->ranges[j].selector_reg;
822			unsigned win_min = config->ranges[j].window_start;
823			unsigned win_max = win_min +
824					   config->ranges[j].window_len - 1;
825
826			/* Allow data window inside its own virtual range */
827			if (j == i)
828				continue;
829
830			if (range_cfg->range_min <= sel_reg &&
831			    sel_reg <= range_cfg->range_max) {
832				dev_err(map->dev,
833					"Range %d: selector for %d in window\n",
834					i, j);
835				goto err_range;
836			}
837
838			if (!(win_max < range_cfg->range_min ||
839			      win_min > range_cfg->range_max)) {
840				dev_err(map->dev,
841					"Range %d: window for %d in window\n",
842					i, j);
843				goto err_range;
844			}
845		}
846
847		new = kzalloc(sizeof(*new), GFP_KERNEL);
848		if (new == NULL) {
849			ret = -ENOMEM;
850			goto err_range;
851		}
852
853		new->map = map;
854		new->name = range_cfg->name;
855		new->range_min = range_cfg->range_min;
856		new->range_max = range_cfg->range_max;
857		new->selector_reg = range_cfg->selector_reg;
858		new->selector_mask = range_cfg->selector_mask;
859		new->selector_shift = range_cfg->selector_shift;
860		new->window_start = range_cfg->window_start;
861		new->window_len = range_cfg->window_len;
862
863		if (!_regmap_range_add(map, new)) {
864			dev_err(map->dev, "Failed to add range %d\n", i);
865			kfree(new);
866			goto err_range;
867		}
868
869		if (map->selector_work_buf == NULL) {
870			map->selector_work_buf =
871				kzalloc(map->format.buf_size, GFP_KERNEL);
872			if (map->selector_work_buf == NULL) {
873				ret = -ENOMEM;
874				goto err_range;
875			}
876		}
877	}
878
879	ret = regcache_init(map, config);
880	if (ret != 0)
881		goto err_range;
882
883	if (dev) {
884		ret = regmap_attach_dev(dev, map, config);
885		if (ret != 0)
886			goto err_regcache;
887	}
888
889	return map;
890
891err_regcache:
892	regcache_exit(map);
893err_range:
894	regmap_range_exit(map);
895	kfree(map->work_buf);
896err_map:
897	kfree(map);
898err:
899	return ERR_PTR(ret);
900}
901EXPORT_SYMBOL_GPL(regmap_init);
902
903static void devm_regmap_release(struct device *dev, void *res)
904{
905	regmap_exit(*(struct regmap **)res);
906}
907
908/**
909 * devm_regmap_init(): Initialise managed register map
910 *
911 * @dev: Device that will be interacted with
912 * @bus: Bus-specific callbacks to use with device
913 * @bus_context: Data passed to bus-specific callbacks
914 * @config: Configuration for register map
915 *
916 * The return value will be an ERR_PTR() on error or a valid pointer
917 * to a struct regmap.  This function should generally not be called
918 * directly, it should be called by bus-specific init functions.  The
919 * map will be automatically freed by the device management code.
920 */
921struct regmap *devm_regmap_init(struct device *dev,
922				const struct regmap_bus *bus,
923				void *bus_context,
924				const struct regmap_config *config)
925{
926	struct regmap **ptr, *regmap;
927
928	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
929	if (!ptr)
930		return ERR_PTR(-ENOMEM);
931
932	regmap = regmap_init(dev, bus, bus_context, config);
933	if (!IS_ERR(regmap)) {
934		*ptr = regmap;
935		devres_add(dev, ptr);
936	} else {
937		devres_free(ptr);
938	}
939
940	return regmap;
941}
942EXPORT_SYMBOL_GPL(devm_regmap_init);
943
944static void regmap_field_init(struct regmap_field *rm_field,
945	struct regmap *regmap, struct reg_field reg_field)
946{
947	int field_bits = reg_field.msb - reg_field.lsb + 1;
948	rm_field->regmap = regmap;
949	rm_field->reg = reg_field.reg;
950	rm_field->shift = reg_field.lsb;
951	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
952	rm_field->id_size = reg_field.id_size;
953	rm_field->id_offset = reg_field.id_offset;
954}
955
956/**
957 * devm_regmap_field_alloc(): Allocate and initialise a register field
958 * in a register map.
959 *
960 * @dev: Device that will be interacted with
961 * @regmap: regmap bank in which this register field is located.
962 * @reg_field: Register field with in the bank.
963 *
964 * The return value will be an ERR_PTR() on error or a valid pointer
965 * to a struct regmap_field. The regmap_field will be automatically freed
966 * by the device management code.
967 */
968struct regmap_field *devm_regmap_field_alloc(struct device *dev,
969		struct regmap *regmap, struct reg_field reg_field)
970{
971	struct regmap_field *rm_field = devm_kzalloc(dev,
972					sizeof(*rm_field), GFP_KERNEL);
973	if (!rm_field)
974		return ERR_PTR(-ENOMEM);
975
976	regmap_field_init(rm_field, regmap, reg_field);
977
978	return rm_field;
979
980}
981EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
982
983/**
984 * devm_regmap_field_free(): Free register field allocated using
985 * devm_regmap_field_alloc. Usally drivers need not call this function,
986 * as the memory allocated via devm will be freed as per device-driver
987 * life-cyle.
988 *
989 * @dev: Device that will be interacted with
990 * @field: regmap field which should be freed.
991 */
992void devm_regmap_field_free(struct device *dev,
993	struct regmap_field *field)
994{
995	devm_kfree(dev, field);
996}
997EXPORT_SYMBOL_GPL(devm_regmap_field_free);
998
999/**
1000 * regmap_field_alloc(): Allocate and initialise a register field
1001 * in a register map.
1002 *
1003 * @regmap: regmap bank in which this register field is located.
1004 * @reg_field: Register field with in the bank.
1005 *
1006 * The return value will be an ERR_PTR() on error or a valid pointer
1007 * to a struct regmap_field. The regmap_field should be freed by the
1008 * user once its finished working with it using regmap_field_free().
1009 */
1010struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1011		struct reg_field reg_field)
1012{
1013	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1014
1015	if (!rm_field)
1016		return ERR_PTR(-ENOMEM);
1017
1018	regmap_field_init(rm_field, regmap, reg_field);
1019
1020	return rm_field;
1021}
1022EXPORT_SYMBOL_GPL(regmap_field_alloc);
1023
1024/**
1025 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1026 *
1027 * @field: regmap field which should be freed.
1028 */
1029void regmap_field_free(struct regmap_field *field)
1030{
1031	kfree(field);
1032}
1033EXPORT_SYMBOL_GPL(regmap_field_free);
1034
1035/**
1036 * regmap_reinit_cache(): Reinitialise the current register cache
1037 *
1038 * @map: Register map to operate on.
1039 * @config: New configuration.  Only the cache data will be used.
1040 *
1041 * Discard any existing register cache for the map and initialize a
1042 * new cache.  This can be used to restore the cache to defaults or to
1043 * update the cache configuration to reflect runtime discovery of the
1044 * hardware.
1045 *
1046 * No explicit locking is done here, the user needs to ensure that
1047 * this function will not race with other calls to regmap.
1048 */
1049int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1050{
1051	regcache_exit(map);
1052	regmap_debugfs_exit(map);
1053
1054	map->max_register = config->max_register;
1055	map->writeable_reg = config->writeable_reg;
1056	map->readable_reg = config->readable_reg;
1057	map->volatile_reg = config->volatile_reg;
1058	map->precious_reg = config->precious_reg;
1059	map->cache_type = config->cache_type;
1060
1061	regmap_debugfs_init(map, config->name);
1062
1063	map->cache_bypass = false;
1064	map->cache_only = false;
1065
1066	return regcache_init(map, config);
1067}
1068EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069
1070/**
1071 * regmap_exit(): Free a previously allocated register map
1072 */
1073void regmap_exit(struct regmap *map)
1074{
1075	struct regmap_async *async;
1076
1077	regcache_exit(map);
1078	regmap_debugfs_exit(map);
1079	regmap_range_exit(map);
1080	if (map->bus && map->bus->free_context)
1081		map->bus->free_context(map->bus_context);
1082	kfree(map->work_buf);
1083	while (!list_empty(&map->async_free)) {
1084		async = list_first_entry_or_null(&map->async_free,
1085						 struct regmap_async,
1086						 list);
1087		list_del(&async->list);
1088		kfree(async->work_buf);
1089		kfree(async);
1090	}
1091	kfree(map);
1092}
1093EXPORT_SYMBOL_GPL(regmap_exit);
1094
1095static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1096{
1097	struct regmap **r = res;
1098	if (!r || !*r) {
1099		WARN_ON(!r || !*r);
1100		return 0;
1101	}
1102
1103	/* If the user didn't specify a name match any */
1104	if (data)
1105		return (*r)->name == data;
1106	else
1107		return 1;
1108}
1109
1110/**
1111 * dev_get_regmap(): Obtain the regmap (if any) for a device
1112 *
1113 * @dev: Device to retrieve the map for
1114 * @name: Optional name for the register map, usually NULL.
1115 *
1116 * Returns the regmap for the device if one is present, or NULL.  If
1117 * name is specified then it must match the name specified when
1118 * registering the device, if it is NULL then the first regmap found
1119 * will be used.  Devices with multiple register maps are very rare,
1120 * generic code should normally not need to specify a name.
1121 */
1122struct regmap *dev_get_regmap(struct device *dev, const char *name)
1123{
1124	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1125					dev_get_regmap_match, (void *)name);
1126
1127	if (!r)
1128		return NULL;
1129	return *r;
1130}
1131EXPORT_SYMBOL_GPL(dev_get_regmap);
1132
1133/**
1134 * regmap_get_device(): Obtain the device from a regmap
1135 *
1136 * @map: Register map to operate on.
1137 *
1138 * Returns the underlying device that the regmap has been created for.
1139 */
1140struct device *regmap_get_device(struct regmap *map)
1141{
1142	return map->dev;
1143}
1144EXPORT_SYMBOL_GPL(regmap_get_device);
1145
1146static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147			       struct regmap_range_node *range,
1148			       unsigned int val_num)
1149{
1150	void *orig_work_buf;
1151	unsigned int win_offset;
1152	unsigned int win_page;
1153	bool page_chg;
1154	int ret;
1155
1156	win_offset = (*reg - range->range_min) % range->window_len;
1157	win_page = (*reg - range->range_min) / range->window_len;
1158
1159	if (val_num > 1) {
1160		/* Bulk write shouldn't cross range boundary */
1161		if (*reg + val_num - 1 > range->range_max)
1162			return -EINVAL;
1163
1164		/* ... or single page boundary */
1165		if (val_num > range->window_len - win_offset)
1166			return -EINVAL;
1167	}
1168
1169	/* It is possible to have selector register inside data window.
1170	   In that case, selector register is located on every page and
1171	   it needs no page switching, when accessed alone. */
1172	if (val_num > 1 ||
1173	    range->window_start + win_offset != range->selector_reg) {
1174		/* Use separate work_buf during page switching */
1175		orig_work_buf = map->work_buf;
1176		map->work_buf = map->selector_work_buf;
1177
1178		ret = _regmap_update_bits(map, range->selector_reg,
1179					  range->selector_mask,
1180					  win_page << range->selector_shift,
1181					  &page_chg);
1182
1183		map->work_buf = orig_work_buf;
1184
1185		if (ret != 0)
1186			return ret;
1187	}
1188
1189	*reg = range->window_start + win_offset;
1190
1191	return 0;
1192}
1193
1194int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195		      const void *val, size_t val_len)
1196{
1197	struct regmap_range_node *range;
1198	unsigned long flags;
1199	u8 *u8 = map->work_buf;
1200	void *work_val = map->work_buf + map->format.reg_bytes +
1201		map->format.pad_bytes;
1202	void *buf;
1203	int ret = -ENOTSUPP;
1204	size_t len;
1205	int i;
1206
1207	WARN_ON(!map->bus);
1208
1209	/* Check for unwritable registers before we start */
1210	if (map->writeable_reg)
1211		for (i = 0; i < val_len / map->format.val_bytes; i++)
1212			if (!map->writeable_reg(map->dev,
1213						reg + (i * map->reg_stride)))
1214				return -EINVAL;
1215
1216	if (!map->cache_bypass && map->format.parse_val) {
1217		unsigned int ival;
1218		int val_bytes = map->format.val_bytes;
1219		for (i = 0; i < val_len / val_bytes; i++) {
1220			ival = map->format.parse_val(val + (i * val_bytes));
1221			ret = regcache_write(map, reg + (i * map->reg_stride),
1222					     ival);
1223			if (ret) {
1224				dev_err(map->dev,
1225					"Error in caching of register: %x ret: %d\n",
1226					reg + i, ret);
1227				return ret;
1228			}
1229		}
1230		if (map->cache_only) {
1231			map->cache_dirty = true;
1232			return 0;
1233		}
1234	}
1235
1236	range = _regmap_range_lookup(map, reg);
1237	if (range) {
1238		int val_num = val_len / map->format.val_bytes;
1239		int win_offset = (reg - range->range_min) % range->window_len;
1240		int win_residue = range->window_len - win_offset;
1241
1242		/* If the write goes beyond the end of the window split it */
1243		while (val_num > win_residue) {
1244			dev_dbg(map->dev, "Writing window %d/%zu\n",
1245				win_residue, val_len / map->format.val_bytes);
1246			ret = _regmap_raw_write(map, reg, val, win_residue *
1247						map->format.val_bytes);
1248			if (ret != 0)
1249				return ret;
1250
1251			reg += win_residue;
1252			val_num -= win_residue;
1253			val += win_residue * map->format.val_bytes;
1254			val_len -= win_residue * map->format.val_bytes;
1255
1256			win_offset = (reg - range->range_min) %
1257				range->window_len;
1258			win_residue = range->window_len - win_offset;
1259		}
1260
1261		ret = _regmap_select_page(map, &reg, range, val_num);
1262		if (ret != 0)
1263			return ret;
1264	}
1265
1266	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267
1268	u8[0] |= map->write_flag_mask;
1269
1270	/*
1271	 * Essentially all I/O mechanisms will be faster with a single
1272	 * buffer to write.  Since register syncs often generate raw
1273	 * writes of single registers optimise that case.
1274	 */
1275	if (val != work_val && val_len == map->format.val_bytes) {
1276		memcpy(work_val, val, map->format.val_bytes);
1277		val = work_val;
1278	}
1279
1280	if (map->async && map->bus->async_write) {
1281		struct regmap_async *async;
1282
1283		trace_regmap_async_write_start(map->dev, reg, val_len);
1284
1285		spin_lock_irqsave(&map->async_lock, flags);
1286		async = list_first_entry_or_null(&map->async_free,
1287						 struct regmap_async,
1288						 list);
1289		if (async)
1290			list_del(&async->list);
1291		spin_unlock_irqrestore(&map->async_lock, flags);
1292
1293		if (!async) {
1294			async = map->bus->async_alloc();
1295			if (!async)
1296				return -ENOMEM;
1297
1298			async->work_buf = kzalloc(map->format.buf_size,
1299						  GFP_KERNEL | GFP_DMA);
1300			if (!async->work_buf) {
1301				kfree(async);
1302				return -ENOMEM;
1303			}
1304		}
1305
1306		async->map = map;
1307
1308		/* If the caller supplied the value we can use it safely. */
1309		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1310		       map->format.reg_bytes + map->format.val_bytes);
1311
1312		spin_lock_irqsave(&map->async_lock, flags);
1313		list_add_tail(&async->list, &map->async_list);
1314		spin_unlock_irqrestore(&map->async_lock, flags);
1315
1316		if (val != work_val)
1317			ret = map->bus->async_write(map->bus_context,
1318						    async->work_buf,
1319						    map->format.reg_bytes +
1320						    map->format.pad_bytes,
1321						    val, val_len, async);
1322		else
1323			ret = map->bus->async_write(map->bus_context,
1324						    async->work_buf,
1325						    map->format.reg_bytes +
1326						    map->format.pad_bytes +
1327						    val_len, NULL, 0, async);
1328
1329		if (ret != 0) {
1330			dev_err(map->dev, "Failed to schedule write: %d\n",
1331				ret);
1332
1333			spin_lock_irqsave(&map->async_lock, flags);
1334			list_move(&async->list, &map->async_free);
1335			spin_unlock_irqrestore(&map->async_lock, flags);
1336		}
1337
1338		return ret;
1339	}
1340
1341	trace_regmap_hw_write_start(map->dev, reg,
1342				    val_len / map->format.val_bytes);
1343
1344	/* If we're doing a single register write we can probably just
1345	 * send the work_buf directly, otherwise try to do a gather
1346	 * write.
1347	 */
1348	if (val == work_val)
1349		ret = map->bus->write(map->bus_context, map->work_buf,
1350				      map->format.reg_bytes +
1351				      map->format.pad_bytes +
1352				      val_len);
1353	else if (map->bus->gather_write)
1354		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1355					     map->format.reg_bytes +
1356					     map->format.pad_bytes,
1357					     val, val_len);
1358
1359	/* If that didn't work fall back on linearising by hand. */
1360	if (ret == -ENOTSUPP) {
1361		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1362		buf = kzalloc(len, GFP_KERNEL);
1363		if (!buf)
1364			return -ENOMEM;
1365
1366		memcpy(buf, map->work_buf, map->format.reg_bytes);
1367		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1368		       val, val_len);
1369		ret = map->bus->write(map->bus_context, buf, len);
1370
1371		kfree(buf);
1372	}
1373
1374	trace_regmap_hw_write_done(map->dev, reg,
1375				   val_len / map->format.val_bytes);
1376
1377	return ret;
1378}
1379
1380/**
1381 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1382 *
1383 * @map: Map to check.
1384 */
1385bool regmap_can_raw_write(struct regmap *map)
1386{
1387	return map->bus && map->format.format_val && map->format.format_reg;
1388}
1389EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1390
1391static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1392				       unsigned int val)
1393{
1394	int ret;
1395	struct regmap_range_node *range;
1396	struct regmap *map = context;
1397
1398	WARN_ON(!map->bus || !map->format.format_write);
1399
1400	range = _regmap_range_lookup(map, reg);
1401	if (range) {
1402		ret = _regmap_select_page(map, &reg, range, 1);
1403		if (ret != 0)
1404			return ret;
1405	}
1406
1407	map->format.format_write(map, reg, val);
1408
1409	trace_regmap_hw_write_start(map->dev, reg, 1);
1410
1411	ret = map->bus->write(map->bus_context, map->work_buf,
1412			      map->format.buf_size);
1413
1414	trace_regmap_hw_write_done(map->dev, reg, 1);
1415
1416	return ret;
1417}
1418
1419static int _regmap_bus_reg_write(void *context, unsigned int reg,
1420				 unsigned int val)
1421{
1422	struct regmap *map = context;
1423
1424	return map->bus->reg_write(map->bus_context, reg, val);
1425}
1426
1427static int _regmap_bus_raw_write(void *context, unsigned int reg,
1428				 unsigned int val)
1429{
1430	struct regmap *map = context;
1431
1432	WARN_ON(!map->bus || !map->format.format_val);
1433
1434	map->format.format_val(map->work_buf + map->format.reg_bytes
1435			       + map->format.pad_bytes, val, 0);
1436	return _regmap_raw_write(map, reg,
1437				 map->work_buf +
1438				 map->format.reg_bytes +
1439				 map->format.pad_bytes,
1440				 map->format.val_bytes);
1441}
1442
1443static inline void *_regmap_map_get_context(struct regmap *map)
1444{
1445	return (map->bus) ? map : map->bus_context;
1446}
1447
1448int _regmap_write(struct regmap *map, unsigned int reg,
1449		  unsigned int val)
1450{
1451	int ret;
1452	void *context = _regmap_map_get_context(map);
1453
1454	if (!regmap_writeable(map, reg))
1455		return -EIO;
1456
1457	if (!map->cache_bypass && !map->defer_caching) {
1458		ret = regcache_write(map, reg, val);
1459		if (ret != 0)
1460			return ret;
1461		if (map->cache_only) {
1462			map->cache_dirty = true;
1463			return 0;
1464		}
1465	}
1466
1467#ifdef LOG_DEVICE
1468	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1469		dev_info(map->dev, "%x <= %x\n", reg, val);
1470#endif
1471
1472	trace_regmap_reg_write(map->dev, reg, val);
1473
1474	return map->reg_write(context, reg, val);
1475}
1476
1477/**
1478 * regmap_write(): Write a value to a single register
1479 *
1480 * @map: Register map to write to
1481 * @reg: Register to write to
1482 * @val: Value to be written
1483 *
1484 * A value of zero will be returned on success, a negative errno will
1485 * be returned in error cases.
1486 */
1487int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1488{
1489	int ret;
1490
1491	if (reg % map->reg_stride)
1492		return -EINVAL;
1493
1494	map->lock(map->lock_arg);
1495
1496	ret = _regmap_write(map, reg, val);
1497
1498	map->unlock(map->lock_arg);
1499
1500	return ret;
1501}
1502EXPORT_SYMBOL_GPL(regmap_write);
1503
1504/**
1505 * regmap_write_async(): Write a value to a single register asynchronously
1506 *
1507 * @map: Register map to write to
1508 * @reg: Register to write to
1509 * @val: Value to be written
1510 *
1511 * A value of zero will be returned on success, a negative errno will
1512 * be returned in error cases.
1513 */
1514int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1515{
1516	int ret;
1517
1518	if (reg % map->reg_stride)
1519		return -EINVAL;
1520
1521	map->lock(map->lock_arg);
1522
1523	map->async = true;
1524
1525	ret = _regmap_write(map, reg, val);
1526
1527	map->async = false;
1528
1529	map->unlock(map->lock_arg);
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL_GPL(regmap_write_async);
1534
1535/**
1536 * regmap_raw_write(): Write raw values to one or more registers
1537 *
1538 * @map: Register map to write to
1539 * @reg: Initial register to write to
1540 * @val: Block of data to be written, laid out for direct transmission to the
1541 *       device
1542 * @val_len: Length of data pointed to by val.
1543 *
1544 * This function is intended to be used for things like firmware
1545 * download where a large block of data needs to be transferred to the
1546 * device.  No formatting will be done on the data provided.
1547 *
1548 * A value of zero will be returned on success, a negative errno will
1549 * be returned in error cases.
1550 */
1551int regmap_raw_write(struct regmap *map, unsigned int reg,
1552		     const void *val, size_t val_len)
1553{
1554	int ret;
1555
1556	if (!regmap_can_raw_write(map))
1557		return -EINVAL;
1558	if (val_len % map->format.val_bytes)
1559		return -EINVAL;
1560
1561	map->lock(map->lock_arg);
1562
1563	ret = _regmap_raw_write(map, reg, val, val_len);
1564
1565	map->unlock(map->lock_arg);
1566
1567	return ret;
1568}
1569EXPORT_SYMBOL_GPL(regmap_raw_write);
1570
1571/**
1572 * regmap_field_write(): Write a value to a single register field
1573 *
1574 * @field: Register field to write to
1575 * @val: Value to be written
1576 *
1577 * A value of zero will be returned on success, a negative errno will
1578 * be returned in error cases.
1579 */
1580int regmap_field_write(struct regmap_field *field, unsigned int val)
1581{
1582	return regmap_update_bits(field->regmap, field->reg,
1583				field->mask, val << field->shift);
1584}
1585EXPORT_SYMBOL_GPL(regmap_field_write);
1586
1587/**
1588 * regmap_field_update_bits():	Perform a read/modify/write cycle
1589 *                              on the register field
1590 *
1591 * @field: Register field to write to
1592 * @mask: Bitmask to change
1593 * @val: Value to be written
1594 *
1595 * A value of zero will be returned on success, a negative errno will
1596 * be returned in error cases.
1597 */
1598int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1599{
1600	mask = (mask << field->shift) & field->mask;
1601
1602	return regmap_update_bits(field->regmap, field->reg,
1603				  mask, val << field->shift);
1604}
1605EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1606
1607/**
1608 * regmap_fields_write(): Write a value to a single register field with port ID
1609 *
1610 * @field: Register field to write to
1611 * @id: port ID
1612 * @val: Value to be written
1613 *
1614 * A value of zero will be returned on success, a negative errno will
1615 * be returned in error cases.
1616 */
1617int regmap_fields_write(struct regmap_field *field, unsigned int id,
1618			unsigned int val)
1619{
1620	if (id >= field->id_size)
1621		return -EINVAL;
1622
1623	return regmap_update_bits(field->regmap,
1624				  field->reg + (field->id_offset * id),
1625				  field->mask, val << field->shift);
1626}
1627EXPORT_SYMBOL_GPL(regmap_fields_write);
1628
1629/**
1630 * regmap_fields_update_bits():	Perform a read/modify/write cycle
1631 *                              on the register field
1632 *
1633 * @field: Register field to write to
1634 * @id: port ID
1635 * @mask: Bitmask to change
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1642			      unsigned int mask, unsigned int val)
1643{
1644	if (id >= field->id_size)
1645		return -EINVAL;
1646
1647	mask = (mask << field->shift) & field->mask;
1648
1649	return regmap_update_bits(field->regmap,
1650				  field->reg + (field->id_offset * id),
1651				  mask, val << field->shift);
1652}
1653EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1654
1655/*
1656 * regmap_bulk_write(): Write multiple registers to the device
1657 *
1658 * @map: Register map to write to
1659 * @reg: First register to be write from
1660 * @val: Block of data to be written, in native register size for device
1661 * @val_count: Number of registers to write
1662 *
1663 * This function is intended to be used for writing a large block of
1664 * data to the device either in single transfer or multiple transfer.
1665 *
1666 * A value of zero will be returned on success, a negative errno will
1667 * be returned in error cases.
1668 */
1669int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1670		     size_t val_count)
1671{
1672	int ret = 0, i;
1673	size_t val_bytes = map->format.val_bytes;
1674
1675	if (map->bus && !map->format.parse_inplace)
1676		return -EINVAL;
1677	if (reg % map->reg_stride)
1678		return -EINVAL;
1679
1680	/*
1681	 * Some devices don't support bulk write, for
1682	 * them we have a series of single write operations.
1683	 */
1684	if (!map->bus || map->use_single_rw) {
1685		map->lock(map->lock_arg);
1686		for (i = 0; i < val_count; i++) {
1687			unsigned int ival;
1688
1689			switch (val_bytes) {
1690			case 1:
1691				ival = *(u8 *)(val + (i * val_bytes));
1692				break;
1693			case 2:
1694				ival = *(u16 *)(val + (i * val_bytes));
1695				break;
1696			case 4:
1697				ival = *(u32 *)(val + (i * val_bytes));
1698				break;
1699#ifdef CONFIG_64BIT
1700			case 8:
1701				ival = *(u64 *)(val + (i * val_bytes));
1702				break;
1703#endif
1704			default:
1705				ret = -EINVAL;
1706				goto out;
1707			}
1708
1709			ret = _regmap_write(map, reg + (i * map->reg_stride),
1710					ival);
1711			if (ret != 0)
1712				goto out;
1713		}
1714out:
1715		map->unlock(map->lock_arg);
1716	} else {
1717		void *wval;
1718
1719		if (!val_count)
1720			return -EINVAL;
1721
1722		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1723		if (!wval) {
1724			dev_err(map->dev, "Error in memory allocation\n");
1725			return -ENOMEM;
1726		}
1727		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1728			map->format.parse_inplace(wval + i);
1729
1730		map->lock(map->lock_arg);
1731		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1732		map->unlock(map->lock_arg);
1733
1734		kfree(wval);
1735	}
1736	return ret;
1737}
1738EXPORT_SYMBOL_GPL(regmap_bulk_write);
1739
1740/*
1741 * _regmap_raw_multi_reg_write()
1742 *
1743 * the (register,newvalue) pairs in regs have not been formatted, but
1744 * they are all in the same page and have been changed to being page
1745 * relative. The page register has been written if that was neccessary.
1746 */
1747static int _regmap_raw_multi_reg_write(struct regmap *map,
1748				       const struct reg_default *regs,
1749				       size_t num_regs)
1750{
1751	int ret;
1752	void *buf;
1753	int i;
1754	u8 *u8;
1755	size_t val_bytes = map->format.val_bytes;
1756	size_t reg_bytes = map->format.reg_bytes;
1757	size_t pad_bytes = map->format.pad_bytes;
1758	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1759	size_t len = pair_size * num_regs;
1760
1761	if (!len)
1762		return -EINVAL;
1763
1764	buf = kzalloc(len, GFP_KERNEL);
1765	if (!buf)
1766		return -ENOMEM;
1767
1768	/* We have to linearise by hand. */
1769
1770	u8 = buf;
1771
1772	for (i = 0; i < num_regs; i++) {
1773		int reg = regs[i].reg;
1774		int val = regs[i].def;
1775		trace_regmap_hw_write_start(map->dev, reg, 1);
1776		map->format.format_reg(u8, reg, map->reg_shift);
1777		u8 += reg_bytes + pad_bytes;
1778		map->format.format_val(u8, val, 0);
1779		u8 += val_bytes;
1780	}
1781	u8 = buf;
1782	*u8 |= map->write_flag_mask;
1783
1784	ret = map->bus->write(map->bus_context, buf, len);
1785
1786	kfree(buf);
1787
1788	for (i = 0; i < num_regs; i++) {
1789		int reg = regs[i].reg;
1790		trace_regmap_hw_write_done(map->dev, reg, 1);
1791	}
1792	return ret;
1793}
1794
1795static unsigned int _regmap_register_page(struct regmap *map,
1796					  unsigned int reg,
1797					  struct regmap_range_node *range)
1798{
1799	unsigned int win_page = (reg - range->range_min) / range->window_len;
1800
1801	return win_page;
1802}
1803
1804static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1805					       struct reg_default *regs,
1806					       size_t num_regs)
1807{
1808	int ret;
1809	int i, n;
1810	struct reg_default *base;
1811	unsigned int this_page = 0;
1812	/*
1813	 * the set of registers are not neccessarily in order, but
1814	 * since the order of write must be preserved this algorithm
1815	 * chops the set each time the page changes
1816	 */
1817	base = regs;
1818	for (i = 0, n = 0; i < num_regs; i++, n++) {
1819		unsigned int reg = regs[i].reg;
1820		struct regmap_range_node *range;
1821
1822		range = _regmap_range_lookup(map, reg);
1823		if (range) {
1824			unsigned int win_page = _regmap_register_page(map, reg,
1825								      range);
1826
1827			if (i == 0)
1828				this_page = win_page;
1829			if (win_page != this_page) {
1830				this_page = win_page;
1831				ret = _regmap_raw_multi_reg_write(map, base, n);
1832				if (ret != 0)
1833					return ret;
1834				base += n;
1835				n = 0;
1836			}
1837			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1838			if (ret != 0)
1839				return ret;
1840		}
1841	}
1842	if (n > 0)
1843		return _regmap_raw_multi_reg_write(map, base, n);
1844	return 0;
1845}
1846
1847static int _regmap_multi_reg_write(struct regmap *map,
1848				   const struct reg_default *regs,
1849				   size_t num_regs)
1850{
1851	int i;
1852	int ret;
1853
1854	if (!map->can_multi_write) {
1855		for (i = 0; i < num_regs; i++) {
1856			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1857			if (ret != 0)
1858				return ret;
1859		}
1860		return 0;
1861	}
1862
1863	if (!map->format.parse_inplace)
1864		return -EINVAL;
1865
1866	if (map->writeable_reg)
1867		for (i = 0; i < num_regs; i++) {
1868			int reg = regs[i].reg;
1869			if (!map->writeable_reg(map->dev, reg))
1870				return -EINVAL;
1871			if (reg % map->reg_stride)
1872				return -EINVAL;
1873		}
1874
1875	if (!map->cache_bypass) {
1876		for (i = 0; i < num_regs; i++) {
1877			unsigned int val = regs[i].def;
1878			unsigned int reg = regs[i].reg;
1879			ret = regcache_write(map, reg, val);
1880			if (ret) {
1881				dev_err(map->dev,
1882				"Error in caching of register: %x ret: %d\n",
1883								reg, ret);
1884				return ret;
1885			}
1886		}
1887		if (map->cache_only) {
1888			map->cache_dirty = true;
1889			return 0;
1890		}
1891	}
1892
1893	WARN_ON(!map->bus);
1894
1895	for (i = 0; i < num_regs; i++) {
1896		unsigned int reg = regs[i].reg;
1897		struct regmap_range_node *range;
1898		range = _regmap_range_lookup(map, reg);
1899		if (range) {
1900			size_t len = sizeof(struct reg_default)*num_regs;
1901			struct reg_default *base = kmemdup(regs, len,
1902							   GFP_KERNEL);
1903			if (!base)
1904				return -ENOMEM;
1905			ret = _regmap_range_multi_paged_reg_write(map, base,
1906								  num_regs);
1907			kfree(base);
1908
1909			return ret;
1910		}
1911	}
1912	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1913}
1914
1915/*
1916 * regmap_multi_reg_write(): Write multiple registers to the device
1917 *
1918 * where the set of register,value pairs are supplied in any order,
1919 * possibly not all in a single range.
1920 *
1921 * @map: Register map to write to
1922 * @regs: Array of structures containing register,value to be written
1923 * @num_regs: Number of registers to write
1924 *
1925 * The 'normal' block write mode will send ultimately send data on the
1926 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1927 * addressed. However, this alternative block multi write mode will send
1928 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1929 * must of course support the mode.
1930 *
1931 * A value of zero will be returned on success, a negative errno will be
1932 * returned in error cases.
1933 */
1934int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1935			   int num_regs)
1936{
1937	int ret;
1938
1939	map->lock(map->lock_arg);
1940
1941	ret = _regmap_multi_reg_write(map, regs, num_regs);
1942
1943	map->unlock(map->lock_arg);
1944
1945	return ret;
1946}
1947EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1948
1949/*
1950 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1951 *                                    device but not the cache
1952 *
1953 * where the set of register are supplied in any order
1954 *
1955 * @map: Register map to write to
1956 * @regs: Array of structures containing register,value to be written
1957 * @num_regs: Number of registers to write
1958 *
1959 * This function is intended to be used for writing a large block of data
1960 * atomically to the device in single transfer for those I2C client devices
1961 * that implement this alternative block write mode.
1962 *
1963 * A value of zero will be returned on success, a negative errno will
1964 * be returned in error cases.
1965 */
1966int regmap_multi_reg_write_bypassed(struct regmap *map,
1967				    const struct reg_default *regs,
1968				    int num_regs)
1969{
1970	int ret;
1971	bool bypass;
1972
1973	map->lock(map->lock_arg);
1974
1975	bypass = map->cache_bypass;
1976	map->cache_bypass = true;
1977
1978	ret = _regmap_multi_reg_write(map, regs, num_regs);
1979
1980	map->cache_bypass = bypass;
1981
1982	map->unlock(map->lock_arg);
1983
1984	return ret;
1985}
1986EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1987
1988/**
1989 * regmap_raw_write_async(): Write raw values to one or more registers
1990 *                           asynchronously
1991 *
1992 * @map: Register map to write to
1993 * @reg: Initial register to write to
1994 * @val: Block of data to be written, laid out for direct transmission to the
1995 *       device.  Must be valid until regmap_async_complete() is called.
1996 * @val_len: Length of data pointed to by val.
1997 *
1998 * This function is intended to be used for things like firmware
1999 * download where a large block of data needs to be transferred to the
2000 * device.  No formatting will be done on the data provided.
2001 *
2002 * If supported by the underlying bus the write will be scheduled
2003 * asynchronously, helping maximise I/O speed on higher speed buses
2004 * like SPI.  regmap_async_complete() can be called to ensure that all
2005 * asynchrnous writes have been completed.
2006 *
2007 * A value of zero will be returned on success, a negative errno will
2008 * be returned in error cases.
2009 */
2010int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2011			   const void *val, size_t val_len)
2012{
2013	int ret;
2014
2015	if (val_len % map->format.val_bytes)
2016		return -EINVAL;
2017	if (reg % map->reg_stride)
2018		return -EINVAL;
2019
2020	map->lock(map->lock_arg);
2021
2022	map->async = true;
2023
2024	ret = _regmap_raw_write(map, reg, val, val_len);
2025
2026	map->async = false;
2027
2028	map->unlock(map->lock_arg);
2029
2030	return ret;
2031}
2032EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2033
2034static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2035			    unsigned int val_len)
2036{
2037	struct regmap_range_node *range;
2038	u8 *u8 = map->work_buf;
2039	int ret;
2040
2041	WARN_ON(!map->bus);
2042
2043	range = _regmap_range_lookup(map, reg);
2044	if (range) {
2045		ret = _regmap_select_page(map, &reg, range,
2046					  val_len / map->format.val_bytes);
2047		if (ret != 0)
2048			return ret;
2049	}
2050
2051	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2052
2053	/*
2054	 * Some buses or devices flag reads by setting the high bits in the
2055	 * register addresss; since it's always the high bits for all
2056	 * current formats we can do this here rather than in
2057	 * formatting.  This may break if we get interesting formats.
2058	 */
2059	u8[0] |= map->read_flag_mask;
2060
2061	trace_regmap_hw_read_start(map->dev, reg,
2062				   val_len / map->format.val_bytes);
2063
2064	ret = map->bus->read(map->bus_context, map->work_buf,
2065			     map->format.reg_bytes + map->format.pad_bytes,
2066			     val, val_len);
2067
2068	trace_regmap_hw_read_done(map->dev, reg,
2069				  val_len / map->format.val_bytes);
2070
2071	return ret;
2072}
2073
2074static int _regmap_bus_reg_read(void *context, unsigned int reg,
2075				unsigned int *val)
2076{
2077	struct regmap *map = context;
2078
2079	return map->bus->reg_read(map->bus_context, reg, val);
2080}
2081
2082static int _regmap_bus_read(void *context, unsigned int reg,
2083			    unsigned int *val)
2084{
2085	int ret;
2086	struct regmap *map = context;
2087
2088	if (!map->format.parse_val)
2089		return -EINVAL;
2090
2091	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2092	if (ret == 0)
2093		*val = map->format.parse_val(map->work_buf);
2094
2095	return ret;
2096}
2097
2098static int _regmap_read(struct regmap *map, unsigned int reg,
2099			unsigned int *val)
2100{
2101	int ret;
2102	void *context = _regmap_map_get_context(map);
2103
2104	WARN_ON(!map->reg_read);
2105
2106	if (!map->cache_bypass) {
2107		ret = regcache_read(map, reg, val);
2108		if (ret == 0)
2109			return 0;
2110	}
2111
2112	if (map->cache_only)
2113		return -EBUSY;
2114
2115	if (!regmap_readable(map, reg))
2116		return -EIO;
2117
2118	ret = map->reg_read(context, reg, val);
2119	if (ret == 0) {
2120#ifdef LOG_DEVICE
2121		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2122			dev_info(map->dev, "%x => %x\n", reg, *val);
2123#endif
2124
2125		trace_regmap_reg_read(map->dev, reg, *val);
2126
2127		if (!map->cache_bypass)
2128			regcache_write(map, reg, *val);
2129	}
2130
2131	return ret;
2132}
2133
2134/**
2135 * regmap_read(): Read a value from a single register
2136 *
2137 * @map: Register map to read from
2138 * @reg: Register to be read from
2139 * @val: Pointer to store read value
2140 *
2141 * A value of zero will be returned on success, a negative errno will
2142 * be returned in error cases.
2143 */
2144int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2145{
2146	int ret;
2147
2148	if (reg % map->reg_stride)
2149		return -EINVAL;
2150
2151	map->lock(map->lock_arg);
2152
2153	ret = _regmap_read(map, reg, val);
2154
2155	map->unlock(map->lock_arg);
2156
2157	return ret;
2158}
2159EXPORT_SYMBOL_GPL(regmap_read);
2160
2161/**
2162 * regmap_raw_read(): Read raw data from the device
2163 *
2164 * @map: Register map to read from
2165 * @reg: First register to be read from
2166 * @val: Pointer to store read value
2167 * @val_len: Size of data to read
2168 *
2169 * A value of zero will be returned on success, a negative errno will
2170 * be returned in error cases.
2171 */
2172int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2173		    size_t val_len)
2174{
2175	size_t val_bytes = map->format.val_bytes;
2176	size_t val_count = val_len / val_bytes;
2177	unsigned int v;
2178	int ret, i;
2179
2180	if (!map->bus)
2181		return -EINVAL;
2182	if (val_len % map->format.val_bytes)
2183		return -EINVAL;
2184	if (reg % map->reg_stride)
2185		return -EINVAL;
2186
2187	map->lock(map->lock_arg);
2188
2189	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2190	    map->cache_type == REGCACHE_NONE) {
2191		/* Physical block read if there's no cache involved */
2192		ret = _regmap_raw_read(map, reg, val, val_len);
2193
2194	} else {
2195		/* Otherwise go word by word for the cache; should be low
2196		 * cost as we expect to hit the cache.
2197		 */
2198		for (i = 0; i < val_count; i++) {
2199			ret = _regmap_read(map, reg + (i * map->reg_stride),
2200					   &v);
2201			if (ret != 0)
2202				goto out;
2203
2204			map->format.format_val(val + (i * val_bytes), v, 0);
2205		}
2206	}
2207
2208 out:
2209	map->unlock(map->lock_arg);
2210
2211	return ret;
2212}
2213EXPORT_SYMBOL_GPL(regmap_raw_read);
2214
2215/**
2216 * regmap_field_read(): Read a value to a single register field
2217 *
2218 * @field: Register field to read from
2219 * @val: Pointer to store read value
2220 *
2221 * A value of zero will be returned on success, a negative errno will
2222 * be returned in error cases.
2223 */
2224int regmap_field_read(struct regmap_field *field, unsigned int *val)
2225{
2226	int ret;
2227	unsigned int reg_val;
2228	ret = regmap_read(field->regmap, field->reg, &reg_val);
2229	if (ret != 0)
2230		return ret;
2231
2232	reg_val &= field->mask;
2233	reg_val >>= field->shift;
2234	*val = reg_val;
2235
2236	return ret;
2237}
2238EXPORT_SYMBOL_GPL(regmap_field_read);
2239
2240/**
2241 * regmap_fields_read(): Read a value to a single register field with port ID
2242 *
2243 * @field: Register field to read from
2244 * @id: port ID
2245 * @val: Pointer to store read value
2246 *
2247 * A value of zero will be returned on success, a negative errno will
2248 * be returned in error cases.
2249 */
2250int regmap_fields_read(struct regmap_field *field, unsigned int id,
2251		       unsigned int *val)
2252{
2253	int ret;
2254	unsigned int reg_val;
2255
2256	if (id >= field->id_size)
2257		return -EINVAL;
2258
2259	ret = regmap_read(field->regmap,
2260			  field->reg + (field->id_offset * id),
2261			  &reg_val);
2262	if (ret != 0)
2263		return ret;
2264
2265	reg_val &= field->mask;
2266	reg_val >>= field->shift;
2267	*val = reg_val;
2268
2269	return ret;
2270}
2271EXPORT_SYMBOL_GPL(regmap_fields_read);
2272
2273/**
2274 * regmap_bulk_read(): Read multiple registers from the device
2275 *
2276 * @map: Register map to read from
2277 * @reg: First register to be read from
2278 * @val: Pointer to store read value, in native register size for device
2279 * @val_count: Number of registers to read
2280 *
2281 * A value of zero will be returned on success, a negative errno will
2282 * be returned in error cases.
2283 */
2284int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2285		     size_t val_count)
2286{
2287	int ret, i;
2288	size_t val_bytes = map->format.val_bytes;
2289	bool vol = regmap_volatile_range(map, reg, val_count);
2290
2291	if (reg % map->reg_stride)
2292		return -EINVAL;
2293
2294	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2295		/*
2296		 * Some devices does not support bulk read, for
2297		 * them we have a series of single read operations.
2298		 */
2299		if (map->use_single_rw) {
2300			for (i = 0; i < val_count; i++) {
2301				ret = regmap_raw_read(map,
2302						reg + (i * map->reg_stride),
2303						val + (i * val_bytes),
2304						val_bytes);
2305				if (ret != 0)
2306					return ret;
2307			}
2308		} else {
2309			ret = regmap_raw_read(map, reg, val,
2310					      val_bytes * val_count);
2311			if (ret != 0)
2312				return ret;
2313		}
2314
2315		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2316			map->format.parse_inplace(val + i);
2317	} else {
2318		for (i = 0; i < val_count; i++) {
2319			unsigned int ival;
2320			ret = regmap_read(map, reg + (i * map->reg_stride),
2321					  &ival);
2322			if (ret != 0)
2323				return ret;
2324			memcpy(val + (i * val_bytes), &ival, val_bytes);
2325		}
2326	}
2327
2328	return 0;
2329}
2330EXPORT_SYMBOL_GPL(regmap_bulk_read);
2331
2332static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2333			       unsigned int mask, unsigned int val,
2334			       bool *change)
2335{
2336	int ret;
2337	unsigned int tmp, orig;
2338
2339	ret = _regmap_read(map, reg, &orig);
2340	if (ret != 0)
2341		return ret;
2342
2343	tmp = orig & ~mask;
2344	tmp |= val & mask;
2345
2346	if (tmp != orig) {
2347		ret = _regmap_write(map, reg, tmp);
2348		if (change)
2349			*change = true;
2350	} else {
2351		if (change)
2352			*change = false;
2353	}
2354
2355	return ret;
2356}
2357
2358/**
2359 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2360 *
2361 * @map: Register map to update
2362 * @reg: Register to update
2363 * @mask: Bitmask to change
2364 * @val: New value for bitmask
2365 *
2366 * Returns zero for success, a negative number on error.
2367 */
2368int regmap_update_bits(struct regmap *map, unsigned int reg,
2369		       unsigned int mask, unsigned int val)
2370{
2371	int ret;
2372
2373	map->lock(map->lock_arg);
2374	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2375	map->unlock(map->lock_arg);
2376
2377	return ret;
2378}
2379EXPORT_SYMBOL_GPL(regmap_update_bits);
2380
2381/**
2382 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2383 *                           map asynchronously
2384 *
2385 * @map: Register map to update
2386 * @reg: Register to update
2387 * @mask: Bitmask to change
2388 * @val: New value for bitmask
2389 *
2390 * With most buses the read must be done synchronously so this is most
2391 * useful for devices with a cache which do not need to interact with
2392 * the hardware to determine the current register value.
2393 *
2394 * Returns zero for success, a negative number on error.
2395 */
2396int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2397			     unsigned int mask, unsigned int val)
2398{
2399	int ret;
2400
2401	map->lock(map->lock_arg);
2402
2403	map->async = true;
2404
2405	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2406
2407	map->async = false;
2408
2409	map->unlock(map->lock_arg);
2410
2411	return ret;
2412}
2413EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2414
2415/**
2416 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2417 *                           register map and report if updated
2418 *
2419 * @map: Register map to update
2420 * @reg: Register to update
2421 * @mask: Bitmask to change
2422 * @val: New value for bitmask
2423 * @change: Boolean indicating if a write was done
2424 *
2425 * Returns zero for success, a negative number on error.
2426 */
2427int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2428			     unsigned int mask, unsigned int val,
2429			     bool *change)
2430{
2431	int ret;
2432
2433	map->lock(map->lock_arg);
2434	ret = _regmap_update_bits(map, reg, mask, val, change);
2435	map->unlock(map->lock_arg);
2436	return ret;
2437}
2438EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2439
2440/**
2441 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2442 *                                 register map asynchronously and report if
2443 *                                 updated
2444 *
2445 * @map: Register map to update
2446 * @reg: Register to update
2447 * @mask: Bitmask to change
2448 * @val: New value for bitmask
2449 * @change: Boolean indicating if a write was done
2450 *
2451 * With most buses the read must be done synchronously so this is most
2452 * useful for devices with a cache which do not need to interact with
2453 * the hardware to determine the current register value.
2454 *
2455 * Returns zero for success, a negative number on error.
2456 */
2457int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2458				   unsigned int mask, unsigned int val,
2459				   bool *change)
2460{
2461	int ret;
2462
2463	map->lock(map->lock_arg);
2464
2465	map->async = true;
2466
2467	ret = _regmap_update_bits(map, reg, mask, val, change);
2468
2469	map->async = false;
2470
2471	map->unlock(map->lock_arg);
2472
2473	return ret;
2474}
2475EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2476
2477void regmap_async_complete_cb(struct regmap_async *async, int ret)
2478{
2479	struct regmap *map = async->map;
2480	bool wake;
2481
2482	trace_regmap_async_io_complete(map->dev);
2483
2484	spin_lock(&map->async_lock);
2485	list_move(&async->list, &map->async_free);
2486	wake = list_empty(&map->async_list);
2487
2488	if (ret != 0)
2489		map->async_ret = ret;
2490
2491	spin_unlock(&map->async_lock);
2492
2493	if (wake)
2494		wake_up(&map->async_waitq);
2495}
2496EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2497
2498static int regmap_async_is_done(struct regmap *map)
2499{
2500	unsigned long flags;
2501	int ret;
2502
2503	spin_lock_irqsave(&map->async_lock, flags);
2504	ret = list_empty(&map->async_list);
2505	spin_unlock_irqrestore(&map->async_lock, flags);
2506
2507	return ret;
2508}
2509
2510/**
2511 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2512 *
2513 * @map: Map to operate on.
2514 *
2515 * Blocks until any pending asynchronous I/O has completed.  Returns
2516 * an error code for any failed I/O operations.
2517 */
2518int regmap_async_complete(struct regmap *map)
2519{
2520	unsigned long flags;
2521	int ret;
2522
2523	/* Nothing to do with no async support */
2524	if (!map->bus || !map->bus->async_write)
2525		return 0;
2526
2527	trace_regmap_async_complete_start(map->dev);
2528
2529	wait_event(map->async_waitq, regmap_async_is_done(map));
2530
2531	spin_lock_irqsave(&map->async_lock, flags);
2532	ret = map->async_ret;
2533	map->async_ret = 0;
2534	spin_unlock_irqrestore(&map->async_lock, flags);
2535
2536	trace_regmap_async_complete_done(map->dev);
2537
2538	return ret;
2539}
2540EXPORT_SYMBOL_GPL(regmap_async_complete);
2541
2542/**
2543 * regmap_register_patch: Register and apply register updates to be applied
2544 *                        on device initialistion
2545 *
2546 * @map: Register map to apply updates to.
2547 * @regs: Values to update.
2548 * @num_regs: Number of entries in regs.
2549 *
2550 * Register a set of register updates to be applied to the device
2551 * whenever the device registers are synchronised with the cache and
2552 * apply them immediately.  Typically this is used to apply
2553 * corrections to be applied to the device defaults on startup, such
2554 * as the updates some vendors provide to undocumented registers.
2555 *
2556 * The caller must ensure that this function cannot be called
2557 * concurrently with either itself or regcache_sync().
2558 */
2559int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2560			  int num_regs)
2561{
2562	struct reg_default *p;
2563	int ret;
2564	bool bypass;
2565
2566	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2567	    num_regs))
2568		return 0;
2569
2570	p = krealloc(map->patch,
2571		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2572		     GFP_KERNEL);
2573	if (p) {
2574		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2575		map->patch = p;
2576		map->patch_regs += num_regs;
2577	} else {
2578		return -ENOMEM;
2579	}
2580
2581	map->lock(map->lock_arg);
2582
2583	bypass = map->cache_bypass;
2584
2585	map->cache_bypass = true;
2586	map->async = true;
2587
2588	ret = _regmap_multi_reg_write(map, regs, num_regs);
2589	if (ret != 0)
2590		goto out;
2591
2592out:
2593	map->async = false;
2594	map->cache_bypass = bypass;
2595
2596	map->unlock(map->lock_arg);
2597
2598	regmap_async_complete(map);
2599
2600	return ret;
2601}
2602EXPORT_SYMBOL_GPL(regmap_register_patch);
2603
2604/*
2605 * regmap_get_val_bytes(): Report the size of a register value
2606 *
2607 * Report the size of a register value, mainly intended to for use by
2608 * generic infrastructure built on top of regmap.
2609 */
2610int regmap_get_val_bytes(struct regmap *map)
2611{
2612	if (map->format.format_write)
2613		return -EINVAL;
2614
2615	return map->format.val_bytes;
2616}
2617EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2618
2619int regmap_parse_val(struct regmap *map, const void *buf,
2620			unsigned int *val)
2621{
2622	if (!map->format.parse_val)
2623		return -EINVAL;
2624
2625	*val = map->format.parse_val(buf);
2626
2627	return 0;
2628}
2629EXPORT_SYMBOL_GPL(regmap_parse_val);
2630
2631static int __init regmap_initcall(void)
2632{
2633	regmap_debugfs_initcall();
2634
2635	return 0;
2636}
2637postcore_initcall(regmap_initcall);
2638