1/* 2 * Copyright (C) 2013 Broadcom Corporation 3 * Copyright 2013 Linaro Limited 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation version 2. 8 * 9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 10 * kind, whether express or implied; without even the implied warranty 11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15#include <linux/io.h> 16#include <linux/of_address.h> 17 18#include "clk-kona.h" 19 20/* These are used when a selector or trigger is found to be unneeded */ 21#define selector_clear_exists(sel) ((sel)->width = 0) 22#define trigger_clear_exists(trig) FLAG_CLEAR(trig, TRIG, EXISTS) 23 24LIST_HEAD(ccu_list); /* The list of set up CCUs */ 25 26/* Validity checking */ 27 28static bool ccu_data_offsets_valid(struct ccu_data *ccu) 29{ 30 struct ccu_policy *ccu_policy = &ccu->policy; 31 u32 limit; 32 33 limit = ccu->range - sizeof(u32); 34 limit = round_down(limit, sizeof(u32)); 35 if (ccu_policy_exists(ccu_policy)) { 36 if (ccu_policy->enable.offset > limit) { 37 pr_err("%s: bad policy enable offset for %s " 38 "(%u > %u)\n", __func__, 39 ccu->name, ccu_policy->enable.offset, limit); 40 return false; 41 } 42 if (ccu_policy->control.offset > limit) { 43 pr_err("%s: bad policy control offset for %s " 44 "(%u > %u)\n", __func__, 45 ccu->name, ccu_policy->control.offset, limit); 46 return false; 47 } 48 } 49 50 return true; 51} 52 53static bool clk_requires_trigger(struct kona_clk *bcm_clk) 54{ 55 struct peri_clk_data *peri = bcm_clk->u.peri; 56 struct bcm_clk_sel *sel; 57 struct bcm_clk_div *div; 58 59 if (bcm_clk->type != bcm_clk_peri) 60 return false; 61 62 sel = &peri->sel; 63 if (sel->parent_count && selector_exists(sel)) 64 return true; 65 66 div = &peri->div; 67 if (!divider_exists(div)) 68 return false; 69 70 /* Fixed dividers don't need triggers */ 71 if (!divider_is_fixed(div)) 72 return true; 73 74 div = &peri->pre_div; 75 76 return divider_exists(div) && !divider_is_fixed(div); 77} 78 79static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk) 80{ 81 struct peri_clk_data *peri; 82 struct bcm_clk_policy *policy; 83 struct bcm_clk_gate *gate; 84 struct bcm_clk_hyst *hyst; 85 struct bcm_clk_div *div; 86 struct bcm_clk_sel *sel; 87 struct bcm_clk_trig *trig; 88 const char *name; 89 u32 range; 90 u32 limit; 91 92 BUG_ON(bcm_clk->type != bcm_clk_peri); 93 peri = bcm_clk->u.peri; 94 name = bcm_clk->init_data.name; 95 range = bcm_clk->ccu->range; 96 97 limit = range - sizeof(u32); 98 limit = round_down(limit, sizeof(u32)); 99 100 policy = &peri->policy; 101 if (policy_exists(policy)) { 102 if (policy->offset > limit) { 103 pr_err("%s: bad policy offset for %s (%u > %u)\n", 104 __func__, name, policy->offset, limit); 105 return false; 106 } 107 } 108 109 gate = &peri->gate; 110 hyst = &peri->hyst; 111 if (gate_exists(gate)) { 112 if (gate->offset > limit) { 113 pr_err("%s: bad gate offset for %s (%u > %u)\n", 114 __func__, name, gate->offset, limit); 115 return false; 116 } 117 118 if (hyst_exists(hyst)) { 119 if (hyst->offset > limit) { 120 pr_err("%s: bad hysteresis offset for %s " 121 "(%u > %u)\n", __func__, 122 name, hyst->offset, limit); 123 return false; 124 } 125 } 126 } else if (hyst_exists(hyst)) { 127 pr_err("%s: hysteresis but no gate for %s\n", __func__, name); 128 return false; 129 } 130 131 div = &peri->div; 132 if (divider_exists(div)) { 133 if (div->u.s.offset > limit) { 134 pr_err("%s: bad divider offset for %s (%u > %u)\n", 135 __func__, name, div->u.s.offset, limit); 136 return false; 137 } 138 } 139 140 div = &peri->pre_div; 141 if (divider_exists(div)) { 142 if (div->u.s.offset > limit) { 143 pr_err("%s: bad pre-divider offset for %s " 144 "(%u > %u)\n", 145 __func__, name, div->u.s.offset, limit); 146 return false; 147 } 148 } 149 150 sel = &peri->sel; 151 if (selector_exists(sel)) { 152 if (sel->offset > limit) { 153 pr_err("%s: bad selector offset for %s (%u > %u)\n", 154 __func__, name, sel->offset, limit); 155 return false; 156 } 157 } 158 159 trig = &peri->trig; 160 if (trigger_exists(trig)) { 161 if (trig->offset > limit) { 162 pr_err("%s: bad trigger offset for %s (%u > %u)\n", 163 __func__, name, trig->offset, limit); 164 return false; 165 } 166 } 167 168 trig = &peri->pre_trig; 169 if (trigger_exists(trig)) { 170 if (trig->offset > limit) { 171 pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n", 172 __func__, name, trig->offset, limit); 173 return false; 174 } 175 } 176 177 return true; 178} 179 180/* A bit position must be less than the number of bits in a 32-bit register. */ 181static bool bit_posn_valid(u32 bit_posn, const char *field_name, 182 const char *clock_name) 183{ 184 u32 limit = BITS_PER_BYTE * sizeof(u32) - 1; 185 186 if (bit_posn > limit) { 187 pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__, 188 field_name, clock_name, bit_posn, limit); 189 return false; 190 } 191 return true; 192} 193 194/* 195 * A bitfield must be at least 1 bit wide. Both the low-order and 196 * high-order bits must lie within a 32-bit register. We require 197 * fields to be less than 32 bits wide, mainly because we use 198 * shifting to produce field masks, and shifting a full word width 199 * is not well-defined by the C standard. 200 */ 201static bool bitfield_valid(u32 shift, u32 width, const char *field_name, 202 const char *clock_name) 203{ 204 u32 limit = BITS_PER_BYTE * sizeof(u32); 205 206 if (!width) { 207 pr_err("%s: bad %s field width 0 for %s\n", __func__, 208 field_name, clock_name); 209 return false; 210 } 211 if (shift + width > limit) { 212 pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__, 213 field_name, clock_name, shift, width, limit); 214 return false; 215 } 216 return true; 217} 218 219static bool 220ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name) 221{ 222 struct bcm_lvm_en *enable = &ccu_policy->enable; 223 struct bcm_policy_ctl *control; 224 225 if (!bit_posn_valid(enable->bit, "policy enable", ccu_name)) 226 return false; 227 228 control = &ccu_policy->control; 229 if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name)) 230 return false; 231 232 if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name)) 233 return false; 234 235 if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name)) 236 return false; 237 238 return true; 239} 240 241static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name) 242{ 243 if (!bit_posn_valid(policy->bit, "policy", clock_name)) 244 return false; 245 246 return true; 247} 248 249/* 250 * All gates, if defined, have a status bit, and for hardware-only 251 * gates, that's it. Gates that can be software controlled also 252 * have an enable bit. And a gate that can be hardware or software 253 * controlled will have a hardware/software select bit. 254 */ 255static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name, 256 const char *clock_name) 257{ 258 if (!bit_posn_valid(gate->status_bit, "gate status", clock_name)) 259 return false; 260 261 if (gate_is_sw_controllable(gate)) { 262 if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name)) 263 return false; 264 265 if (gate_is_hw_controllable(gate)) { 266 if (!bit_posn_valid(gate->hw_sw_sel_bit, 267 "gate hw/sw select", 268 clock_name)) 269 return false; 270 } 271 } else { 272 BUG_ON(!gate_is_hw_controllable(gate)); 273 } 274 275 return true; 276} 277 278static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name) 279{ 280 if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name)) 281 return false; 282 283 if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name)) 284 return false; 285 286 return true; 287} 288 289/* 290 * A selector bitfield must be valid. Its parent_sel array must 291 * also be reasonable for the field. 292 */ 293static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name, 294 const char *clock_name) 295{ 296 if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name)) 297 return false; 298 299 if (sel->parent_count) { 300 u32 max_sel; 301 u32 limit; 302 303 /* 304 * Make sure the selector field can hold all the 305 * selector values we expect to be able to use. A 306 * clock only needs to have a selector defined if it 307 * has more than one parent. And in that case the 308 * highest selector value will be in the last entry 309 * in the array. 310 */ 311 max_sel = sel->parent_sel[sel->parent_count - 1]; 312 limit = (1 << sel->width) - 1; 313 if (max_sel > limit) { 314 pr_err("%s: bad selector for %s " 315 "(%u needs > %u bits)\n", 316 __func__, clock_name, max_sel, 317 sel->width); 318 return false; 319 } 320 } else { 321 pr_warn("%s: ignoring selector for %s (no parents)\n", 322 __func__, clock_name); 323 selector_clear_exists(sel); 324 kfree(sel->parent_sel); 325 sel->parent_sel = NULL; 326 } 327 328 return true; 329} 330 331/* 332 * A fixed divider just needs to be non-zero. A variable divider 333 * has to have a valid divider bitfield, and if it has a fraction, 334 * the width of the fraction must not be no more than the width of 335 * the divider as a whole. 336 */ 337static bool div_valid(struct bcm_clk_div *div, const char *field_name, 338 const char *clock_name) 339{ 340 if (divider_is_fixed(div)) { 341 /* Any fixed divider value but 0 is OK */ 342 if (div->u.fixed == 0) { 343 pr_err("%s: bad %s fixed value 0 for %s\n", __func__, 344 field_name, clock_name); 345 return false; 346 } 347 return true; 348 } 349 if (!bitfield_valid(div->u.s.shift, div->u.s.width, 350 field_name, clock_name)) 351 return false; 352 353 if (divider_has_fraction(div)) 354 if (div->u.s.frac_width > div->u.s.width) { 355 pr_warn("%s: bad %s fraction width for %s (%u > %u)\n", 356 __func__, field_name, clock_name, 357 div->u.s.frac_width, div->u.s.width); 358 return false; 359 } 360 361 return true; 362} 363 364/* 365 * If a clock has two dividers, the combined number of fractional 366 * bits must be representable in a 32-bit unsigned value. This 367 * is because we scale up a dividend using both dividers before 368 * dividing to improve accuracy, and we need to avoid overflow. 369 */ 370static bool kona_dividers_valid(struct kona_clk *bcm_clk) 371{ 372 struct peri_clk_data *peri = bcm_clk->u.peri; 373 struct bcm_clk_div *div; 374 struct bcm_clk_div *pre_div; 375 u32 limit; 376 377 BUG_ON(bcm_clk->type != bcm_clk_peri); 378 379 if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div)) 380 return true; 381 382 div = &peri->div; 383 pre_div = &peri->pre_div; 384 if (divider_is_fixed(div) || divider_is_fixed(pre_div)) 385 return true; 386 387 limit = BITS_PER_BYTE * sizeof(u32); 388 389 return div->u.s.frac_width + pre_div->u.s.frac_width <= limit; 390} 391 392 393/* A trigger just needs to represent a valid bit position */ 394static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name, 395 const char *clock_name) 396{ 397 return bit_posn_valid(trig->bit, field_name, clock_name); 398} 399 400/* Determine whether the set of peripheral clock registers are valid. */ 401static bool 402peri_clk_data_valid(struct kona_clk *bcm_clk) 403{ 404 struct peri_clk_data *peri; 405 struct bcm_clk_policy *policy; 406 struct bcm_clk_gate *gate; 407 struct bcm_clk_hyst *hyst; 408 struct bcm_clk_sel *sel; 409 struct bcm_clk_div *div; 410 struct bcm_clk_div *pre_div; 411 struct bcm_clk_trig *trig; 412 const char *name; 413 414 BUG_ON(bcm_clk->type != bcm_clk_peri); 415 416 /* 417 * First validate register offsets. This is the only place 418 * where we need something from the ccu, so we do these 419 * together. 420 */ 421 if (!peri_clk_data_offsets_valid(bcm_clk)) 422 return false; 423 424 peri = bcm_clk->u.peri; 425 name = bcm_clk->init_data.name; 426 427 policy = &peri->policy; 428 if (policy_exists(policy) && !policy_valid(policy, name)) 429 return false; 430 431 gate = &peri->gate; 432 if (gate_exists(gate) && !gate_valid(gate, "gate", name)) 433 return false; 434 435 hyst = &peri->hyst; 436 if (hyst_exists(hyst) && !hyst_valid(hyst, name)) 437 return false; 438 439 sel = &peri->sel; 440 if (selector_exists(sel)) { 441 if (!sel_valid(sel, "selector", name)) 442 return false; 443 444 } else if (sel->parent_count > 1) { 445 pr_err("%s: multiple parents but no selector for %s\n", 446 __func__, name); 447 448 return false; 449 } 450 451 div = &peri->div; 452 pre_div = &peri->pre_div; 453 if (divider_exists(div)) { 454 if (!div_valid(div, "divider", name)) 455 return false; 456 457 if (divider_exists(pre_div)) 458 if (!div_valid(pre_div, "pre-divider", name)) 459 return false; 460 } else if (divider_exists(pre_div)) { 461 pr_err("%s: pre-divider but no divider for %s\n", __func__, 462 name); 463 return false; 464 } 465 466 trig = &peri->trig; 467 if (trigger_exists(trig)) { 468 if (!trig_valid(trig, "trigger", name)) 469 return false; 470 471 if (trigger_exists(&peri->pre_trig)) { 472 if (!trig_valid(trig, "pre-trigger", name)) { 473 return false; 474 } 475 } 476 if (!clk_requires_trigger(bcm_clk)) { 477 pr_warn("%s: ignoring trigger for %s (not needed)\n", 478 __func__, name); 479 trigger_clear_exists(trig); 480 } 481 } else if (trigger_exists(&peri->pre_trig)) { 482 pr_err("%s: pre-trigger but no trigger for %s\n", __func__, 483 name); 484 return false; 485 } else if (clk_requires_trigger(bcm_clk)) { 486 pr_err("%s: required trigger missing for %s\n", __func__, 487 name); 488 return false; 489 } 490 491 return kona_dividers_valid(bcm_clk); 492} 493 494static bool kona_clk_valid(struct kona_clk *bcm_clk) 495{ 496 switch (bcm_clk->type) { 497 case bcm_clk_peri: 498 if (!peri_clk_data_valid(bcm_clk)) 499 return false; 500 break; 501 default: 502 pr_err("%s: unrecognized clock type (%d)\n", __func__, 503 (int)bcm_clk->type); 504 return false; 505 } 506 return true; 507} 508 509/* 510 * Scan an array of parent clock names to determine whether there 511 * are any entries containing BAD_CLK_NAME. Such entries are 512 * placeholders for non-supported clocks. Keep track of the 513 * position of each clock name in the original array. 514 * 515 * Allocates an array of pointers to to hold the names of all 516 * non-null entries in the original array, and returns a pointer to 517 * that array in *names. This will be used for registering the 518 * clock with the common clock code. On successful return, 519 * *count indicates how many entries are in that names array. 520 * 521 * If there is more than one entry in the resulting names array, 522 * another array is allocated to record the parent selector value 523 * for each (defined) parent clock. This is the value that 524 * represents this parent clock in the clock's source selector 525 * register. The position of the clock in the original parent array 526 * defines that selector value. The number of entries in this array 527 * is the same as the number of entries in the parent names array. 528 * 529 * The array of selector values is returned. If the clock has no 530 * parents, no selector is required and a null pointer is returned. 531 * 532 * Returns a null pointer if the clock names array supplied was 533 * null. (This is not an error.) 534 * 535 * Returns a pointer-coded error if an error occurs. 536 */ 537static u32 *parent_process(const char *clocks[], 538 u32 *count, const char ***names) 539{ 540 static const char **parent_names; 541 static u32 *parent_sel; 542 const char **clock; 543 u32 parent_count; 544 u32 bad_count = 0; 545 u32 orig_count; 546 u32 i; 547 u32 j; 548 549 *count = 0; /* In case of early return */ 550 *names = NULL; 551 if (!clocks) 552 return NULL; 553 554 /* 555 * Count the number of names in the null-terminated array, 556 * and find out how many of those are actually clock names. 557 */ 558 for (clock = clocks; *clock; clock++) 559 if (*clock == BAD_CLK_NAME) 560 bad_count++; 561 orig_count = (u32)(clock - clocks); 562 parent_count = orig_count - bad_count; 563 564 /* If all clocks are unsupported, we treat it as no clock */ 565 if (!parent_count) 566 return NULL; 567 568 /* Avoid exceeding our parent clock limit */ 569 if (parent_count > PARENT_COUNT_MAX) { 570 pr_err("%s: too many parents (%u > %u)\n", __func__, 571 parent_count, PARENT_COUNT_MAX); 572 return ERR_PTR(-EINVAL); 573 } 574 575 /* 576 * There is one parent name for each defined parent clock. 577 * We also maintain an array containing the selector value 578 * for each defined clock. If there's only one clock, the 579 * selector is not required, but we allocate space for the 580 * array anyway to keep things simple. 581 */ 582 parent_names = kmalloc(parent_count * sizeof(parent_names), GFP_KERNEL); 583 if (!parent_names) { 584 pr_err("%s: error allocating %u parent names\n", __func__, 585 parent_count); 586 return ERR_PTR(-ENOMEM); 587 } 588 589 /* There is at least one parent, so allocate a selector array */ 590 591 parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL); 592 if (!parent_sel) { 593 pr_err("%s: error allocating %u parent selectors\n", __func__, 594 parent_count); 595 kfree(parent_names); 596 597 return ERR_PTR(-ENOMEM); 598 } 599 600 /* Now fill in the parent names and selector arrays */ 601 for (i = 0, j = 0; i < orig_count; i++) { 602 if (clocks[i] != BAD_CLK_NAME) { 603 parent_names[j] = clocks[i]; 604 parent_sel[j] = i; 605 j++; 606 } 607 } 608 *names = parent_names; 609 *count = parent_count; 610 611 return parent_sel; 612} 613 614static int 615clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel, 616 struct clk_init_data *init_data) 617{ 618 const char **parent_names = NULL; 619 u32 parent_count = 0; 620 u32 *parent_sel; 621 622 /* 623 * If a peripheral clock has multiple parents, the value 624 * used by the hardware to select that parent is represented 625 * by the parent clock's position in the "clocks" list. Some 626 * values don't have defined or supported clocks; these will 627 * have BAD_CLK_NAME entries in the parents[] array. The 628 * list is terminated by a NULL entry. 629 * 630 * We need to supply (only) the names of defined parent 631 * clocks when registering a clock though, so we use an 632 * array of parent selector values to map between the 633 * indexes the common clock code uses and the selector 634 * values we need. 635 */ 636 parent_sel = parent_process(clocks, &parent_count, &parent_names); 637 if (IS_ERR(parent_sel)) { 638 int ret = PTR_ERR(parent_sel); 639 640 pr_err("%s: error processing parent clocks for %s (%d)\n", 641 __func__, init_data->name, ret); 642 643 return ret; 644 } 645 646 init_data->parent_names = parent_names; 647 init_data->num_parents = parent_count; 648 649 sel->parent_count = parent_count; 650 sel->parent_sel = parent_sel; 651 652 return 0; 653} 654 655static void clk_sel_teardown(struct bcm_clk_sel *sel, 656 struct clk_init_data *init_data) 657{ 658 kfree(sel->parent_sel); 659 sel->parent_sel = NULL; 660 sel->parent_count = 0; 661 662 init_data->num_parents = 0; 663 kfree(init_data->parent_names); 664 init_data->parent_names = NULL; 665} 666 667static void peri_clk_teardown(struct peri_clk_data *data, 668 struct clk_init_data *init_data) 669{ 670 clk_sel_teardown(&data->sel, init_data); 671} 672 673/* 674 * Caller is responsible for freeing the parent_names[] and 675 * parent_sel[] arrays in the peripheral clock's "data" structure 676 * that can be assigned if the clock has one or more parent clocks 677 * associated with it. 678 */ 679static int 680peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data) 681{ 682 init_data->flags = CLK_IGNORE_UNUSED; 683 684 return clk_sel_setup(data->clocks, &data->sel, init_data); 685} 686 687static void bcm_clk_teardown(struct kona_clk *bcm_clk) 688{ 689 switch (bcm_clk->type) { 690 case bcm_clk_peri: 691 peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data); 692 break; 693 default: 694 break; 695 } 696 bcm_clk->u.data = NULL; 697 bcm_clk->type = bcm_clk_none; 698} 699 700static void kona_clk_teardown(struct clk *clk) 701{ 702 struct clk_hw *hw; 703 struct kona_clk *bcm_clk; 704 705 if (!clk) 706 return; 707 708 hw = __clk_get_hw(clk); 709 if (!hw) { 710 pr_err("%s: clk %p has null hw pointer\n", __func__, clk); 711 return; 712 } 713 clk_unregister(clk); 714 715 bcm_clk = to_kona_clk(hw); 716 bcm_clk_teardown(bcm_clk); 717} 718 719struct clk *kona_clk_setup(struct kona_clk *bcm_clk) 720{ 721 struct clk_init_data *init_data = &bcm_clk->init_data; 722 struct clk *clk = NULL; 723 724 switch (bcm_clk->type) { 725 case bcm_clk_peri: 726 if (peri_clk_setup(bcm_clk->u.data, init_data)) 727 return NULL; 728 break; 729 default: 730 pr_err("%s: clock type %d invalid for %s\n", __func__, 731 (int)bcm_clk->type, init_data->name); 732 return NULL; 733 } 734 735 /* Make sure everything makes sense before we set it up */ 736 if (!kona_clk_valid(bcm_clk)) { 737 pr_err("%s: clock data invalid for %s\n", __func__, 738 init_data->name); 739 goto out_teardown; 740 } 741 742 bcm_clk->hw.init = init_data; 743 clk = clk_register(NULL, &bcm_clk->hw); 744 if (IS_ERR(clk)) { 745 pr_err("%s: error registering clock %s (%ld)\n", __func__, 746 init_data->name, PTR_ERR(clk)); 747 goto out_teardown; 748 } 749 BUG_ON(!clk); 750 751 return clk; 752out_teardown: 753 bcm_clk_teardown(bcm_clk); 754 755 return NULL; 756} 757 758static void ccu_clks_teardown(struct ccu_data *ccu) 759{ 760 u32 i; 761 762 for (i = 0; i < ccu->clk_data.clk_num; i++) 763 kona_clk_teardown(ccu->clk_data.clks[i]); 764 kfree(ccu->clk_data.clks); 765} 766 767static void kona_ccu_teardown(struct ccu_data *ccu) 768{ 769 kfree(ccu->clk_data.clks); 770 ccu->clk_data.clks = NULL; 771 if (!ccu->base) 772 return; 773 774 of_clk_del_provider(ccu->node); /* safe if never added */ 775 ccu_clks_teardown(ccu); 776 list_del(&ccu->links); 777 of_node_put(ccu->node); 778 ccu->node = NULL; 779 iounmap(ccu->base); 780 ccu->base = NULL; 781} 782 783static bool ccu_data_valid(struct ccu_data *ccu) 784{ 785 struct ccu_policy *ccu_policy; 786 787 if (!ccu_data_offsets_valid(ccu)) 788 return false; 789 790 ccu_policy = &ccu->policy; 791 if (ccu_policy_exists(ccu_policy)) 792 if (!ccu_policy_valid(ccu_policy, ccu->name)) 793 return false; 794 795 return true; 796} 797 798/* 799 * Set up a CCU. Call the provided ccu_clks_setup callback to 800 * initialize the array of clocks provided by the CCU. 801 */ 802void __init kona_dt_ccu_setup(struct ccu_data *ccu, 803 struct device_node *node) 804{ 805 struct resource res = { 0 }; 806 resource_size_t range; 807 unsigned int i; 808 int ret; 809 810 if (ccu->clk_data.clk_num) { 811 size_t size; 812 813 size = ccu->clk_data.clk_num * sizeof(*ccu->clk_data.clks); 814 ccu->clk_data.clks = kzalloc(size, GFP_KERNEL); 815 if (!ccu->clk_data.clks) { 816 pr_err("%s: unable to allocate %u clocks for %s\n", 817 __func__, ccu->clk_data.clk_num, node->name); 818 return; 819 } 820 } 821 822 ret = of_address_to_resource(node, 0, &res); 823 if (ret) { 824 pr_err("%s: no valid CCU registers found for %s\n", __func__, 825 node->name); 826 goto out_err; 827 } 828 829 range = resource_size(&res); 830 if (range > (resource_size_t)U32_MAX) { 831 pr_err("%s: address range too large for %s\n", __func__, 832 node->name); 833 goto out_err; 834 } 835 836 ccu->range = (u32)range; 837 838 if (!ccu_data_valid(ccu)) { 839 pr_err("%s: ccu data not valid for %s\n", __func__, node->name); 840 goto out_err; 841 } 842 843 ccu->base = ioremap(res.start, ccu->range); 844 if (!ccu->base) { 845 pr_err("%s: unable to map CCU registers for %s\n", __func__, 846 node->name); 847 goto out_err; 848 } 849 ccu->node = of_node_get(node); 850 list_add_tail(&ccu->links, &ccu_list); 851 852 /* 853 * Set up each defined kona clock and save the result in 854 * the clock framework clock array (in ccu->data). Then 855 * register as a provider for these clocks. 856 */ 857 for (i = 0; i < ccu->clk_data.clk_num; i++) { 858 if (!ccu->kona_clks[i].ccu) 859 continue; 860 ccu->clk_data.clks[i] = kona_clk_setup(&ccu->kona_clks[i]); 861 } 862 863 ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->clk_data); 864 if (ret) { 865 pr_err("%s: error adding ccu %s as provider (%d)\n", __func__, 866 node->name, ret); 867 goto out_err; 868 } 869 870 if (!kona_ccu_init(ccu)) 871 pr_err("Broadcom %s initialization had errors\n", node->name); 872 873 return; 874out_err: 875 kona_ccu_teardown(ccu); 876 pr_err("Broadcom %s setup aborted\n", node->name); 877} 878