1/*
2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 */
14
15#include <linux/io.h>
16#include <linux/of_address.h>
17
18#include "clk-kona.h"
19
20/* These are used when a selector or trigger is found to be unneeded */
21#define selector_clear_exists(sel)	((sel)->width = 0)
22#define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
23
24LIST_HEAD(ccu_list);	/* The list of set up CCUs */
25
26/* Validity checking */
27
28static bool ccu_data_offsets_valid(struct ccu_data *ccu)
29{
30	struct ccu_policy *ccu_policy = &ccu->policy;
31	u32 limit;
32
33	limit = ccu->range - sizeof(u32);
34	limit = round_down(limit, sizeof(u32));
35	if (ccu_policy_exists(ccu_policy)) {
36		if (ccu_policy->enable.offset > limit) {
37			pr_err("%s: bad policy enable offset for %s "
38					"(%u > %u)\n", __func__,
39				ccu->name, ccu_policy->enable.offset, limit);
40			return false;
41		}
42		if (ccu_policy->control.offset > limit) {
43			pr_err("%s: bad policy control offset for %s "
44					"(%u > %u)\n", __func__,
45				ccu->name, ccu_policy->control.offset, limit);
46			return false;
47		}
48	}
49
50	return true;
51}
52
53static bool clk_requires_trigger(struct kona_clk *bcm_clk)
54{
55	struct peri_clk_data *peri = bcm_clk->u.peri;
56	struct bcm_clk_sel *sel;
57	struct bcm_clk_div *div;
58
59	if (bcm_clk->type != bcm_clk_peri)
60		return false;
61
62	sel = &peri->sel;
63	if (sel->parent_count && selector_exists(sel))
64		return true;
65
66	div = &peri->div;
67	if (!divider_exists(div))
68		return false;
69
70	/* Fixed dividers don't need triggers */
71	if (!divider_is_fixed(div))
72		return true;
73
74	div = &peri->pre_div;
75
76	return divider_exists(div) && !divider_is_fixed(div);
77}
78
79static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
80{
81	struct peri_clk_data *peri;
82	struct bcm_clk_policy *policy;
83	struct bcm_clk_gate *gate;
84	struct bcm_clk_hyst *hyst;
85	struct bcm_clk_div *div;
86	struct bcm_clk_sel *sel;
87	struct bcm_clk_trig *trig;
88	const char *name;
89	u32 range;
90	u32 limit;
91
92	BUG_ON(bcm_clk->type != bcm_clk_peri);
93	peri = bcm_clk->u.peri;
94	name = bcm_clk->init_data.name;
95	range = bcm_clk->ccu->range;
96
97	limit = range - sizeof(u32);
98	limit = round_down(limit, sizeof(u32));
99
100	policy = &peri->policy;
101	if (policy_exists(policy)) {
102		if (policy->offset > limit) {
103			pr_err("%s: bad policy offset for %s (%u > %u)\n",
104				__func__, name, policy->offset, limit);
105			return false;
106		}
107	}
108
109	gate = &peri->gate;
110	hyst = &peri->hyst;
111	if (gate_exists(gate)) {
112		if (gate->offset > limit) {
113			pr_err("%s: bad gate offset for %s (%u > %u)\n",
114				__func__, name, gate->offset, limit);
115			return false;
116		}
117
118		if (hyst_exists(hyst)) {
119			if (hyst->offset > limit) {
120				pr_err("%s: bad hysteresis offset for %s "
121					"(%u > %u)\n", __func__,
122					name, hyst->offset, limit);
123				return false;
124			}
125		}
126	} else if (hyst_exists(hyst)) {
127		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
128		return false;
129	}
130
131	div = &peri->div;
132	if (divider_exists(div)) {
133		if (div->u.s.offset > limit) {
134			pr_err("%s: bad divider offset for %s (%u > %u)\n",
135				__func__, name, div->u.s.offset, limit);
136			return false;
137		}
138	}
139
140	div = &peri->pre_div;
141	if (divider_exists(div)) {
142		if (div->u.s.offset > limit) {
143			pr_err("%s: bad pre-divider offset for %s "
144					"(%u > %u)\n",
145				__func__, name, div->u.s.offset, limit);
146			return false;
147		}
148	}
149
150	sel = &peri->sel;
151	if (selector_exists(sel)) {
152		if (sel->offset > limit) {
153			pr_err("%s: bad selector offset for %s (%u > %u)\n",
154				__func__, name, sel->offset, limit);
155			return false;
156		}
157	}
158
159	trig = &peri->trig;
160	if (trigger_exists(trig)) {
161		if (trig->offset > limit) {
162			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
163				__func__, name, trig->offset, limit);
164			return false;
165		}
166	}
167
168	trig = &peri->pre_trig;
169	if (trigger_exists(trig)) {
170		if (trig->offset > limit) {
171			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
172				__func__, name, trig->offset, limit);
173			return false;
174		}
175	}
176
177	return true;
178}
179
180/* A bit position must be less than the number of bits in a 32-bit register. */
181static bool bit_posn_valid(u32 bit_posn, const char *field_name,
182			const char *clock_name)
183{
184	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
185
186	if (bit_posn > limit) {
187		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
188			field_name, clock_name, bit_posn, limit);
189		return false;
190	}
191	return true;
192}
193
194/*
195 * A bitfield must be at least 1 bit wide.  Both the low-order and
196 * high-order bits must lie within a 32-bit register.  We require
197 * fields to be less than 32 bits wide, mainly because we use
198 * shifting to produce field masks, and shifting a full word width
199 * is not well-defined by the C standard.
200 */
201static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
202			const char *clock_name)
203{
204	u32 limit = BITS_PER_BYTE * sizeof(u32);
205
206	if (!width) {
207		pr_err("%s: bad %s field width 0 for %s\n", __func__,
208			field_name, clock_name);
209		return false;
210	}
211	if (shift + width > limit) {
212		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
213			field_name, clock_name, shift, width, limit);
214		return false;
215	}
216	return true;
217}
218
219static bool
220ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
221{
222	struct bcm_lvm_en *enable = &ccu_policy->enable;
223	struct bcm_policy_ctl *control;
224
225	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
226		return false;
227
228	control = &ccu_policy->control;
229	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
230		return false;
231
232	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
233		return false;
234
235	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
236		return false;
237
238	return true;
239}
240
241static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
242{
243	if (!bit_posn_valid(policy->bit, "policy", clock_name))
244		return false;
245
246	return true;
247}
248
249/*
250 * All gates, if defined, have a status bit, and for hardware-only
251 * gates, that's it.  Gates that can be software controlled also
252 * have an enable bit.  And a gate that can be hardware or software
253 * controlled will have a hardware/software select bit.
254 */
255static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
256			const char *clock_name)
257{
258	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
259		return false;
260
261	if (gate_is_sw_controllable(gate)) {
262		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
263			return false;
264
265		if (gate_is_hw_controllable(gate)) {
266			if (!bit_posn_valid(gate->hw_sw_sel_bit,
267						"gate hw/sw select",
268						clock_name))
269				return false;
270		}
271	} else {
272		BUG_ON(!gate_is_hw_controllable(gate));
273	}
274
275	return true;
276}
277
278static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
279{
280	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
281		return false;
282
283	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
284		return false;
285
286	return true;
287}
288
289/*
290 * A selector bitfield must be valid.  Its parent_sel array must
291 * also be reasonable for the field.
292 */
293static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
294			const char *clock_name)
295{
296	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
297		return false;
298
299	if (sel->parent_count) {
300		u32 max_sel;
301		u32 limit;
302
303		/*
304		 * Make sure the selector field can hold all the
305		 * selector values we expect to be able to use.  A
306		 * clock only needs to have a selector defined if it
307		 * has more than one parent.  And in that case the
308		 * highest selector value will be in the last entry
309		 * in the array.
310		 */
311		max_sel = sel->parent_sel[sel->parent_count - 1];
312		limit = (1 << sel->width) - 1;
313		if (max_sel > limit) {
314			pr_err("%s: bad selector for %s "
315					"(%u needs > %u bits)\n",
316				__func__, clock_name, max_sel,
317				sel->width);
318			return false;
319		}
320	} else {
321		pr_warn("%s: ignoring selector for %s (no parents)\n",
322			__func__, clock_name);
323		selector_clear_exists(sel);
324		kfree(sel->parent_sel);
325		sel->parent_sel = NULL;
326	}
327
328	return true;
329}
330
331/*
332 * A fixed divider just needs to be non-zero.  A variable divider
333 * has to have a valid divider bitfield, and if it has a fraction,
334 * the width of the fraction must not be no more than the width of
335 * the divider as a whole.
336 */
337static bool div_valid(struct bcm_clk_div *div, const char *field_name,
338			const char *clock_name)
339{
340	if (divider_is_fixed(div)) {
341		/* Any fixed divider value but 0 is OK */
342		if (div->u.fixed == 0) {
343			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
344				field_name, clock_name);
345			return false;
346		}
347		return true;
348	}
349	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
350				field_name, clock_name))
351		return false;
352
353	if (divider_has_fraction(div))
354		if (div->u.s.frac_width > div->u.s.width) {
355			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
356				__func__, field_name, clock_name,
357				div->u.s.frac_width, div->u.s.width);
358			return false;
359		}
360
361	return true;
362}
363
364/*
365 * If a clock has two dividers, the combined number of fractional
366 * bits must be representable in a 32-bit unsigned value.  This
367 * is because we scale up a dividend using both dividers before
368 * dividing to improve accuracy, and we need to avoid overflow.
369 */
370static bool kona_dividers_valid(struct kona_clk *bcm_clk)
371{
372	struct peri_clk_data *peri = bcm_clk->u.peri;
373	struct bcm_clk_div *div;
374	struct bcm_clk_div *pre_div;
375	u32 limit;
376
377	BUG_ON(bcm_clk->type != bcm_clk_peri);
378
379	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
380		return true;
381
382	div = &peri->div;
383	pre_div = &peri->pre_div;
384	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
385		return true;
386
387	limit = BITS_PER_BYTE * sizeof(u32);
388
389	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
390}
391
392
393/* A trigger just needs to represent a valid bit position */
394static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
395			const char *clock_name)
396{
397	return bit_posn_valid(trig->bit, field_name, clock_name);
398}
399
400/* Determine whether the set of peripheral clock registers are valid. */
401static bool
402peri_clk_data_valid(struct kona_clk *bcm_clk)
403{
404	struct peri_clk_data *peri;
405	struct bcm_clk_policy *policy;
406	struct bcm_clk_gate *gate;
407	struct bcm_clk_hyst *hyst;
408	struct bcm_clk_sel *sel;
409	struct bcm_clk_div *div;
410	struct bcm_clk_div *pre_div;
411	struct bcm_clk_trig *trig;
412	const char *name;
413
414	BUG_ON(bcm_clk->type != bcm_clk_peri);
415
416	/*
417	 * First validate register offsets.  This is the only place
418	 * where we need something from the ccu, so we do these
419	 * together.
420	 */
421	if (!peri_clk_data_offsets_valid(bcm_clk))
422		return false;
423
424	peri = bcm_clk->u.peri;
425	name = bcm_clk->init_data.name;
426
427	policy = &peri->policy;
428	if (policy_exists(policy) && !policy_valid(policy, name))
429		return false;
430
431	gate = &peri->gate;
432	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
433		return false;
434
435	hyst = &peri->hyst;
436	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
437		return false;
438
439	sel = &peri->sel;
440	if (selector_exists(sel)) {
441		if (!sel_valid(sel, "selector", name))
442			return false;
443
444	} else if (sel->parent_count > 1) {
445		pr_err("%s: multiple parents but no selector for %s\n",
446			__func__, name);
447
448		return false;
449	}
450
451	div = &peri->div;
452	pre_div = &peri->pre_div;
453	if (divider_exists(div)) {
454		if (!div_valid(div, "divider", name))
455			return false;
456
457		if (divider_exists(pre_div))
458			if (!div_valid(pre_div, "pre-divider", name))
459				return false;
460	} else if (divider_exists(pre_div)) {
461		pr_err("%s: pre-divider but no divider for %s\n", __func__,
462			name);
463		return false;
464	}
465
466	trig = &peri->trig;
467	if (trigger_exists(trig)) {
468		if (!trig_valid(trig, "trigger", name))
469			return false;
470
471		if (trigger_exists(&peri->pre_trig)) {
472			if (!trig_valid(trig, "pre-trigger", name)) {
473				return false;
474			}
475		}
476		if (!clk_requires_trigger(bcm_clk)) {
477			pr_warn("%s: ignoring trigger for %s (not needed)\n",
478				__func__, name);
479			trigger_clear_exists(trig);
480		}
481	} else if (trigger_exists(&peri->pre_trig)) {
482		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
483			name);
484		return false;
485	} else if (clk_requires_trigger(bcm_clk)) {
486		pr_err("%s: required trigger missing for %s\n", __func__,
487			name);
488		return false;
489	}
490
491	return kona_dividers_valid(bcm_clk);
492}
493
494static bool kona_clk_valid(struct kona_clk *bcm_clk)
495{
496	switch (bcm_clk->type) {
497	case bcm_clk_peri:
498		if (!peri_clk_data_valid(bcm_clk))
499			return false;
500		break;
501	default:
502		pr_err("%s: unrecognized clock type (%d)\n", __func__,
503			(int)bcm_clk->type);
504		return false;
505	}
506	return true;
507}
508
509/*
510 * Scan an array of parent clock names to determine whether there
511 * are any entries containing BAD_CLK_NAME.  Such entries are
512 * placeholders for non-supported clocks.  Keep track of the
513 * position of each clock name in the original array.
514 *
515 * Allocates an array of pointers to to hold the names of all
516 * non-null entries in the original array, and returns a pointer to
517 * that array in *names.  This will be used for registering the
518 * clock with the common clock code.  On successful return,
519 * *count indicates how many entries are in that names array.
520 *
521 * If there is more than one entry in the resulting names array,
522 * another array is allocated to record the parent selector value
523 * for each (defined) parent clock.  This is the value that
524 * represents this parent clock in the clock's source selector
525 * register.  The position of the clock in the original parent array
526 * defines that selector value.  The number of entries in this array
527 * is the same as the number of entries in the parent names array.
528 *
529 * The array of selector values is returned.  If the clock has no
530 * parents, no selector is required and a null pointer is returned.
531 *
532 * Returns a null pointer if the clock names array supplied was
533 * null.  (This is not an error.)
534 *
535 * Returns a pointer-coded error if an error occurs.
536 */
537static u32 *parent_process(const char *clocks[],
538			u32 *count, const char ***names)
539{
540	static const char **parent_names;
541	static u32 *parent_sel;
542	const char **clock;
543	u32 parent_count;
544	u32 bad_count = 0;
545	u32 orig_count;
546	u32 i;
547	u32 j;
548
549	*count = 0;	/* In case of early return */
550	*names = NULL;
551	if (!clocks)
552		return NULL;
553
554	/*
555	 * Count the number of names in the null-terminated array,
556	 * and find out how many of those are actually clock names.
557	 */
558	for (clock = clocks; *clock; clock++)
559		if (*clock == BAD_CLK_NAME)
560			bad_count++;
561	orig_count = (u32)(clock - clocks);
562	parent_count = orig_count - bad_count;
563
564	/* If all clocks are unsupported, we treat it as no clock */
565	if (!parent_count)
566		return NULL;
567
568	/* Avoid exceeding our parent clock limit */
569	if (parent_count > PARENT_COUNT_MAX) {
570		pr_err("%s: too many parents (%u > %u)\n", __func__,
571			parent_count, PARENT_COUNT_MAX);
572		return ERR_PTR(-EINVAL);
573	}
574
575	/*
576	 * There is one parent name for each defined parent clock.
577	 * We also maintain an array containing the selector value
578	 * for each defined clock.  If there's only one clock, the
579	 * selector is not required, but we allocate space for the
580	 * array anyway to keep things simple.
581	 */
582	parent_names = kmalloc(parent_count * sizeof(parent_names), GFP_KERNEL);
583	if (!parent_names) {
584		pr_err("%s: error allocating %u parent names\n", __func__,
585				parent_count);
586		return ERR_PTR(-ENOMEM);
587	}
588
589	/* There is at least one parent, so allocate a selector array */
590
591	parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL);
592	if (!parent_sel) {
593		pr_err("%s: error allocating %u parent selectors\n", __func__,
594				parent_count);
595		kfree(parent_names);
596
597		return ERR_PTR(-ENOMEM);
598	}
599
600	/* Now fill in the parent names and selector arrays */
601	for (i = 0, j = 0; i < orig_count; i++) {
602		if (clocks[i] != BAD_CLK_NAME) {
603			parent_names[j] = clocks[i];
604			parent_sel[j] = i;
605			j++;
606		}
607	}
608	*names = parent_names;
609	*count = parent_count;
610
611	return parent_sel;
612}
613
614static int
615clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
616		struct clk_init_data *init_data)
617{
618	const char **parent_names = NULL;
619	u32 parent_count = 0;
620	u32 *parent_sel;
621
622	/*
623	 * If a peripheral clock has multiple parents, the value
624	 * used by the hardware to select that parent is represented
625	 * by the parent clock's position in the "clocks" list.  Some
626	 * values don't have defined or supported clocks; these will
627	 * have BAD_CLK_NAME entries in the parents[] array.  The
628	 * list is terminated by a NULL entry.
629	 *
630	 * We need to supply (only) the names of defined parent
631	 * clocks when registering a clock though, so we use an
632	 * array of parent selector values to map between the
633	 * indexes the common clock code uses and the selector
634	 * values we need.
635	 */
636	parent_sel = parent_process(clocks, &parent_count, &parent_names);
637	if (IS_ERR(parent_sel)) {
638		int ret = PTR_ERR(parent_sel);
639
640		pr_err("%s: error processing parent clocks for %s (%d)\n",
641			__func__, init_data->name, ret);
642
643		return ret;
644	}
645
646	init_data->parent_names = parent_names;
647	init_data->num_parents = parent_count;
648
649	sel->parent_count = parent_count;
650	sel->parent_sel = parent_sel;
651
652	return 0;
653}
654
655static void clk_sel_teardown(struct bcm_clk_sel *sel,
656		struct clk_init_data *init_data)
657{
658	kfree(sel->parent_sel);
659	sel->parent_sel = NULL;
660	sel->parent_count = 0;
661
662	init_data->num_parents = 0;
663	kfree(init_data->parent_names);
664	init_data->parent_names = NULL;
665}
666
667static void peri_clk_teardown(struct peri_clk_data *data,
668				struct clk_init_data *init_data)
669{
670	clk_sel_teardown(&data->sel, init_data);
671}
672
673/*
674 * Caller is responsible for freeing the parent_names[] and
675 * parent_sel[] arrays in the peripheral clock's "data" structure
676 * that can be assigned if the clock has one or more parent clocks
677 * associated with it.
678 */
679static int
680peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
681{
682	init_data->flags = CLK_IGNORE_UNUSED;
683
684	return clk_sel_setup(data->clocks, &data->sel, init_data);
685}
686
687static void bcm_clk_teardown(struct kona_clk *bcm_clk)
688{
689	switch (bcm_clk->type) {
690	case bcm_clk_peri:
691		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
692		break;
693	default:
694		break;
695	}
696	bcm_clk->u.data = NULL;
697	bcm_clk->type = bcm_clk_none;
698}
699
700static void kona_clk_teardown(struct clk *clk)
701{
702	struct clk_hw *hw;
703	struct kona_clk *bcm_clk;
704
705	if (!clk)
706		return;
707
708	hw = __clk_get_hw(clk);
709	if (!hw) {
710		pr_err("%s: clk %p has null hw pointer\n", __func__, clk);
711		return;
712	}
713	clk_unregister(clk);
714
715	bcm_clk = to_kona_clk(hw);
716	bcm_clk_teardown(bcm_clk);
717}
718
719struct clk *kona_clk_setup(struct kona_clk *bcm_clk)
720{
721	struct clk_init_data *init_data = &bcm_clk->init_data;
722	struct clk *clk = NULL;
723
724	switch (bcm_clk->type) {
725	case bcm_clk_peri:
726		if (peri_clk_setup(bcm_clk->u.data, init_data))
727			return NULL;
728		break;
729	default:
730		pr_err("%s: clock type %d invalid for %s\n", __func__,
731			(int)bcm_clk->type, init_data->name);
732		return NULL;
733	}
734
735	/* Make sure everything makes sense before we set it up */
736	if (!kona_clk_valid(bcm_clk)) {
737		pr_err("%s: clock data invalid for %s\n", __func__,
738			init_data->name);
739		goto out_teardown;
740	}
741
742	bcm_clk->hw.init = init_data;
743	clk = clk_register(NULL, &bcm_clk->hw);
744	if (IS_ERR(clk)) {
745		pr_err("%s: error registering clock %s (%ld)\n", __func__,
746			init_data->name, PTR_ERR(clk));
747		goto out_teardown;
748	}
749	BUG_ON(!clk);
750
751	return clk;
752out_teardown:
753	bcm_clk_teardown(bcm_clk);
754
755	return NULL;
756}
757
758static void ccu_clks_teardown(struct ccu_data *ccu)
759{
760	u32 i;
761
762	for (i = 0; i < ccu->clk_data.clk_num; i++)
763		kona_clk_teardown(ccu->clk_data.clks[i]);
764	kfree(ccu->clk_data.clks);
765}
766
767static void kona_ccu_teardown(struct ccu_data *ccu)
768{
769	kfree(ccu->clk_data.clks);
770	ccu->clk_data.clks = NULL;
771	if (!ccu->base)
772		return;
773
774	of_clk_del_provider(ccu->node);	/* safe if never added */
775	ccu_clks_teardown(ccu);
776	list_del(&ccu->links);
777	of_node_put(ccu->node);
778	ccu->node = NULL;
779	iounmap(ccu->base);
780	ccu->base = NULL;
781}
782
783static bool ccu_data_valid(struct ccu_data *ccu)
784{
785	struct ccu_policy *ccu_policy;
786
787	if (!ccu_data_offsets_valid(ccu))
788		return false;
789
790	ccu_policy = &ccu->policy;
791	if (ccu_policy_exists(ccu_policy))
792		if (!ccu_policy_valid(ccu_policy, ccu->name))
793			return false;
794
795	return true;
796}
797
798/*
799 * Set up a CCU.  Call the provided ccu_clks_setup callback to
800 * initialize the array of clocks provided by the CCU.
801 */
802void __init kona_dt_ccu_setup(struct ccu_data *ccu,
803			struct device_node *node)
804{
805	struct resource res = { 0 };
806	resource_size_t range;
807	unsigned int i;
808	int ret;
809
810	if (ccu->clk_data.clk_num) {
811		size_t size;
812
813		size = ccu->clk_data.clk_num * sizeof(*ccu->clk_data.clks);
814		ccu->clk_data.clks = kzalloc(size, GFP_KERNEL);
815		if (!ccu->clk_data.clks) {
816			pr_err("%s: unable to allocate %u clocks for %s\n",
817				__func__, ccu->clk_data.clk_num, node->name);
818			return;
819		}
820	}
821
822	ret = of_address_to_resource(node, 0, &res);
823	if (ret) {
824		pr_err("%s: no valid CCU registers found for %s\n", __func__,
825			node->name);
826		goto out_err;
827	}
828
829	range = resource_size(&res);
830	if (range > (resource_size_t)U32_MAX) {
831		pr_err("%s: address range too large for %s\n", __func__,
832			node->name);
833		goto out_err;
834	}
835
836	ccu->range = (u32)range;
837
838	if (!ccu_data_valid(ccu)) {
839		pr_err("%s: ccu data not valid for %s\n", __func__, node->name);
840		goto out_err;
841	}
842
843	ccu->base = ioremap(res.start, ccu->range);
844	if (!ccu->base) {
845		pr_err("%s: unable to map CCU registers for %s\n", __func__,
846			node->name);
847		goto out_err;
848	}
849	ccu->node = of_node_get(node);
850	list_add_tail(&ccu->links, &ccu_list);
851
852	/*
853	 * Set up each defined kona clock and save the result in
854	 * the clock framework clock array (in ccu->data).  Then
855	 * register as a provider for these clocks.
856	 */
857	for (i = 0; i < ccu->clk_data.clk_num; i++) {
858		if (!ccu->kona_clks[i].ccu)
859			continue;
860		ccu->clk_data.clks[i] = kona_clk_setup(&ccu->kona_clks[i]);
861	}
862
863	ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->clk_data);
864	if (ret) {
865		pr_err("%s: error adding ccu %s as provider (%d)\n", __func__,
866				node->name, ret);
867		goto out_err;
868	}
869
870	if (!kona_ccu_init(ccu))
871		pr_err("Broadcom %s initialization had errors\n", node->name);
872
873	return;
874out_err:
875	kona_ccu_teardown(ccu);
876	pr_err("Broadcom %s setup aborted\n", node->name);
877}
878