regmap.c revision 4d879514e73f3e6b27617d9898c83c9939462dda
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/rbtree.h>
19
20#define CREATE_TRACE_POINTS
21#include <trace/events/regmap.h>
22
23#include "internal.h"
24
25/*
26 * Sometimes for failures during very early init the trace
27 * infrastructure isn't available early enough to be used.  For this
28 * sort of problem defining LOG_DEVICE will add printks for basic
29 * register I/O on a specific device.
30 */
31#undef LOG_DEVICE
32
33static int _regmap_update_bits(struct regmap *map, unsigned int reg,
34			       unsigned int mask, unsigned int val,
35			       bool *change);
36
37bool regmap_writeable(struct regmap *map, unsigned int reg)
38{
39	if (map->max_register && reg > map->max_register)
40		return false;
41
42	if (map->writeable_reg)
43		return map->writeable_reg(map->dev, reg);
44
45	return true;
46}
47
48bool regmap_readable(struct regmap *map, unsigned int reg)
49{
50	if (map->max_register && reg > map->max_register)
51		return false;
52
53	if (map->format.format_write)
54		return false;
55
56	if (map->readable_reg)
57		return map->readable_reg(map->dev, reg);
58
59	return true;
60}
61
62bool regmap_volatile(struct regmap *map, unsigned int reg)
63{
64	if (!regmap_readable(map, reg))
65		return false;
66
67	if (map->volatile_reg)
68		return map->volatile_reg(map->dev, reg);
69
70	return true;
71}
72
73bool regmap_precious(struct regmap *map, unsigned int reg)
74{
75	if (!regmap_readable(map, reg))
76		return false;
77
78	if (map->precious_reg)
79		return map->precious_reg(map->dev, reg);
80
81	return false;
82}
83
84static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
85	unsigned int num)
86{
87	unsigned int i;
88
89	for (i = 0; i < num; i++)
90		if (!regmap_volatile(map, reg + i))
91			return false;
92
93	return true;
94}
95
96static void regmap_format_2_6_write(struct regmap *map,
97				     unsigned int reg, unsigned int val)
98{
99	u8 *out = map->work_buf;
100
101	*out = (reg << 6) | val;
102}
103
104static void regmap_format_4_12_write(struct regmap *map,
105				     unsigned int reg, unsigned int val)
106{
107	__be16 *out = map->work_buf;
108	*out = cpu_to_be16((reg << 12) | val);
109}
110
111static void regmap_format_7_9_write(struct regmap *map,
112				    unsigned int reg, unsigned int val)
113{
114	__be16 *out = map->work_buf;
115	*out = cpu_to_be16((reg << 9) | val);
116}
117
118static void regmap_format_10_14_write(struct regmap *map,
119				    unsigned int reg, unsigned int val)
120{
121	u8 *out = map->work_buf;
122
123	out[2] = val;
124	out[1] = (val >> 8) | (reg << 6);
125	out[0] = reg >> 2;
126}
127
128static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
129{
130	u8 *b = buf;
131
132	b[0] = val << shift;
133}
134
135static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
136{
137	__be16 *b = buf;
138
139	b[0] = cpu_to_be16(val << shift);
140}
141
142static void regmap_format_16_native(void *buf, unsigned int val,
143				    unsigned int shift)
144{
145	*(u16 *)buf = val << shift;
146}
147
148static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
149{
150	u8 *b = buf;
151
152	val <<= shift;
153
154	b[0] = val >> 16;
155	b[1] = val >> 8;
156	b[2] = val;
157}
158
159static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
160{
161	__be32 *b = buf;
162
163	b[0] = cpu_to_be32(val << shift);
164}
165
166static void regmap_format_32_native(void *buf, unsigned int val,
167				    unsigned int shift)
168{
169	*(u32 *)buf = val << shift;
170}
171
172static unsigned int regmap_parse_8(void *buf)
173{
174	u8 *b = buf;
175
176	return b[0];
177}
178
179static unsigned int regmap_parse_16_be(void *buf)
180{
181	__be16 *b = buf;
182
183	b[0] = be16_to_cpu(b[0]);
184
185	return b[0];
186}
187
188static unsigned int regmap_parse_16_native(void *buf)
189{
190	return *(u16 *)buf;
191}
192
193static unsigned int regmap_parse_24(void *buf)
194{
195	u8 *b = buf;
196	unsigned int ret = b[2];
197	ret |= ((unsigned int)b[1]) << 8;
198	ret |= ((unsigned int)b[0]) << 16;
199
200	return ret;
201}
202
203static unsigned int regmap_parse_32_be(void *buf)
204{
205	__be32 *b = buf;
206
207	b[0] = be32_to_cpu(b[0]);
208
209	return b[0];
210}
211
212static unsigned int regmap_parse_32_native(void *buf)
213{
214	return *(u32 *)buf;
215}
216
217static void regmap_lock_mutex(struct regmap *map)
218{
219	mutex_lock(&map->mutex);
220}
221
222static void regmap_unlock_mutex(struct regmap *map)
223{
224	mutex_unlock(&map->mutex);
225}
226
227static void regmap_lock_spinlock(struct regmap *map)
228{
229	spin_lock(&map->spinlock);
230}
231
232static void regmap_unlock_spinlock(struct regmap *map)
233{
234	spin_unlock(&map->spinlock);
235}
236
237static void dev_get_regmap_release(struct device *dev, void *res)
238{
239	/*
240	 * We don't actually have anything to do here; the goal here
241	 * is not to manage the regmap but to provide a simple way to
242	 * get the regmap back given a struct device.
243	 */
244}
245
246static bool _regmap_range_add(struct regmap *map,
247			      struct regmap_range_node *data)
248{
249	struct rb_root *root = &map->range_tree;
250	struct rb_node **new = &(root->rb_node), *parent = NULL;
251
252	while (*new) {
253		struct regmap_range_node *this =
254			container_of(*new, struct regmap_range_node, node);
255
256		parent = *new;
257		if (data->range_max < this->range_min)
258			new = &((*new)->rb_left);
259		else if (data->range_min > this->range_max)
260			new = &((*new)->rb_right);
261		else
262			return false;
263	}
264
265	rb_link_node(&data->node, parent, new);
266	rb_insert_color(&data->node, root);
267
268	return true;
269}
270
271static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
272						      unsigned int reg)
273{
274	struct rb_node *node = map->range_tree.rb_node;
275
276	while (node) {
277		struct regmap_range_node *this =
278			container_of(node, struct regmap_range_node, node);
279
280		if (reg < this->range_min)
281			node = node->rb_left;
282		else if (reg > this->range_max)
283			node = node->rb_right;
284		else
285			return this;
286	}
287
288	return NULL;
289}
290
291static void regmap_range_exit(struct regmap *map)
292{
293	struct rb_node *next;
294	struct regmap_range_node *range_node;
295
296	next = rb_first(&map->range_tree);
297	while (next) {
298		range_node = rb_entry(next, struct regmap_range_node, node);
299		next = rb_next(&range_node->node);
300		rb_erase(&range_node->node, &map->range_tree);
301		kfree(range_node);
302	}
303
304	kfree(map->selector_work_buf);
305}
306
307/**
308 * regmap_init(): Initialise register map
309 *
310 * @dev: Device that will be interacted with
311 * @bus: Bus-specific callbacks to use with device
312 * @bus_context: Data passed to bus-specific callbacks
313 * @config: Configuration for register map
314 *
315 * The return value will be an ERR_PTR() on error or a valid pointer to
316 * a struct regmap.  This function should generally not be called
317 * directly, it should be called by bus-specific init functions.
318 */
319struct regmap *regmap_init(struct device *dev,
320			   const struct regmap_bus *bus,
321			   void *bus_context,
322			   const struct regmap_config *config)
323{
324	struct regmap *map, **m;
325	int ret = -EINVAL;
326	enum regmap_endian reg_endian, val_endian;
327	int i, j;
328
329	if (!bus || !config)
330		goto err;
331
332	map = kzalloc(sizeof(*map), GFP_KERNEL);
333	if (map == NULL) {
334		ret = -ENOMEM;
335		goto err;
336	}
337
338	if (bus->fast_io) {
339		spin_lock_init(&map->spinlock);
340		map->lock = regmap_lock_spinlock;
341		map->unlock = regmap_unlock_spinlock;
342	} else {
343		mutex_init(&map->mutex);
344		map->lock = regmap_lock_mutex;
345		map->unlock = regmap_unlock_mutex;
346	}
347	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
348	map->format.pad_bytes = config->pad_bits / 8;
349	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
350	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
351			config->val_bits + config->pad_bits, 8);
352	map->reg_shift = config->pad_bits % 8;
353	if (config->reg_stride)
354		map->reg_stride = config->reg_stride;
355	else
356		map->reg_stride = 1;
357	map->use_single_rw = config->use_single_rw;
358	map->dev = dev;
359	map->bus = bus;
360	map->bus_context = bus_context;
361	map->max_register = config->max_register;
362	map->writeable_reg = config->writeable_reg;
363	map->readable_reg = config->readable_reg;
364	map->volatile_reg = config->volatile_reg;
365	map->precious_reg = config->precious_reg;
366	map->cache_type = config->cache_type;
367	map->name = config->name;
368
369	if (config->read_flag_mask || config->write_flag_mask) {
370		map->read_flag_mask = config->read_flag_mask;
371		map->write_flag_mask = config->write_flag_mask;
372	} else {
373		map->read_flag_mask = bus->read_flag_mask;
374	}
375
376	reg_endian = config->reg_format_endian;
377	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
378		reg_endian = bus->reg_format_endian_default;
379	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
380		reg_endian = REGMAP_ENDIAN_BIG;
381
382	val_endian = config->val_format_endian;
383	if (val_endian == REGMAP_ENDIAN_DEFAULT)
384		val_endian = bus->val_format_endian_default;
385	if (val_endian == REGMAP_ENDIAN_DEFAULT)
386		val_endian = REGMAP_ENDIAN_BIG;
387
388	switch (config->reg_bits + map->reg_shift) {
389	case 2:
390		switch (config->val_bits) {
391		case 6:
392			map->format.format_write = regmap_format_2_6_write;
393			break;
394		default:
395			goto err_map;
396		}
397		break;
398
399	case 4:
400		switch (config->val_bits) {
401		case 12:
402			map->format.format_write = regmap_format_4_12_write;
403			break;
404		default:
405			goto err_map;
406		}
407		break;
408
409	case 7:
410		switch (config->val_bits) {
411		case 9:
412			map->format.format_write = regmap_format_7_9_write;
413			break;
414		default:
415			goto err_map;
416		}
417		break;
418
419	case 10:
420		switch (config->val_bits) {
421		case 14:
422			map->format.format_write = regmap_format_10_14_write;
423			break;
424		default:
425			goto err_map;
426		}
427		break;
428
429	case 8:
430		map->format.format_reg = regmap_format_8;
431		break;
432
433	case 16:
434		switch (reg_endian) {
435		case REGMAP_ENDIAN_BIG:
436			map->format.format_reg = regmap_format_16_be;
437			break;
438		case REGMAP_ENDIAN_NATIVE:
439			map->format.format_reg = regmap_format_16_native;
440			break;
441		default:
442			goto err_map;
443		}
444		break;
445
446	case 32:
447		switch (reg_endian) {
448		case REGMAP_ENDIAN_BIG:
449			map->format.format_reg = regmap_format_32_be;
450			break;
451		case REGMAP_ENDIAN_NATIVE:
452			map->format.format_reg = regmap_format_32_native;
453			break;
454		default:
455			goto err_map;
456		}
457		break;
458
459	default:
460		goto err_map;
461	}
462
463	switch (config->val_bits) {
464	case 8:
465		map->format.format_val = regmap_format_8;
466		map->format.parse_val = regmap_parse_8;
467		break;
468	case 16:
469		switch (val_endian) {
470		case REGMAP_ENDIAN_BIG:
471			map->format.format_val = regmap_format_16_be;
472			map->format.parse_val = regmap_parse_16_be;
473			break;
474		case REGMAP_ENDIAN_NATIVE:
475			map->format.format_val = regmap_format_16_native;
476			map->format.parse_val = regmap_parse_16_native;
477			break;
478		default:
479			goto err_map;
480		}
481		break;
482	case 24:
483		if (val_endian != REGMAP_ENDIAN_BIG)
484			goto err_map;
485		map->format.format_val = regmap_format_24;
486		map->format.parse_val = regmap_parse_24;
487		break;
488	case 32:
489		switch (val_endian) {
490		case REGMAP_ENDIAN_BIG:
491			map->format.format_val = regmap_format_32_be;
492			map->format.parse_val = regmap_parse_32_be;
493			break;
494		case REGMAP_ENDIAN_NATIVE:
495			map->format.format_val = regmap_format_32_native;
496			map->format.parse_val = regmap_parse_32_native;
497			break;
498		default:
499			goto err_map;
500		}
501		break;
502	}
503
504	if (map->format.format_write) {
505		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
506		    (val_endian != REGMAP_ENDIAN_BIG))
507			goto err_map;
508		map->use_single_rw = true;
509	}
510
511	if (!map->format.format_write &&
512	    !(map->format.format_reg && map->format.format_val))
513		goto err_map;
514
515	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
516	if (map->work_buf == NULL) {
517		ret = -ENOMEM;
518		goto err_map;
519	}
520
521	map->range_tree = RB_ROOT;
522	for (i = 0; i < config->n_ranges; i++) {
523		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
524		struct regmap_range_node *new;
525
526		/* Sanity check */
527		if (range_cfg->range_max < range_cfg->range_min ||
528		    range_cfg->range_max > map->max_register ||
529		    range_cfg->selector_reg > map->max_register ||
530		    range_cfg->window_len == 0)
531			goto err_range;
532
533		/* Make sure, that this register range has no selector
534		   or data window within its boundary */
535		for (j = 0; j < config->n_ranges; j++) {
536			unsigned sel_reg = config->ranges[j].selector_reg;
537			unsigned win_min = config->ranges[j].window_start;
538			unsigned win_max = win_min +
539					   config->ranges[j].window_len - 1;
540
541			if (range_cfg->range_min <= sel_reg &&
542			    sel_reg <= range_cfg->range_max) {
543				goto err_range;
544			}
545
546			if (!(win_max < range_cfg->range_min ||
547			      win_min > range_cfg->range_max)) {
548				goto err_range;
549			}
550		}
551
552		new = kzalloc(sizeof(*new), GFP_KERNEL);
553		if (new == NULL) {
554			ret = -ENOMEM;
555			goto err_range;
556		}
557
558		new->range_min = range_cfg->range_min;
559		new->range_max = range_cfg->range_max;
560		new->selector_reg = range_cfg->selector_reg;
561		new->selector_mask = range_cfg->selector_mask;
562		new->selector_shift = range_cfg->selector_shift;
563		new->window_start = range_cfg->window_start;
564		new->window_len = range_cfg->window_len;
565
566		if (_regmap_range_add(map, new) == false) {
567			kfree(new);
568			goto err_range;
569		}
570
571		if (map->selector_work_buf == NULL) {
572			map->selector_work_buf =
573				kzalloc(map->format.buf_size, GFP_KERNEL);
574			if (map->selector_work_buf == NULL) {
575				ret = -ENOMEM;
576				goto err_range;
577			}
578		}
579	}
580
581	ret = regcache_init(map, config);
582	if (ret < 0)
583		goto err_range;
584
585	regmap_debugfs_init(map, config->name);
586
587	/* Add a devres resource for dev_get_regmap() */
588	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
589	if (!m) {
590		ret = -ENOMEM;
591		goto err_debugfs;
592	}
593	*m = map;
594	devres_add(dev, m);
595
596	return map;
597
598err_debugfs:
599	regmap_debugfs_exit(map);
600	regcache_exit(map);
601err_range:
602	regmap_range_exit(map);
603	kfree(map->work_buf);
604err_map:
605	kfree(map);
606err:
607	return ERR_PTR(ret);
608}
609EXPORT_SYMBOL_GPL(regmap_init);
610
611static void devm_regmap_release(struct device *dev, void *res)
612{
613	regmap_exit(*(struct regmap **)res);
614}
615
616/**
617 * devm_regmap_init(): Initialise managed register map
618 *
619 * @dev: Device that will be interacted with
620 * @bus: Bus-specific callbacks to use with device
621 * @bus_context: Data passed to bus-specific callbacks
622 * @config: Configuration for register map
623 *
624 * The return value will be an ERR_PTR() on error or a valid pointer
625 * to a struct regmap.  This function should generally not be called
626 * directly, it should be called by bus-specific init functions.  The
627 * map will be automatically freed by the device management code.
628 */
629struct regmap *devm_regmap_init(struct device *dev,
630				const struct regmap_bus *bus,
631				void *bus_context,
632				const struct regmap_config *config)
633{
634	struct regmap **ptr, *regmap;
635
636	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
637	if (!ptr)
638		return ERR_PTR(-ENOMEM);
639
640	regmap = regmap_init(dev, bus, bus_context, config);
641	if (!IS_ERR(regmap)) {
642		*ptr = regmap;
643		devres_add(dev, ptr);
644	} else {
645		devres_free(ptr);
646	}
647
648	return regmap;
649}
650EXPORT_SYMBOL_GPL(devm_regmap_init);
651
652/**
653 * regmap_reinit_cache(): Reinitialise the current register cache
654 *
655 * @map: Register map to operate on.
656 * @config: New configuration.  Only the cache data will be used.
657 *
658 * Discard any existing register cache for the map and initialize a
659 * new cache.  This can be used to restore the cache to defaults or to
660 * update the cache configuration to reflect runtime discovery of the
661 * hardware.
662 *
663 * No explicit locking is done here, the user needs to ensure that
664 * this function will not race with other calls to regmap.
665 */
666int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
667{
668	regcache_exit(map);
669	regmap_debugfs_exit(map);
670
671	map->max_register = config->max_register;
672	map->writeable_reg = config->writeable_reg;
673	map->readable_reg = config->readable_reg;
674	map->volatile_reg = config->volatile_reg;
675	map->precious_reg = config->precious_reg;
676	map->cache_type = config->cache_type;
677
678	regmap_debugfs_init(map, config->name);
679
680	map->cache_bypass = false;
681	map->cache_only = false;
682
683	return regcache_init(map, config);
684}
685EXPORT_SYMBOL_GPL(regmap_reinit_cache);
686
687/**
688 * regmap_exit(): Free a previously allocated register map
689 */
690void regmap_exit(struct regmap *map)
691{
692	regcache_exit(map);
693	regmap_debugfs_exit(map);
694	regmap_range_exit(map);
695	if (map->bus->free_context)
696		map->bus->free_context(map->bus_context);
697	kfree(map->work_buf);
698	kfree(map);
699}
700EXPORT_SYMBOL_GPL(regmap_exit);
701
702static int dev_get_regmap_match(struct device *dev, void *res, void *data)
703{
704	struct regmap **r = res;
705	if (!r || !*r) {
706		WARN_ON(!r || !*r);
707		return 0;
708	}
709
710	/* If the user didn't specify a name match any */
711	if (data)
712		return (*r)->name == data;
713	else
714		return 1;
715}
716
717/**
718 * dev_get_regmap(): Obtain the regmap (if any) for a device
719 *
720 * @dev: Device to retrieve the map for
721 * @name: Optional name for the register map, usually NULL.
722 *
723 * Returns the regmap for the device if one is present, or NULL.  If
724 * name is specified then it must match the name specified when
725 * registering the device, if it is NULL then the first regmap found
726 * will be used.  Devices with multiple register maps are very rare,
727 * generic code should normally not need to specify a name.
728 */
729struct regmap *dev_get_regmap(struct device *dev, const char *name)
730{
731	struct regmap **r = devres_find(dev, dev_get_regmap_release,
732					dev_get_regmap_match, (void *)name);
733
734	if (!r)
735		return NULL;
736	return *r;
737}
738EXPORT_SYMBOL_GPL(dev_get_regmap);
739
740static int _regmap_select_page(struct regmap *map, unsigned int *reg,
741			       unsigned int val_num)
742{
743	struct regmap_range_node *range;
744	void *orig_work_buf;
745	unsigned int win_offset;
746	unsigned int win_page;
747	bool page_chg;
748	int ret;
749
750	range = _regmap_range_lookup(map, *reg);
751	if (range) {
752		win_offset = (*reg - range->range_min) % range->window_len;
753		win_page = (*reg - range->range_min) / range->window_len;
754
755		if (val_num > 1) {
756			/* Bulk write shouldn't cross range boundary */
757			if (*reg + val_num - 1 > range->range_max)
758				return -EINVAL;
759
760			/* ... or single page boundary */
761			if (val_num > range->window_len - win_offset)
762				return -EINVAL;
763		}
764
765		/* It is possible to have selector register inside data window.
766		   In that case, selector register is located on every page and
767		   it needs no page switching, when accessed alone. */
768		if (val_num > 1 ||
769		    range->window_start + win_offset != range->selector_reg) {
770			/* Use separate work_buf during page switching */
771			orig_work_buf = map->work_buf;
772			map->work_buf = map->selector_work_buf;
773
774			ret = _regmap_update_bits(map, range->selector_reg,
775					range->selector_mask,
776					win_page << range->selector_shift,
777					&page_chg);
778
779			map->work_buf = orig_work_buf;
780
781			if (ret < 0)
782				return ret;
783		}
784
785		*reg = range->window_start + win_offset;
786	}
787
788	return 0;
789}
790
791static int _regmap_raw_write(struct regmap *map, unsigned int reg,
792			     const void *val, size_t val_len)
793{
794	u8 *u8 = map->work_buf;
795	void *buf;
796	int ret = -ENOTSUPP;
797	size_t len;
798	int i;
799
800	/* Check for unwritable registers before we start */
801	if (map->writeable_reg)
802		for (i = 0; i < val_len / map->format.val_bytes; i++)
803			if (!map->writeable_reg(map->dev,
804						reg + (i * map->reg_stride)))
805				return -EINVAL;
806
807	if (!map->cache_bypass && map->format.parse_val) {
808		unsigned int ival;
809		int val_bytes = map->format.val_bytes;
810		for (i = 0; i < val_len / val_bytes; i++) {
811			memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
812			ival = map->format.parse_val(map->work_buf);
813			ret = regcache_write(map, reg + (i * map->reg_stride),
814					     ival);
815			if (ret) {
816				dev_err(map->dev,
817				   "Error in caching of register: %u ret: %d\n",
818					reg + i, ret);
819				return ret;
820			}
821		}
822		if (map->cache_only) {
823			map->cache_dirty = true;
824			return 0;
825		}
826	}
827
828	ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
829	if (ret < 0)
830		return ret;
831
832	map->format.format_reg(map->work_buf, reg, map->reg_shift);
833
834	u8[0] |= map->write_flag_mask;
835
836	trace_regmap_hw_write_start(map->dev, reg,
837				    val_len / map->format.val_bytes);
838
839	/* If we're doing a single register write we can probably just
840	 * send the work_buf directly, otherwise try to do a gather
841	 * write.
842	 */
843	if (val == (map->work_buf + map->format.pad_bytes +
844		    map->format.reg_bytes))
845		ret = map->bus->write(map->bus_context, map->work_buf,
846				      map->format.reg_bytes +
847				      map->format.pad_bytes +
848				      val_len);
849	else if (map->bus->gather_write)
850		ret = map->bus->gather_write(map->bus_context, map->work_buf,
851					     map->format.reg_bytes +
852					     map->format.pad_bytes,
853					     val, val_len);
854
855	/* If that didn't work fall back on linearising by hand. */
856	if (ret == -ENOTSUPP) {
857		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
858		buf = kzalloc(len, GFP_KERNEL);
859		if (!buf)
860			return -ENOMEM;
861
862		memcpy(buf, map->work_buf, map->format.reg_bytes);
863		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
864		       val, val_len);
865		ret = map->bus->write(map->bus_context, buf, len);
866
867		kfree(buf);
868	}
869
870	trace_regmap_hw_write_done(map->dev, reg,
871				   val_len / map->format.val_bytes);
872
873	return ret;
874}
875
876int _regmap_write(struct regmap *map, unsigned int reg,
877		  unsigned int val)
878{
879	int ret;
880	BUG_ON(!map->format.format_write && !map->format.format_val);
881
882	if (!map->cache_bypass && map->format.format_write) {
883		ret = regcache_write(map, reg, val);
884		if (ret != 0)
885			return ret;
886		if (map->cache_only) {
887			map->cache_dirty = true;
888			return 0;
889		}
890	}
891
892#ifdef LOG_DEVICE
893	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
894		dev_info(map->dev, "%x <= %x\n", reg, val);
895#endif
896
897	trace_regmap_reg_write(map->dev, reg, val);
898
899	if (map->format.format_write) {
900		ret = _regmap_select_page(map, &reg, 1);
901		if (ret < 0)
902			return ret;
903
904		map->format.format_write(map, reg, val);
905
906		trace_regmap_hw_write_start(map->dev, reg, 1);
907
908		ret = map->bus->write(map->bus_context, map->work_buf,
909				      map->format.buf_size);
910
911		trace_regmap_hw_write_done(map->dev, reg, 1);
912
913		return ret;
914	} else {
915		map->format.format_val(map->work_buf + map->format.reg_bytes
916				       + map->format.pad_bytes, val, 0);
917		return _regmap_raw_write(map, reg,
918					 map->work_buf +
919					 map->format.reg_bytes +
920					 map->format.pad_bytes,
921					 map->format.val_bytes);
922	}
923}
924
925/**
926 * regmap_write(): Write a value to a single register
927 *
928 * @map: Register map to write to
929 * @reg: Register to write to
930 * @val: Value to be written
931 *
932 * A value of zero will be returned on success, a negative errno will
933 * be returned in error cases.
934 */
935int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
936{
937	int ret;
938
939	if (reg % map->reg_stride)
940		return -EINVAL;
941
942	map->lock(map);
943
944	ret = _regmap_write(map, reg, val);
945
946	map->unlock(map);
947
948	return ret;
949}
950EXPORT_SYMBOL_GPL(regmap_write);
951
952/**
953 * regmap_raw_write(): Write raw values to one or more registers
954 *
955 * @map: Register map to write to
956 * @reg: Initial register to write to
957 * @val: Block of data to be written, laid out for direct transmission to the
958 *       device
959 * @val_len: Length of data pointed to by val.
960 *
961 * This function is intended to be used for things like firmware
962 * download where a large block of data needs to be transferred to the
963 * device.  No formatting will be done on the data provided.
964 *
965 * A value of zero will be returned on success, a negative errno will
966 * be returned in error cases.
967 */
968int regmap_raw_write(struct regmap *map, unsigned int reg,
969		     const void *val, size_t val_len)
970{
971	int ret;
972
973	if (val_len % map->format.val_bytes)
974		return -EINVAL;
975	if (reg % map->reg_stride)
976		return -EINVAL;
977
978	map->lock(map);
979
980	ret = _regmap_raw_write(map, reg, val, val_len);
981
982	map->unlock(map);
983
984	return ret;
985}
986EXPORT_SYMBOL_GPL(regmap_raw_write);
987
988/*
989 * regmap_bulk_write(): Write multiple registers to the device
990 *
991 * @map: Register map to write to
992 * @reg: First register to be write from
993 * @val: Block of data to be written, in native register size for device
994 * @val_count: Number of registers to write
995 *
996 * This function is intended to be used for writing a large block of
997 * data to be device either in single transfer or multiple transfer.
998 *
999 * A value of zero will be returned on success, a negative errno will
1000 * be returned in error cases.
1001 */
1002int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1003		     size_t val_count)
1004{
1005	int ret = 0, i;
1006	size_t val_bytes = map->format.val_bytes;
1007	void *wval;
1008
1009	if (!map->format.parse_val)
1010		return -EINVAL;
1011	if (reg % map->reg_stride)
1012		return -EINVAL;
1013
1014	map->lock(map);
1015
1016	/* No formatting is require if val_byte is 1 */
1017	if (val_bytes == 1) {
1018		wval = (void *)val;
1019	} else {
1020		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1021		if (!wval) {
1022			ret = -ENOMEM;
1023			dev_err(map->dev, "Error in memory allocation\n");
1024			goto out;
1025		}
1026		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1027			map->format.parse_val(wval + i);
1028	}
1029	/*
1030	 * Some devices does not support bulk write, for
1031	 * them we have a series of single write operations.
1032	 */
1033	if (map->use_single_rw) {
1034		for (i = 0; i < val_count; i++) {
1035			ret = regmap_raw_write(map,
1036						reg + (i * map->reg_stride),
1037						val + (i * val_bytes),
1038						val_bytes);
1039			if (ret != 0)
1040				return ret;
1041		}
1042	} else {
1043		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1044	}
1045
1046	if (val_bytes != 1)
1047		kfree(wval);
1048
1049out:
1050	map->unlock(map);
1051	return ret;
1052}
1053EXPORT_SYMBOL_GPL(regmap_bulk_write);
1054
1055static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1056			    unsigned int val_len)
1057{
1058	u8 *u8 = map->work_buf;
1059	int ret;
1060
1061	ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
1062	if (ret < 0)
1063		return ret;
1064
1065	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1066
1067	/*
1068	 * Some buses or devices flag reads by setting the high bits in the
1069	 * register addresss; since it's always the high bits for all
1070	 * current formats we can do this here rather than in
1071	 * formatting.  This may break if we get interesting formats.
1072	 */
1073	u8[0] |= map->read_flag_mask;
1074
1075	trace_regmap_hw_read_start(map->dev, reg,
1076				   val_len / map->format.val_bytes);
1077
1078	ret = map->bus->read(map->bus_context, map->work_buf,
1079			     map->format.reg_bytes + map->format.pad_bytes,
1080			     val, val_len);
1081
1082	trace_regmap_hw_read_done(map->dev, reg,
1083				  val_len / map->format.val_bytes);
1084
1085	return ret;
1086}
1087
1088static int _regmap_read(struct regmap *map, unsigned int reg,
1089			unsigned int *val)
1090{
1091	int ret;
1092
1093	if (!map->cache_bypass) {
1094		ret = regcache_read(map, reg, val);
1095		if (ret == 0)
1096			return 0;
1097	}
1098
1099	if (!map->format.parse_val)
1100		return -EINVAL;
1101
1102	if (map->cache_only)
1103		return -EBUSY;
1104
1105	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1106	if (ret == 0) {
1107		*val = map->format.parse_val(map->work_buf);
1108
1109#ifdef LOG_DEVICE
1110		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1111			dev_info(map->dev, "%x => %x\n", reg, *val);
1112#endif
1113
1114		trace_regmap_reg_read(map->dev, reg, *val);
1115	}
1116
1117	if (ret == 0 && !map->cache_bypass)
1118		regcache_write(map, reg, *val);
1119
1120	return ret;
1121}
1122
1123/**
1124 * regmap_read(): Read a value from a single register
1125 *
1126 * @map: Register map to write to
1127 * @reg: Register to be read from
1128 * @val: Pointer to store read value
1129 *
1130 * A value of zero will be returned on success, a negative errno will
1131 * be returned in error cases.
1132 */
1133int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1134{
1135	int ret;
1136
1137	if (reg % map->reg_stride)
1138		return -EINVAL;
1139
1140	map->lock(map);
1141
1142	ret = _regmap_read(map, reg, val);
1143
1144	map->unlock(map);
1145
1146	return ret;
1147}
1148EXPORT_SYMBOL_GPL(regmap_read);
1149
1150/**
1151 * regmap_raw_read(): Read raw data from the device
1152 *
1153 * @map: Register map to write to
1154 * @reg: First register to be read from
1155 * @val: Pointer to store read value
1156 * @val_len: Size of data to read
1157 *
1158 * A value of zero will be returned on success, a negative errno will
1159 * be returned in error cases.
1160 */
1161int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1162		    size_t val_len)
1163{
1164	size_t val_bytes = map->format.val_bytes;
1165	size_t val_count = val_len / val_bytes;
1166	unsigned int v;
1167	int ret, i;
1168
1169	if (val_len % map->format.val_bytes)
1170		return -EINVAL;
1171	if (reg % map->reg_stride)
1172		return -EINVAL;
1173
1174	map->lock(map);
1175
1176	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1177	    map->cache_type == REGCACHE_NONE) {
1178		/* Physical block read if there's no cache involved */
1179		ret = _regmap_raw_read(map, reg, val, val_len);
1180
1181	} else {
1182		/* Otherwise go word by word for the cache; should be low
1183		 * cost as we expect to hit the cache.
1184		 */
1185		for (i = 0; i < val_count; i++) {
1186			ret = _regmap_read(map, reg + (i * map->reg_stride),
1187					   &v);
1188			if (ret != 0)
1189				goto out;
1190
1191			map->format.format_val(val + (i * val_bytes), v, 0);
1192		}
1193	}
1194
1195 out:
1196	map->unlock(map);
1197
1198	return ret;
1199}
1200EXPORT_SYMBOL_GPL(regmap_raw_read);
1201
1202/**
1203 * regmap_bulk_read(): Read multiple registers from the device
1204 *
1205 * @map: Register map to write to
1206 * @reg: First register to be read from
1207 * @val: Pointer to store read value, in native register size for device
1208 * @val_count: Number of registers to read
1209 *
1210 * A value of zero will be returned on success, a negative errno will
1211 * be returned in error cases.
1212 */
1213int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1214		     size_t val_count)
1215{
1216	int ret, i;
1217	size_t val_bytes = map->format.val_bytes;
1218	bool vol = regmap_volatile_range(map, reg, val_count);
1219
1220	if (!map->format.parse_val)
1221		return -EINVAL;
1222	if (reg % map->reg_stride)
1223		return -EINVAL;
1224
1225	if (vol || map->cache_type == REGCACHE_NONE) {
1226		/*
1227		 * Some devices does not support bulk read, for
1228		 * them we have a series of single read operations.
1229		 */
1230		if (map->use_single_rw) {
1231			for (i = 0; i < val_count; i++) {
1232				ret = regmap_raw_read(map,
1233						reg + (i * map->reg_stride),
1234						val + (i * val_bytes),
1235						val_bytes);
1236				if (ret != 0)
1237					return ret;
1238			}
1239		} else {
1240			ret = regmap_raw_read(map, reg, val,
1241					      val_bytes * val_count);
1242			if (ret != 0)
1243				return ret;
1244		}
1245
1246		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1247			map->format.parse_val(val + i);
1248	} else {
1249		for (i = 0; i < val_count; i++) {
1250			unsigned int ival;
1251			ret = regmap_read(map, reg + (i * map->reg_stride),
1252					  &ival);
1253			if (ret != 0)
1254				return ret;
1255			memcpy(val + (i * val_bytes), &ival, val_bytes);
1256		}
1257	}
1258
1259	return 0;
1260}
1261EXPORT_SYMBOL_GPL(regmap_bulk_read);
1262
1263static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1264			       unsigned int mask, unsigned int val,
1265			       bool *change)
1266{
1267	int ret;
1268	unsigned int tmp, orig;
1269
1270	ret = _regmap_read(map, reg, &orig);
1271	if (ret != 0)
1272		return ret;
1273
1274	tmp = orig & ~mask;
1275	tmp |= val & mask;
1276
1277	if (tmp != orig) {
1278		ret = _regmap_write(map, reg, tmp);
1279		*change = true;
1280	} else {
1281		*change = false;
1282	}
1283
1284	return ret;
1285}
1286
1287/**
1288 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1289 *
1290 * @map: Register map to update
1291 * @reg: Register to update
1292 * @mask: Bitmask to change
1293 * @val: New value for bitmask
1294 *
1295 * Returns zero for success, a negative number on error.
1296 */
1297int regmap_update_bits(struct regmap *map, unsigned int reg,
1298		       unsigned int mask, unsigned int val)
1299{
1300	bool change;
1301	int ret;
1302
1303	map->lock(map);
1304	ret = _regmap_update_bits(map, reg, mask, val, &change);
1305	map->unlock(map);
1306
1307	return ret;
1308}
1309EXPORT_SYMBOL_GPL(regmap_update_bits);
1310
1311/**
1312 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1313 *                           register map and report if updated
1314 *
1315 * @map: Register map to update
1316 * @reg: Register to update
1317 * @mask: Bitmask to change
1318 * @val: New value for bitmask
1319 * @change: Boolean indicating if a write was done
1320 *
1321 * Returns zero for success, a negative number on error.
1322 */
1323int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1324			     unsigned int mask, unsigned int val,
1325			     bool *change)
1326{
1327	int ret;
1328
1329	map->lock(map);
1330	ret = _regmap_update_bits(map, reg, mask, val, change);
1331	map->unlock(map);
1332	return ret;
1333}
1334EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1335
1336/**
1337 * regmap_register_patch: Register and apply register updates to be applied
1338 *                        on device initialistion
1339 *
1340 * @map: Register map to apply updates to.
1341 * @regs: Values to update.
1342 * @num_regs: Number of entries in regs.
1343 *
1344 * Register a set of register updates to be applied to the device
1345 * whenever the device registers are synchronised with the cache and
1346 * apply them immediately.  Typically this is used to apply
1347 * corrections to be applied to the device defaults on startup, such
1348 * as the updates some vendors provide to undocumented registers.
1349 */
1350int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1351			  int num_regs)
1352{
1353	int i, ret;
1354	bool bypass;
1355
1356	/* If needed the implementation can be extended to support this */
1357	if (map->patch)
1358		return -EBUSY;
1359
1360	map->lock(map);
1361
1362	bypass = map->cache_bypass;
1363
1364	map->cache_bypass = true;
1365
1366	/* Write out first; it's useful to apply even if we fail later. */
1367	for (i = 0; i < num_regs; i++) {
1368		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1369		if (ret != 0) {
1370			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1371				regs[i].reg, regs[i].def, ret);
1372			goto out;
1373		}
1374	}
1375
1376	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1377	if (map->patch != NULL) {
1378		memcpy(map->patch, regs,
1379		       num_regs * sizeof(struct reg_default));
1380		map->patch_regs = num_regs;
1381	} else {
1382		ret = -ENOMEM;
1383	}
1384
1385out:
1386	map->cache_bypass = bypass;
1387
1388	map->unlock(map);
1389
1390	return ret;
1391}
1392EXPORT_SYMBOL_GPL(regmap_register_patch);
1393
1394/*
1395 * regmap_get_val_bytes(): Report the size of a register value
1396 *
1397 * Report the size of a register value, mainly intended to for use by
1398 * generic infrastructure built on top of regmap.
1399 */
1400int regmap_get_val_bytes(struct regmap *map)
1401{
1402	if (map->format.format_write)
1403		return -EINVAL;
1404
1405	return map->format.val_bytes;
1406}
1407EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1408
1409static int __init regmap_initcall(void)
1410{
1411	regmap_debugfs_initcall();
1412
1413	return 0;
1414}
1415postcore_initcall(regmap_initcall);
1416