1/*
2 * Copyright (C) 2006-2009 DENX Software Engineering.
3 *
4 * Author: Yuri Tikhonov <yur@emcraft.com>
5 *
6 * Further porting to arch/powerpc by
7 * 	Anatolij Gustschin <agust@denx.de>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 */
26
27/*
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
32 */
33
34#include <linux/init.h>
35#include <linux/module.h>
36#include <linux/async_tx.h>
37#include <linux/delay.h>
38#include <linux/dma-mapping.h>
39#include <linux/spinlock.h>
40#include <linux/interrupt.h>
41#include <linux/slab.h>
42#include <linux/uaccess.h>
43#include <linux/proc_fs.h>
44#include <linux/of.h>
45#include <linux/of_address.h>
46#include <linux/of_irq.h>
47#include <linux/of_platform.h>
48#include <asm/dcr.h>
49#include <asm/dcr-regs.h>
50#include "adma.h"
51#include "../dmaengine.h"
52
53enum ppc_adma_init_code {
54	PPC_ADMA_INIT_OK = 0,
55	PPC_ADMA_INIT_MEMRES,
56	PPC_ADMA_INIT_MEMREG,
57	PPC_ADMA_INIT_ALLOC,
58	PPC_ADMA_INIT_COHERENT,
59	PPC_ADMA_INIT_CHANNEL,
60	PPC_ADMA_INIT_IRQ1,
61	PPC_ADMA_INIT_IRQ2,
62	PPC_ADMA_INIT_REGISTER
63};
64
65static char *ppc_adma_errors[] = {
66	[PPC_ADMA_INIT_OK] = "ok",
67	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
68	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
69	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
70				"structure",
71	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
72				   "hardware descriptors",
73	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
74	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
75	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
76	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
77};
78
79static enum ppc_adma_init_code
80ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
81
82struct ppc_dma_chan_ref {
83	struct dma_chan *chan;
84	struct list_head node;
85};
86
87/* The list of channels exported by ppc440spe ADMA */
88struct list_head
89ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
90
91/* This flag is set when want to refetch the xor chain in the interrupt
92 * handler
93 */
94static u32 do_xor_refetch;
95
96/* Pointer to DMA0, DMA1 CP/CS FIFO */
97static void *ppc440spe_dma_fifo_buf;
98
99/* Pointers to last submitted to DMA0, DMA1 CDBs */
100static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
101static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
102
103/* Pointer to last linked and submitted xor CB */
104static struct ppc440spe_adma_desc_slot *xor_last_linked;
105static struct ppc440spe_adma_desc_slot *xor_last_submit;
106
107/* This array is used in data-check operations for storing a pattern */
108static char ppc440spe_qword[16];
109
110static atomic_t ppc440spe_adma_err_irq_ref;
111static dcr_host_t ppc440spe_mq_dcr_host;
112static unsigned int ppc440spe_mq_dcr_len;
113
114/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
115 * the block size in transactions, then we do not allow to activate more than
116 * only one RXOR transactions simultaneously. So use this var to store
117 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
118 * set) or not (PPC440SPE_RXOR_RUN is clear).
119 */
120static unsigned long ppc440spe_rxor_state;
121
122/* These are used in enable & check routines
123 */
124static u32 ppc440spe_r6_enabled;
125static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
126static struct completion ppc440spe_r6_test_comp;
127
128static int ppc440spe_adma_dma2rxor_prep_src(
129		struct ppc440spe_adma_desc_slot *desc,
130		struct ppc440spe_rxor *cursor, int index,
131		int src_cnt, u32 addr);
132static void ppc440spe_adma_dma2rxor_set_src(
133		struct ppc440spe_adma_desc_slot *desc,
134		int index, dma_addr_t addr);
135static void ppc440spe_adma_dma2rxor_set_mult(
136		struct ppc440spe_adma_desc_slot *desc,
137		int index, u8 mult);
138
139#ifdef ADMA_LL_DEBUG
140#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
141#else
142#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
143#endif
144
145static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
146{
147	struct dma_cdb *cdb;
148	struct xor_cb *cb;
149	int i;
150
151	switch (chan->device->id) {
152	case 0:
153	case 1:
154		cdb = block;
155
156		pr_debug("CDB at %p [%d]:\n"
157			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
158			"\t sg1u 0x%08x sg1l 0x%08x\n"
159			"\t sg2u 0x%08x sg2l 0x%08x\n"
160			"\t sg3u 0x%08x sg3l 0x%08x\n",
161			cdb, chan->device->id,
162			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
163			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
164			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
165			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
166		);
167		break;
168	case 2:
169		cb = block;
170
171		pr_debug("CB at %p [%d]:\n"
172			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
173			"\t cbtah 0x%08x cbtal 0x%08x\n"
174			"\t cblah 0x%08x cblal 0x%08x\n",
175			cb, chan->device->id,
176			cb->cbc, cb->cbbc, cb->cbs,
177			cb->cbtah, cb->cbtal,
178			cb->cblah, cb->cblal);
179		for (i = 0; i < 16; i++) {
180			if (i && !cb->ops[i].h && !cb->ops[i].l)
181				continue;
182			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
183				i, cb->ops[i].h, cb->ops[i].l);
184		}
185		break;
186	}
187}
188
189static void print_cb_list(struct ppc440spe_adma_chan *chan,
190			  struct ppc440spe_adma_desc_slot *iter)
191{
192	for (; iter; iter = iter->hw_next)
193		print_cb(chan, iter->hw_desc);
194}
195
196static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
197			     unsigned int src_cnt)
198{
199	int i;
200
201	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
202	for (i = 0; i < src_cnt; i++)
203		pr_debug("\t0x%016llx ", src[i]);
204	pr_debug("dst:\n\t0x%016llx\n", dst);
205}
206
207static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
208			    unsigned int src_cnt)
209{
210	int i;
211
212	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
213	for (i = 0; i < src_cnt; i++)
214		pr_debug("\t0x%016llx ", src[i]);
215	pr_debug("dst: ");
216	for (i = 0; i < 2; i++)
217		pr_debug("\t0x%016llx ", dst[i]);
218}
219
220static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
221				    unsigned int src_cnt,
222				    const unsigned char *scf)
223{
224	int i;
225
226	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
227	if (scf) {
228		for (i = 0; i < src_cnt; i++)
229			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
230	} else {
231		for (i = 0; i < src_cnt; i++)
232			pr_debug("\t0x%016llx(no) ", src[i]);
233	}
234
235	pr_debug("dst: ");
236	for (i = 0; i < 2; i++)
237		pr_debug("\t0x%016llx ", src[src_cnt + i]);
238}
239
240/******************************************************************************
241 * Command (Descriptor) Blocks low-level routines
242 ******************************************************************************/
243/**
244 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
245 * pseudo operation
246 */
247static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
248					  struct ppc440spe_adma_chan *chan)
249{
250	struct xor_cb *p;
251
252	switch (chan->device->id) {
253	case PPC440SPE_XOR_ID:
254		p = desc->hw_desc;
255		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
256		/* NOP with Command Block Complete Enable */
257		p->cbc = XOR_CBCR_CBCE_BIT;
258		break;
259	case PPC440SPE_DMA0_ID:
260	case PPC440SPE_DMA1_ID:
261		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
262		/* NOP with interrupt */
263		set_bit(PPC440SPE_DESC_INT, &desc->flags);
264		break;
265	default:
266		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
267				__func__);
268		break;
269	}
270}
271
272/**
273 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
274 * pseudo operation
275 */
276static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
277{
278	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
279	desc->hw_next = NULL;
280	desc->src_cnt = 0;
281	desc->dst_cnt = 1;
282}
283
284/**
285 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
286 */
287static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
288					 int src_cnt, unsigned long flags)
289{
290	struct xor_cb *hw_desc = desc->hw_desc;
291
292	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
293	desc->hw_next = NULL;
294	desc->src_cnt = src_cnt;
295	desc->dst_cnt = 1;
296
297	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
298	if (flags & DMA_PREP_INTERRUPT)
299		/* Enable interrupt on completion */
300		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
301}
302
303/**
304 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
305 * operation in DMA2 controller
306 */
307static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
308		int dst_cnt, int src_cnt, unsigned long flags)
309{
310	struct xor_cb *hw_desc = desc->hw_desc;
311
312	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
313	desc->hw_next = NULL;
314	desc->src_cnt = src_cnt;
315	desc->dst_cnt = dst_cnt;
316	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
317	desc->descs_per_op = 0;
318
319	hw_desc->cbc = XOR_CBCR_TGT_BIT;
320	if (flags & DMA_PREP_INTERRUPT)
321		/* Enable interrupt on completion */
322		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
323}
324
325#define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
326#define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
327#define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
328
329/**
330 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
331 * with DMA0/1
332 */
333static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
334				int dst_cnt, int src_cnt, unsigned long flags,
335				unsigned long op)
336{
337	struct dma_cdb *hw_desc;
338	struct ppc440spe_adma_desc_slot *iter;
339	u8 dopc;
340
341	/* Common initialization of a PQ descriptors chain */
342	set_bits(op, &desc->flags);
343	desc->src_cnt = src_cnt;
344	desc->dst_cnt = dst_cnt;
345
346	/* WXOR MULTICAST if both P and Q are being computed
347	 * MV_SG1_SG2 if Q only
348	 */
349	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
350		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
351
352	list_for_each_entry(iter, &desc->group_list, chain_node) {
353		hw_desc = iter->hw_desc;
354		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
355
356		if (likely(!list_is_last(&iter->chain_node,
357				&desc->group_list))) {
358			/* set 'next' pointer */
359			iter->hw_next = list_entry(iter->chain_node.next,
360				struct ppc440spe_adma_desc_slot, chain_node);
361			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
362		} else {
363			/* this is the last descriptor.
364			 * this slot will be pasted from ADMA level
365			 * each time it wants to configure parameters
366			 * of the transaction (src, dst, ...)
367			 */
368			iter->hw_next = NULL;
369			if (flags & DMA_PREP_INTERRUPT)
370				set_bit(PPC440SPE_DESC_INT, &iter->flags);
371			else
372				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
373		}
374	}
375
376	/* Set OPS depending on WXOR/RXOR type of operation */
377	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
378		/* This is a WXOR only chain:
379		 * - first descriptors are for zeroing destinations
380		 *   if PPC440SPE_ZERO_P/Q set;
381		 * - descriptors remained are for GF-XOR operations.
382		 */
383		iter = list_first_entry(&desc->group_list,
384					struct ppc440spe_adma_desc_slot,
385					chain_node);
386
387		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
388			hw_desc = iter->hw_desc;
389			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
390			iter = list_first_entry(&iter->chain_node,
391					struct ppc440spe_adma_desc_slot,
392					chain_node);
393		}
394
395		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
396			hw_desc = iter->hw_desc;
397			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
398			iter = list_first_entry(&iter->chain_node,
399					struct ppc440spe_adma_desc_slot,
400					chain_node);
401		}
402
403		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
404			hw_desc = iter->hw_desc;
405			hw_desc->opc = dopc;
406		}
407	} else {
408		/* This is either RXOR-only or mixed RXOR/WXOR */
409
410		/* The first 1 or 2 slots in chain are always RXOR,
411		 * if need to calculate P & Q, then there are two
412		 * RXOR slots; if only P or only Q, then there is one
413		 */
414		iter = list_first_entry(&desc->group_list,
415					struct ppc440spe_adma_desc_slot,
416					chain_node);
417		hw_desc = iter->hw_desc;
418		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
419
420		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
421			iter = list_first_entry(&iter->chain_node,
422						struct ppc440spe_adma_desc_slot,
423						chain_node);
424			hw_desc = iter->hw_desc;
425			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
426		}
427
428		/* The remaining descs (if any) are WXORs */
429		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
430			iter = list_first_entry(&iter->chain_node,
431						struct ppc440spe_adma_desc_slot,
432						chain_node);
433			list_for_each_entry_from(iter, &desc->group_list,
434						chain_node) {
435				hw_desc = iter->hw_desc;
436				hw_desc->opc = dopc;
437			}
438		}
439	}
440}
441
442/**
443 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
444 * for PQ_ZERO_SUM operation
445 */
446static void ppc440spe_desc_init_dma01pqzero_sum(
447				struct ppc440spe_adma_desc_slot *desc,
448				int dst_cnt, int src_cnt)
449{
450	struct dma_cdb *hw_desc;
451	struct ppc440spe_adma_desc_slot *iter;
452	int i = 0;
453	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
454				   DMA_CDB_OPC_MV_SG1_SG2;
455	/*
456	 * Initialize starting from 2nd or 3rd descriptor dependent
457	 * on dst_cnt. First one or two slots are for cloning P
458	 * and/or Q to chan->pdest and/or chan->qdest as we have
459	 * to preserve original P/Q.
460	 */
461	iter = list_first_entry(&desc->group_list,
462				struct ppc440spe_adma_desc_slot, chain_node);
463	iter = list_entry(iter->chain_node.next,
464			  struct ppc440spe_adma_desc_slot, chain_node);
465
466	if (dst_cnt > 1) {
467		iter = list_entry(iter->chain_node.next,
468				  struct ppc440spe_adma_desc_slot, chain_node);
469	}
470	/* initialize each source descriptor in chain */
471	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
472		hw_desc = iter->hw_desc;
473		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
474		iter->src_cnt = 0;
475		iter->dst_cnt = 0;
476
477		/* This is a ZERO_SUM operation:
478		 * - <src_cnt> descriptors starting from 2nd or 3rd
479		 *   descriptor are for GF-XOR operations;
480		 * - remaining <dst_cnt> descriptors are for checking the result
481		 */
482		if (i++ < src_cnt)
483			/* MV_SG1_SG2 if only Q is being verified
484			 * MULTICAST if both P and Q are being verified
485			 */
486			hw_desc->opc = dopc;
487		else
488			/* DMA_CDB_OPC_DCHECK128 operation */
489			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
490
491		if (likely(!list_is_last(&iter->chain_node,
492					 &desc->group_list))) {
493			/* set 'next' pointer */
494			iter->hw_next = list_entry(iter->chain_node.next,
495						struct ppc440spe_adma_desc_slot,
496						chain_node);
497		} else {
498			/* this is the last descriptor.
499			 * this slot will be pasted from ADMA level
500			 * each time it wants to configure parameters
501			 * of the transaction (src, dst, ...)
502			 */
503			iter->hw_next = NULL;
504			/* always enable interrupt generation since we get
505			 * the status of pqzero from the handler
506			 */
507			set_bit(PPC440SPE_DESC_INT, &iter->flags);
508		}
509	}
510	desc->src_cnt = src_cnt;
511	desc->dst_cnt = dst_cnt;
512}
513
514/**
515 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
516 */
517static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
518					unsigned long flags)
519{
520	struct dma_cdb *hw_desc = desc->hw_desc;
521
522	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
523	desc->hw_next = NULL;
524	desc->src_cnt = 1;
525	desc->dst_cnt = 1;
526
527	if (flags & DMA_PREP_INTERRUPT)
528		set_bit(PPC440SPE_DESC_INT, &desc->flags);
529	else
530		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
531
532	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
533}
534
535/**
536 * ppc440spe_desc_set_src_addr - set source address into the descriptor
537 */
538static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
539					struct ppc440spe_adma_chan *chan,
540					int src_idx, dma_addr_t addrh,
541					dma_addr_t addrl)
542{
543	struct dma_cdb *dma_hw_desc;
544	struct xor_cb *xor_hw_desc;
545	phys_addr_t addr64, tmplow, tmphi;
546
547	switch (chan->device->id) {
548	case PPC440SPE_DMA0_ID:
549	case PPC440SPE_DMA1_ID:
550		if (!addrh) {
551			addr64 = addrl;
552			tmphi = (addr64 >> 32);
553			tmplow = (addr64 & 0xFFFFFFFF);
554		} else {
555			tmphi = addrh;
556			tmplow = addrl;
557		}
558		dma_hw_desc = desc->hw_desc;
559		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
560		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
561		break;
562	case PPC440SPE_XOR_ID:
563		xor_hw_desc = desc->hw_desc;
564		xor_hw_desc->ops[src_idx].l = addrl;
565		xor_hw_desc->ops[src_idx].h |= addrh;
566		break;
567	}
568}
569
570/**
571 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
572 */
573static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
574			struct ppc440spe_adma_chan *chan, u32 mult_index,
575			int sg_index, unsigned char mult_value)
576{
577	struct dma_cdb *dma_hw_desc;
578	struct xor_cb *xor_hw_desc;
579	u32 *psgu;
580
581	switch (chan->device->id) {
582	case PPC440SPE_DMA0_ID:
583	case PPC440SPE_DMA1_ID:
584		dma_hw_desc = desc->hw_desc;
585
586		switch (sg_index) {
587		/* for RXOR operations set multiplier
588		 * into source cued address
589		 */
590		case DMA_CDB_SG_SRC:
591			psgu = &dma_hw_desc->sg1u;
592			break;
593		/* for WXOR operations set multiplier
594		 * into destination cued address(es)
595		 */
596		case DMA_CDB_SG_DST1:
597			psgu = &dma_hw_desc->sg2u;
598			break;
599		case DMA_CDB_SG_DST2:
600			psgu = &dma_hw_desc->sg3u;
601			break;
602		default:
603			BUG();
604		}
605
606		*psgu |= cpu_to_le32(mult_value << mult_index);
607		break;
608	case PPC440SPE_XOR_ID:
609		xor_hw_desc = desc->hw_desc;
610		break;
611	default:
612		BUG();
613	}
614}
615
616/**
617 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
618 */
619static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
620				struct ppc440spe_adma_chan *chan,
621				dma_addr_t addrh, dma_addr_t addrl,
622				u32 dst_idx)
623{
624	struct dma_cdb *dma_hw_desc;
625	struct xor_cb *xor_hw_desc;
626	phys_addr_t addr64, tmphi, tmplow;
627	u32 *psgu, *psgl;
628
629	switch (chan->device->id) {
630	case PPC440SPE_DMA0_ID:
631	case PPC440SPE_DMA1_ID:
632		if (!addrh) {
633			addr64 = addrl;
634			tmphi = (addr64 >> 32);
635			tmplow = (addr64 & 0xFFFFFFFF);
636		} else {
637			tmphi = addrh;
638			tmplow = addrl;
639		}
640		dma_hw_desc = desc->hw_desc;
641
642		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
643		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
644
645		*psgl = cpu_to_le32((u32)tmplow);
646		*psgu |= cpu_to_le32((u32)tmphi);
647		break;
648	case PPC440SPE_XOR_ID:
649		xor_hw_desc = desc->hw_desc;
650		xor_hw_desc->cbtal = addrl;
651		xor_hw_desc->cbtah |= addrh;
652		break;
653	}
654}
655
656/**
657 * ppc440spe_desc_set_byte_count - set number of data bytes involved
658 * into the operation
659 */
660static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
661				struct ppc440spe_adma_chan *chan,
662				u32 byte_count)
663{
664	struct dma_cdb *dma_hw_desc;
665	struct xor_cb *xor_hw_desc;
666
667	switch (chan->device->id) {
668	case PPC440SPE_DMA0_ID:
669	case PPC440SPE_DMA1_ID:
670		dma_hw_desc = desc->hw_desc;
671		dma_hw_desc->cnt = cpu_to_le32(byte_count);
672		break;
673	case PPC440SPE_XOR_ID:
674		xor_hw_desc = desc->hw_desc;
675		xor_hw_desc->cbbc = byte_count;
676		break;
677	}
678}
679
680/**
681 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
682 */
683static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
684{
685	/* assume that byte_count is aligned on the 512-boundary;
686	 * thus write it directly to the register (bits 23:31 are
687	 * reserved there).
688	 */
689	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
690}
691
692/**
693 * ppc440spe_desc_set_dcheck - set CHECK pattern
694 */
695static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
696				struct ppc440spe_adma_chan *chan, u8 *qword)
697{
698	struct dma_cdb *dma_hw_desc;
699
700	switch (chan->device->id) {
701	case PPC440SPE_DMA0_ID:
702	case PPC440SPE_DMA1_ID:
703		dma_hw_desc = desc->hw_desc;
704		iowrite32(qword[0], &dma_hw_desc->sg3l);
705		iowrite32(qword[4], &dma_hw_desc->sg3u);
706		iowrite32(qword[8], &dma_hw_desc->sg2l);
707		iowrite32(qword[12], &dma_hw_desc->sg2u);
708		break;
709	default:
710		BUG();
711	}
712}
713
714/**
715 * ppc440spe_xor_set_link - set link address in xor CB
716 */
717static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
718				struct ppc440spe_adma_desc_slot *next_desc)
719{
720	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
721
722	if (unlikely(!next_desc || !(next_desc->phys))) {
723		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
724			__func__, next_desc,
725			next_desc ? next_desc->phys : 0);
726		BUG();
727	}
728
729	xor_hw_desc->cbs = 0;
730	xor_hw_desc->cblal = next_desc->phys;
731	xor_hw_desc->cblah = 0;
732	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
733}
734
735/**
736 * ppc440spe_desc_set_link - set the address of descriptor following this
737 * descriptor in chain
738 */
739static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
740				struct ppc440spe_adma_desc_slot *prev_desc,
741				struct ppc440spe_adma_desc_slot *next_desc)
742{
743	unsigned long flags;
744	struct ppc440spe_adma_desc_slot *tail = next_desc;
745
746	if (unlikely(!prev_desc || !next_desc ||
747		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
748		/* If previous next is overwritten something is wrong.
749		 * though we may refetch from append to initiate list
750		 * processing; in this case - it's ok.
751		 */
752		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
753			"prev->hw_next=0x%p\n", __func__, prev_desc,
754			next_desc, prev_desc ? prev_desc->hw_next : 0);
755		BUG();
756	}
757
758	local_irq_save(flags);
759
760	/* do s/w chaining both for DMA and XOR descriptors */
761	prev_desc->hw_next = next_desc;
762
763	switch (chan->device->id) {
764	case PPC440SPE_DMA0_ID:
765	case PPC440SPE_DMA1_ID:
766		break;
767	case PPC440SPE_XOR_ID:
768		/* bind descriptor to the chain */
769		while (tail->hw_next)
770			tail = tail->hw_next;
771		xor_last_linked = tail;
772
773		if (prev_desc == xor_last_submit)
774			/* do not link to the last submitted CB */
775			break;
776		ppc440spe_xor_set_link(prev_desc, next_desc);
777		break;
778	}
779
780	local_irq_restore(flags);
781}
782
783/**
784 * ppc440spe_desc_get_link - get the address of the descriptor that
785 * follows this one
786 */
787static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
788					struct ppc440spe_adma_chan *chan)
789{
790	if (!desc->hw_next)
791		return 0;
792
793	return desc->hw_next->phys;
794}
795
796/**
797 * ppc440spe_desc_is_aligned - check alignment
798 */
799static inline int ppc440spe_desc_is_aligned(
800	struct ppc440spe_adma_desc_slot *desc, int num_slots)
801{
802	return (desc->idx & (num_slots - 1)) ? 0 : 1;
803}
804
805/**
806 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
807 * XOR operation
808 */
809static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
810			int *slots_per_op)
811{
812	int slot_cnt;
813
814	/* each XOR descriptor provides up to 16 source operands */
815	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
816
817	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
818		return slot_cnt;
819
820	printk(KERN_ERR "%s: len %d > max %d !!\n",
821		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
822	BUG();
823	return slot_cnt;
824}
825
826/**
827 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
828 * DMA2 PQ operation
829 */
830static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
831		int src_cnt, size_t len)
832{
833	signed long long order = 0;
834	int state = 0;
835	int addr_count = 0;
836	int i;
837	for (i = 1; i < src_cnt; i++) {
838		dma_addr_t cur_addr = srcs[i];
839		dma_addr_t old_addr = srcs[i-1];
840		switch (state) {
841		case 0:
842			if (cur_addr == old_addr + len) {
843				/* direct RXOR */
844				order = 1;
845				state = 1;
846				if (i == src_cnt-1)
847					addr_count++;
848			} else if (old_addr == cur_addr + len) {
849				/* reverse RXOR */
850				order = -1;
851				state = 1;
852				if (i == src_cnt-1)
853					addr_count++;
854			} else {
855				state = 3;
856			}
857			break;
858		case 1:
859			if (i == src_cnt-2 || (order == -1
860				&& cur_addr != old_addr - len)) {
861				order = 0;
862				state = 0;
863				addr_count++;
864			} else if (cur_addr == old_addr + len*order) {
865				state = 2;
866				if (i == src_cnt-1)
867					addr_count++;
868			} else if (cur_addr == old_addr + 2*len) {
869				state = 2;
870				if (i == src_cnt-1)
871					addr_count++;
872			} else if (cur_addr == old_addr + 3*len) {
873				state = 2;
874				if (i == src_cnt-1)
875					addr_count++;
876			} else {
877				order = 0;
878				state = 0;
879				addr_count++;
880			}
881			break;
882		case 2:
883			order = 0;
884			state = 0;
885			addr_count++;
886				break;
887		}
888		if (state == 3)
889			break;
890	}
891	if (src_cnt <= 1 || (state != 1 && state != 2)) {
892		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
893			__func__, src_cnt, state, addr_count, order);
894		for (i = 0; i < src_cnt; i++)
895			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
896		BUG();
897	}
898
899	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
900}
901
902
903/******************************************************************************
904 * ADMA channel low-level routines
905 ******************************************************************************/
906
907static u32
908ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
909static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
910
911/**
912 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
913 */
914static void ppc440spe_adma_device_clear_eot_status(
915					struct ppc440spe_adma_chan *chan)
916{
917	struct dma_regs *dma_reg;
918	struct xor_regs *xor_reg;
919	u8 *p = chan->device->dma_desc_pool_virt;
920	struct dma_cdb *cdb;
921	u32 rv, i;
922
923	switch (chan->device->id) {
924	case PPC440SPE_DMA0_ID:
925	case PPC440SPE_DMA1_ID:
926		/* read FIFO to ack */
927		dma_reg = chan->device->dma_reg;
928		while ((rv = ioread32(&dma_reg->csfpl))) {
929			i = rv & DMA_CDB_ADDR_MSK;
930			cdb = (struct dma_cdb *)&p[i -
931			    (u32)chan->device->dma_desc_pool];
932
933			/* Clear opcode to ack. This is necessary for
934			 * ZeroSum operations only
935			 */
936			cdb->opc = 0;
937
938			if (test_bit(PPC440SPE_RXOR_RUN,
939			    &ppc440spe_rxor_state)) {
940				/* probably this is a completed RXOR op,
941				 * get pointer to CDB using the fact that
942				 * physical and virtual addresses of CDB
943				 * in pools have the same offsets
944				 */
945				if (le32_to_cpu(cdb->sg1u) &
946				    DMA_CUED_XOR_BASE) {
947					/* this is a RXOR */
948					clear_bit(PPC440SPE_RXOR_RUN,
949						  &ppc440spe_rxor_state);
950				}
951			}
952
953			if (rv & DMA_CDB_STATUS_MSK) {
954				/* ZeroSum check failed
955				 */
956				struct ppc440spe_adma_desc_slot *iter;
957				dma_addr_t phys = rv & ~DMA_CDB_MSK;
958
959				/*
960				 * Update the status of corresponding
961				 * descriptor.
962				 */
963				list_for_each_entry(iter, &chan->chain,
964				    chain_node) {
965					if (iter->phys == phys)
966						break;
967				}
968				/*
969				 * if cannot find the corresponding
970				 * slot it's a bug
971				 */
972				BUG_ON(&iter->chain_node == &chan->chain);
973
974				if (iter->xor_check_result) {
975					if (test_bit(PPC440SPE_DESC_PCHECK,
976						     &iter->flags)) {
977						*iter->xor_check_result |=
978							SUM_CHECK_P_RESULT;
979					} else
980					if (test_bit(PPC440SPE_DESC_QCHECK,
981						     &iter->flags)) {
982						*iter->xor_check_result |=
983							SUM_CHECK_Q_RESULT;
984					} else
985						BUG();
986				}
987			}
988		}
989
990		rv = ioread32(&dma_reg->dsts);
991		if (rv) {
992			pr_err("DMA%d err status: 0x%x\n",
993			       chan->device->id, rv);
994			/* write back to clear */
995			iowrite32(rv, &dma_reg->dsts);
996		}
997		break;
998	case PPC440SPE_XOR_ID:
999		/* reset status bits to ack */
1000		xor_reg = chan->device->xor_reg;
1001		rv = ioread32be(&xor_reg->sr);
1002		iowrite32be(rv, &xor_reg->sr);
1003
1004		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1005			if (rv & XOR_IE_RPTIE_BIT) {
1006				/* Read PLB Timeout Error.
1007				 * Try to resubmit the CB
1008				 */
1009				u32 val = ioread32be(&xor_reg->ccbalr);
1010
1011				iowrite32be(val, &xor_reg->cblalr);
1012
1013				val = ioread32be(&xor_reg->crsr);
1014				iowrite32be(val | XOR_CRSR_XAE_BIT,
1015					    &xor_reg->crsr);
1016			} else
1017				pr_err("XOR ERR 0x%x status\n", rv);
1018			break;
1019		}
1020
1021		/*  if the XORcore is idle, but there are unprocessed CBs
1022		 * then refetch the s/w chain here
1023		 */
1024		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1025		    do_xor_refetch)
1026			ppc440spe_chan_append(chan);
1027		break;
1028	}
1029}
1030
1031/**
1032 * ppc440spe_chan_is_busy - get the channel status
1033 */
1034static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1035{
1036	struct dma_regs *dma_reg;
1037	struct xor_regs *xor_reg;
1038	int busy = 0;
1039
1040	switch (chan->device->id) {
1041	case PPC440SPE_DMA0_ID:
1042	case PPC440SPE_DMA1_ID:
1043		dma_reg = chan->device->dma_reg;
1044		/*  if command FIFO's head and tail pointers are equal and
1045		 * status tail is the same as command, then channel is free
1046		 */
1047		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1048		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1049			busy = 1;
1050		break;
1051	case PPC440SPE_XOR_ID:
1052		/* use the special status bit for the XORcore
1053		 */
1054		xor_reg = chan->device->xor_reg;
1055		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1056		break;
1057	}
1058
1059	return busy;
1060}
1061
1062/**
1063 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1064 */
1065static void ppc440spe_chan_set_first_xor_descriptor(
1066				struct ppc440spe_adma_chan *chan,
1067				struct ppc440spe_adma_desc_slot *next_desc)
1068{
1069	struct xor_regs *xor_reg = chan->device->xor_reg;
1070
1071	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1072		printk(KERN_INFO "%s: Warn: XORcore is running "
1073			"when try to set the first CDB!\n",
1074			__func__);
1075
1076	xor_last_submit = xor_last_linked = next_desc;
1077
1078	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1079
1080	iowrite32be(next_desc->phys, &xor_reg->cblalr);
1081	iowrite32be(0, &xor_reg->cblahr);
1082	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1083		    &xor_reg->cbcr);
1084
1085	chan->hw_chain_inited = 1;
1086}
1087
1088/**
1089 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1090 * called with irqs disabled
1091 */
1092static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1093		struct ppc440spe_adma_desc_slot *desc)
1094{
1095	u32 pcdb;
1096	struct dma_regs *dma_reg = chan->device->dma_reg;
1097
1098	pcdb = desc->phys;
1099	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1100		pcdb |= DMA_CDB_NO_INT;
1101
1102	chan_last_sub[chan->device->id] = desc;
1103
1104	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1105
1106	iowrite32(pcdb, &dma_reg->cpfpl);
1107}
1108
1109/**
1110 * ppc440spe_chan_append - update the h/w chain in the channel
1111 */
1112static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1113{
1114	struct xor_regs *xor_reg;
1115	struct ppc440spe_adma_desc_slot *iter;
1116	struct xor_cb *xcb;
1117	u32 cur_desc;
1118	unsigned long flags;
1119
1120	local_irq_save(flags);
1121
1122	switch (chan->device->id) {
1123	case PPC440SPE_DMA0_ID:
1124	case PPC440SPE_DMA1_ID:
1125		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1126
1127		if (likely(cur_desc)) {
1128			iter = chan_last_sub[chan->device->id];
1129			BUG_ON(!iter);
1130		} else {
1131			/* first peer */
1132			iter = chan_first_cdb[chan->device->id];
1133			BUG_ON(!iter);
1134			ppc440spe_dma_put_desc(chan, iter);
1135			chan->hw_chain_inited = 1;
1136		}
1137
1138		/* is there something new to append */
1139		if (!iter->hw_next)
1140			break;
1141
1142		/* flush descriptors from the s/w queue to fifo */
1143		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1144			ppc440spe_dma_put_desc(chan, iter);
1145			if (!iter->hw_next)
1146				break;
1147		}
1148		break;
1149	case PPC440SPE_XOR_ID:
1150		/* update h/w links and refetch */
1151		if (!xor_last_submit->hw_next)
1152			break;
1153
1154		xor_reg = chan->device->xor_reg;
1155		/* the last linked CDB has to generate an interrupt
1156		 * that we'd be able to append the next lists to h/w
1157		 * regardless of the XOR engine state at the moment of
1158		 * appending of these next lists
1159		 */
1160		xcb = xor_last_linked->hw_desc;
1161		xcb->cbc |= XOR_CBCR_CBCE_BIT;
1162
1163		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1164			/* XORcore is idle. Refetch now */
1165			do_xor_refetch = 0;
1166			ppc440spe_xor_set_link(xor_last_submit,
1167				xor_last_submit->hw_next);
1168
1169			ADMA_LL_DBG(print_cb_list(chan,
1170				xor_last_submit->hw_next));
1171
1172			xor_last_submit = xor_last_linked;
1173			iowrite32be(ioread32be(&xor_reg->crsr) |
1174				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1175				    &xor_reg->crsr);
1176		} else {
1177			/* XORcore is running. Refetch later in the handler */
1178			do_xor_refetch = 1;
1179		}
1180
1181		break;
1182	}
1183
1184	local_irq_restore(flags);
1185}
1186
1187/**
1188 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1189 */
1190static u32
1191ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1192{
1193	struct dma_regs *dma_reg;
1194	struct xor_regs *xor_reg;
1195
1196	if (unlikely(!chan->hw_chain_inited))
1197		/* h/w descriptor chain is not initialized yet */
1198		return 0;
1199
1200	switch (chan->device->id) {
1201	case PPC440SPE_DMA0_ID:
1202	case PPC440SPE_DMA1_ID:
1203		dma_reg = chan->device->dma_reg;
1204		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1205	case PPC440SPE_XOR_ID:
1206		xor_reg = chan->device->xor_reg;
1207		return ioread32be(&xor_reg->ccbalr);
1208	}
1209	return 0;
1210}
1211
1212/**
1213 * ppc440spe_chan_run - enable the channel
1214 */
1215static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1216{
1217	struct xor_regs *xor_reg;
1218
1219	switch (chan->device->id) {
1220	case PPC440SPE_DMA0_ID:
1221	case PPC440SPE_DMA1_ID:
1222		/* DMAs are always enabled, do nothing */
1223		break;
1224	case PPC440SPE_XOR_ID:
1225		/* drain write buffer */
1226		xor_reg = chan->device->xor_reg;
1227
1228		/* fetch descriptor pointed to in <link> */
1229		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1230			    &xor_reg->crsr);
1231		break;
1232	}
1233}
1234
1235/******************************************************************************
1236 * ADMA device level
1237 ******************************************************************************/
1238
1239static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1240static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1241
1242static dma_cookie_t
1243ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1244
1245static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1246				    dma_addr_t addr, int index);
1247static void
1248ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1249				  dma_addr_t addr, int index);
1250
1251static void
1252ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1253			   dma_addr_t *paddr, unsigned long flags);
1254static void
1255ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1256			  dma_addr_t addr, int index);
1257static void
1258ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1259			       unsigned char mult, int index, int dst_pos);
1260static void
1261ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1262				   dma_addr_t paddr, dma_addr_t qaddr);
1263
1264static struct page *ppc440spe_rxor_srcs[32];
1265
1266/**
1267 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1268 */
1269static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1270{
1271	int i, order = 0, state = 0;
1272	int idx = 0;
1273
1274	if (unlikely(!(src_cnt > 1)))
1275		return 0;
1276
1277	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1278
1279	/* Skip holes in the source list before checking */
1280	for (i = 0; i < src_cnt; i++) {
1281		if (!srcs[i])
1282			continue;
1283		ppc440spe_rxor_srcs[idx++] = srcs[i];
1284	}
1285	src_cnt = idx;
1286
1287	for (i = 1; i < src_cnt; i++) {
1288		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1289		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1290
1291		switch (state) {
1292		case 0:
1293			if (cur_addr == old_addr + len) {
1294				/* direct RXOR */
1295				order = 1;
1296				state = 1;
1297			} else if (old_addr == cur_addr + len) {
1298				/* reverse RXOR */
1299				order = -1;
1300				state = 1;
1301			} else
1302				goto out;
1303			break;
1304		case 1:
1305			if ((i == src_cnt - 2) ||
1306			    (order == -1 && cur_addr != old_addr - len)) {
1307				order = 0;
1308				state = 0;
1309			} else if ((cur_addr == old_addr + len * order) ||
1310				   (cur_addr == old_addr + 2 * len) ||
1311				   (cur_addr == old_addr + 3 * len)) {
1312				state = 2;
1313			} else {
1314				order = 0;
1315				state = 0;
1316			}
1317			break;
1318		case 2:
1319			order = 0;
1320			state = 0;
1321			break;
1322		}
1323	}
1324
1325out:
1326	if (state == 1 || state == 2)
1327		return 1;
1328
1329	return 0;
1330}
1331
1332/**
1333 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1334 *	the operation given on this channel. It's assumed that 'chan' is
1335 *	capable to process 'cap' type of operation.
1336 * @chan: channel to use
1337 * @cap: type of transaction
1338 * @dst_lst: array of destination pointers
1339 * @dst_cnt: number of destination operands
1340 * @src_lst: array of source pointers
1341 * @src_cnt: number of source operands
1342 * @src_sz: size of each source operand
1343 */
1344static int ppc440spe_adma_estimate(struct dma_chan *chan,
1345	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1346	struct page **src_lst, int src_cnt, size_t src_sz)
1347{
1348	int ef = 1;
1349
1350	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1351		/* If RAID-6 capabilities were not activated don't try
1352		 * to use them
1353		 */
1354		if (unlikely(!ppc440spe_r6_enabled))
1355			return -1;
1356	}
1357	/*  In the current implementation of ppc440spe ADMA driver it
1358	 * makes sense to pick out only pq case, because it may be
1359	 * processed:
1360	 * (1) either using Biskup method on DMA2;
1361	 * (2) or on DMA0/1.
1362	 *  Thus we give a favour to (1) if the sources are suitable;
1363	 * else let it be processed on one of the DMA0/1 engines.
1364	 *  In the sum_product case where destination is also the
1365	 * source process it on DMA0/1 only.
1366	 */
1367	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1368
1369		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1370			ef = 0; /* sum_product case, process on DMA0/1 */
1371		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1372			ef = 3; /* override (DMA0/1 + idle) */
1373		else
1374			ef = 0; /* can't process on DMA2 if !rxor */
1375	}
1376
1377	/* channel idleness increases the priority */
1378	if (likely(ef) &&
1379	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1380		ef++;
1381
1382	return ef;
1383}
1384
1385struct dma_chan *
1386ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1387	struct page **dst_lst, int dst_cnt, struct page **src_lst,
1388	int src_cnt, size_t src_sz)
1389{
1390	struct dma_chan *best_chan = NULL;
1391	struct ppc_dma_chan_ref *ref;
1392	int best_rank = -1;
1393
1394	if (unlikely(!src_sz))
1395		return NULL;
1396	if (src_sz > PAGE_SIZE) {
1397		/*
1398		 * should a user of the api ever pass > PAGE_SIZE requests
1399		 * we sort out cases where temporary page-sized buffers
1400		 * are used.
1401		 */
1402		switch (cap) {
1403		case DMA_PQ:
1404			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1405				return NULL;
1406			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1407				return NULL;
1408			break;
1409		case DMA_PQ_VAL:
1410		case DMA_XOR_VAL:
1411			return NULL;
1412		default:
1413			break;
1414		}
1415	}
1416
1417	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1418		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1419			int rank;
1420
1421			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1422					dst_cnt, src_lst, src_cnt, src_sz);
1423			if (rank > best_rank) {
1424				best_rank = rank;
1425				best_chan = ref->chan;
1426			}
1427		}
1428	}
1429
1430	return best_chan;
1431}
1432EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1433
1434/**
1435 * ppc440spe_get_group_entry - get group entry with index idx
1436 * @tdesc: is the last allocated slot in the group.
1437 */
1438static struct ppc440spe_adma_desc_slot *
1439ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1440{
1441	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1442	int i = 0;
1443
1444	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1445		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1446			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1447		BUG();
1448	}
1449
1450	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1451		if (i++ == entry_idx)
1452			break;
1453	}
1454	return iter;
1455}
1456
1457/**
1458 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1459 * @slot: Slot to free
1460 * Caller must hold &ppc440spe_chan->lock while calling this function
1461 */
1462static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1463				      struct ppc440spe_adma_chan *chan)
1464{
1465	int stride = slot->slots_per_op;
1466
1467	while (stride--) {
1468		slot->slots_per_op = 0;
1469		slot = list_entry(slot->slot_node.next,
1470				struct ppc440spe_adma_desc_slot,
1471				slot_node);
1472	}
1473}
1474
1475/**
1476 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1477 * upon completion
1478 */
1479static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1480		struct ppc440spe_adma_desc_slot *desc,
1481		struct ppc440spe_adma_chan *chan,
1482		dma_cookie_t cookie)
1483{
1484	BUG_ON(desc->async_tx.cookie < 0);
1485	if (desc->async_tx.cookie > 0) {
1486		cookie = desc->async_tx.cookie;
1487		desc->async_tx.cookie = 0;
1488
1489		/* call the callback (must not sleep or submit new
1490		 * operations to this channel)
1491		 */
1492		if (desc->async_tx.callback)
1493			desc->async_tx.callback(
1494				desc->async_tx.callback_param);
1495
1496		dma_descriptor_unmap(&desc->async_tx);
1497	}
1498
1499	/* run dependent operations */
1500	dma_run_dependencies(&desc->async_tx);
1501
1502	return cookie;
1503}
1504
1505/**
1506 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1507 */
1508static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1509		struct ppc440spe_adma_chan *chan)
1510{
1511	/* the client is allowed to attach dependent operations
1512	 * until 'ack' is set
1513	 */
1514	if (!async_tx_test_ack(&desc->async_tx))
1515		return 0;
1516
1517	/* leave the last descriptor in the chain
1518	 * so we can append to it
1519	 */
1520	if (list_is_last(&desc->chain_node, &chan->chain) ||
1521	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1522		return 1;
1523
1524	if (chan->device->id != PPC440SPE_XOR_ID) {
1525		/* our DMA interrupt handler clears opc field of
1526		 * each processed descriptor. For all types of
1527		 * operations except for ZeroSum we do not actually
1528		 * need ack from the interrupt handler. ZeroSum is a
1529		 * special case since the result of this operation
1530		 * is available from the handler only, so if we see
1531		 * such type of descriptor (which is unprocessed yet)
1532		 * then leave it in chain.
1533		 */
1534		struct dma_cdb *cdb = desc->hw_desc;
1535		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1536			return 1;
1537	}
1538
1539	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1540		desc->phys, desc->idx, desc->slots_per_op);
1541
1542	list_del(&desc->chain_node);
1543	ppc440spe_adma_free_slots(desc, chan);
1544	return 0;
1545}
1546
1547/**
1548 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1549 *	which runs through the channel CDBs list until reach the descriptor
1550 *	currently processed. When routine determines that all CDBs of group
1551 *	are completed then corresponding callbacks (if any) are called and slots
1552 *	are freed.
1553 */
1554static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1555{
1556	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1557	dma_cookie_t cookie = 0;
1558	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1559	int busy = ppc440spe_chan_is_busy(chan);
1560	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1561
1562	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1563		chan->device->id, __func__);
1564
1565	if (!current_desc) {
1566		/*  There were no transactions yet, so
1567		 * nothing to clean
1568		 */
1569		return;
1570	}
1571
1572	/* free completed slots from the chain starting with
1573	 * the oldest descriptor
1574	 */
1575	list_for_each_entry_safe(iter, _iter, &chan->chain,
1576					chain_node) {
1577		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1578		    "busy: %d this_desc: %#llx next_desc: %#x "
1579		    "cur: %#x ack: %d\n",
1580		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1581		    ppc440spe_desc_get_link(iter, chan), current_desc,
1582		    async_tx_test_ack(&iter->async_tx));
1583		prefetch(_iter);
1584		prefetch(&_iter->async_tx);
1585
1586		/* do not advance past the current descriptor loaded into the
1587		 * hardware channel,subsequent descriptors are either in process
1588		 * or have not been submitted
1589		 */
1590		if (seen_current)
1591			break;
1592
1593		/* stop the search if we reach the current descriptor and the
1594		 * channel is busy, or if it appears that the current descriptor
1595		 * needs to be re-read (i.e. has been appended to)
1596		 */
1597		if (iter->phys == current_desc) {
1598			BUG_ON(seen_current++);
1599			if (busy || ppc440spe_desc_get_link(iter, chan)) {
1600				/* not all descriptors of the group have
1601				 * been completed; exit.
1602				 */
1603				break;
1604			}
1605		}
1606
1607		/* detect the start of a group transaction */
1608		if (!slot_cnt && !slots_per_op) {
1609			slot_cnt = iter->slot_cnt;
1610			slots_per_op = iter->slots_per_op;
1611			if (slot_cnt <= slots_per_op) {
1612				slot_cnt = 0;
1613				slots_per_op = 0;
1614			}
1615		}
1616
1617		if (slot_cnt) {
1618			if (!group_start)
1619				group_start = iter;
1620			slot_cnt -= slots_per_op;
1621		}
1622
1623		/* all the members of a group are complete */
1624		if (slots_per_op != 0 && slot_cnt == 0) {
1625			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1626			int end_of_chain = 0;
1627
1628			/* clean up the group */
1629			slot_cnt = group_start->slot_cnt;
1630			grp_iter = group_start;
1631			list_for_each_entry_safe_from(grp_iter, _grp_iter,
1632				&chan->chain, chain_node) {
1633
1634				cookie = ppc440spe_adma_run_tx_complete_actions(
1635					grp_iter, chan, cookie);
1636
1637				slot_cnt -= slots_per_op;
1638				end_of_chain = ppc440spe_adma_clean_slot(
1639				    grp_iter, chan);
1640				if (end_of_chain && slot_cnt) {
1641					/* Should wait for ZeroSum completion */
1642					if (cookie > 0)
1643						chan->common.completed_cookie = cookie;
1644					return;
1645				}
1646
1647				if (slot_cnt == 0 || end_of_chain)
1648					break;
1649			}
1650
1651			/* the group should be complete at this point */
1652			BUG_ON(slot_cnt);
1653
1654			slots_per_op = 0;
1655			group_start = NULL;
1656			if (end_of_chain)
1657				break;
1658			else
1659				continue;
1660		} else if (slots_per_op) /* wait for group completion */
1661			continue;
1662
1663		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1664		    cookie);
1665
1666		if (ppc440spe_adma_clean_slot(iter, chan))
1667			break;
1668	}
1669
1670	BUG_ON(!seen_current);
1671
1672	if (cookie > 0) {
1673		chan->common.completed_cookie = cookie;
1674		pr_debug("\tcompleted cookie %d\n", cookie);
1675	}
1676
1677}
1678
1679/**
1680 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1681 */
1682static void ppc440spe_adma_tasklet(unsigned long data)
1683{
1684	struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1685
1686	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1687	__ppc440spe_adma_slot_cleanup(chan);
1688	spin_unlock(&chan->lock);
1689}
1690
1691/**
1692 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1693 */
1694static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1695{
1696	spin_lock_bh(&chan->lock);
1697	__ppc440spe_adma_slot_cleanup(chan);
1698	spin_unlock_bh(&chan->lock);
1699}
1700
1701/**
1702 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1703 */
1704static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1705		struct ppc440spe_adma_chan *chan, int num_slots,
1706		int slots_per_op)
1707{
1708	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1709	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1710	struct list_head chain = LIST_HEAD_INIT(chain);
1711	int slots_found, retry = 0;
1712
1713
1714	BUG_ON(!num_slots || !slots_per_op);
1715	/* start search from the last allocated descrtiptor
1716	 * if a contiguous allocation can not be found start searching
1717	 * from the beginning of the list
1718	 */
1719retry:
1720	slots_found = 0;
1721	if (retry == 0)
1722		iter = chan->last_used;
1723	else
1724		iter = list_entry(&chan->all_slots,
1725				  struct ppc440spe_adma_desc_slot,
1726				  slot_node);
1727	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1728	    slot_node) {
1729		prefetch(_iter);
1730		prefetch(&_iter->async_tx);
1731		if (iter->slots_per_op) {
1732			slots_found = 0;
1733			continue;
1734		}
1735
1736		/* start the allocation if the slot is correctly aligned */
1737		if (!slots_found++)
1738			alloc_start = iter;
1739
1740		if (slots_found == num_slots) {
1741			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1742			struct ppc440spe_adma_desc_slot *last_used = NULL;
1743
1744			iter = alloc_start;
1745			while (num_slots) {
1746				int i;
1747				/* pre-ack all but the last descriptor */
1748				if (num_slots != slots_per_op)
1749					async_tx_ack(&iter->async_tx);
1750
1751				list_add_tail(&iter->chain_node, &chain);
1752				alloc_tail = iter;
1753				iter->async_tx.cookie = 0;
1754				iter->hw_next = NULL;
1755				iter->flags = 0;
1756				iter->slot_cnt = num_slots;
1757				iter->xor_check_result = NULL;
1758				for (i = 0; i < slots_per_op; i++) {
1759					iter->slots_per_op = slots_per_op - i;
1760					last_used = iter;
1761					iter = list_entry(iter->slot_node.next,
1762						struct ppc440spe_adma_desc_slot,
1763						slot_node);
1764				}
1765				num_slots -= slots_per_op;
1766			}
1767			alloc_tail->group_head = alloc_start;
1768			alloc_tail->async_tx.cookie = -EBUSY;
1769			list_splice(&chain, &alloc_tail->group_list);
1770			chan->last_used = last_used;
1771			return alloc_tail;
1772		}
1773	}
1774	if (!retry++)
1775		goto retry;
1776
1777	/* try to free some slots if the allocation fails */
1778	tasklet_schedule(&chan->irq_tasklet);
1779	return NULL;
1780}
1781
1782/**
1783 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1784 */
1785static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1786{
1787	struct ppc440spe_adma_chan *ppc440spe_chan;
1788	struct ppc440spe_adma_desc_slot *slot = NULL;
1789	char *hw_desc;
1790	int i, db_sz;
1791	int init;
1792
1793	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1794	init = ppc440spe_chan->slots_allocated ? 0 : 1;
1795	chan->chan_id = ppc440spe_chan->device->id;
1796
1797	/* Allocate descriptor slots */
1798	i = ppc440spe_chan->slots_allocated;
1799	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1800		db_sz = sizeof(struct dma_cdb);
1801	else
1802		db_sz = sizeof(struct xor_cb);
1803
1804	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1805		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1806			       GFP_KERNEL);
1807		if (!slot) {
1808			printk(KERN_INFO "SPE ADMA Channel only initialized"
1809				" %d descriptor slots", i--);
1810			break;
1811		}
1812
1813		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1814		slot->hw_desc = (void *) &hw_desc[i * db_sz];
1815		dma_async_tx_descriptor_init(&slot->async_tx, chan);
1816		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1817		INIT_LIST_HEAD(&slot->chain_node);
1818		INIT_LIST_HEAD(&slot->slot_node);
1819		INIT_LIST_HEAD(&slot->group_list);
1820		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1821		slot->idx = i;
1822
1823		spin_lock_bh(&ppc440spe_chan->lock);
1824		ppc440spe_chan->slots_allocated++;
1825		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1826		spin_unlock_bh(&ppc440spe_chan->lock);
1827	}
1828
1829	if (i && !ppc440spe_chan->last_used) {
1830		ppc440spe_chan->last_used =
1831			list_entry(ppc440spe_chan->all_slots.next,
1832				struct ppc440spe_adma_desc_slot,
1833				slot_node);
1834	}
1835
1836	dev_dbg(ppc440spe_chan->device->common.dev,
1837		"ppc440spe adma%d: allocated %d descriptor slots\n",
1838		ppc440spe_chan->device->id, i);
1839
1840	/* initialize the channel and the chain with a null operation */
1841	if (init) {
1842		switch (ppc440spe_chan->device->id) {
1843		case PPC440SPE_DMA0_ID:
1844		case PPC440SPE_DMA1_ID:
1845			ppc440spe_chan->hw_chain_inited = 0;
1846			/* Use WXOR for self-testing */
1847			if (!ppc440spe_r6_tchan)
1848				ppc440spe_r6_tchan = ppc440spe_chan;
1849			break;
1850		case PPC440SPE_XOR_ID:
1851			ppc440spe_chan_start_null_xor(ppc440spe_chan);
1852			break;
1853		default:
1854			BUG();
1855		}
1856		ppc440spe_chan->needs_unmap = 1;
1857	}
1858
1859	return (i > 0) ? i : -ENOMEM;
1860}
1861
1862/**
1863 * ppc440spe_rxor_set_region_data -
1864 */
1865static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1866	u8 xor_arg_no, u32 mask)
1867{
1868	struct xor_cb *xcb = desc->hw_desc;
1869
1870	xcb->ops[xor_arg_no].h |= mask;
1871}
1872
1873/**
1874 * ppc440spe_rxor_set_src -
1875 */
1876static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1877	u8 xor_arg_no, dma_addr_t addr)
1878{
1879	struct xor_cb *xcb = desc->hw_desc;
1880
1881	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1882	xcb->ops[xor_arg_no].l = addr;
1883}
1884
1885/**
1886 * ppc440spe_rxor_set_mult -
1887 */
1888static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1889	u8 xor_arg_no, u8 idx, u8 mult)
1890{
1891	struct xor_cb *xcb = desc->hw_desc;
1892
1893	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1894}
1895
1896/**
1897 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1898 *	has been achieved
1899 */
1900static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1901{
1902	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1903		chan->device->id, chan->pending);
1904
1905	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1906		chan->pending = 0;
1907		ppc440spe_chan_append(chan);
1908	}
1909}
1910
1911/**
1912 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1913 *	(it's not necessary that descriptors will be submitted to the h/w
1914 *	chains too right now)
1915 */
1916static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1917{
1918	struct ppc440spe_adma_desc_slot *sw_desc;
1919	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1920	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1921	int slot_cnt;
1922	int slots_per_op;
1923	dma_cookie_t cookie;
1924
1925	sw_desc = tx_to_ppc440spe_adma_slot(tx);
1926
1927	group_start = sw_desc->group_head;
1928	slot_cnt = group_start->slot_cnt;
1929	slots_per_op = group_start->slots_per_op;
1930
1931	spin_lock_bh(&chan->lock);
1932	cookie = dma_cookie_assign(tx);
1933
1934	if (unlikely(list_empty(&chan->chain))) {
1935		/* first peer */
1936		list_splice_init(&sw_desc->group_list, &chan->chain);
1937		chan_first_cdb[chan->device->id] = group_start;
1938	} else {
1939		/* isn't first peer, bind CDBs to chain */
1940		old_chain_tail = list_entry(chan->chain.prev,
1941					struct ppc440spe_adma_desc_slot,
1942					chain_node);
1943		list_splice_init(&sw_desc->group_list,
1944		    &old_chain_tail->chain_node);
1945		/* fix up the hardware chain */
1946		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1947	}
1948
1949	/* increment the pending count by the number of operations */
1950	chan->pending += slot_cnt / slots_per_op;
1951	ppc440spe_adma_check_threshold(chan);
1952	spin_unlock_bh(&chan->lock);
1953
1954	dev_dbg(chan->device->common.dev,
1955		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1956		chan->device->id, __func__,
1957		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1958
1959	return cookie;
1960}
1961
1962/**
1963 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1964 */
1965static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1966		struct dma_chan *chan, unsigned long flags)
1967{
1968	struct ppc440spe_adma_chan *ppc440spe_chan;
1969	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1970	int slot_cnt, slots_per_op;
1971
1972	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1973
1974	dev_dbg(ppc440spe_chan->device->common.dev,
1975		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1976		__func__);
1977
1978	spin_lock_bh(&ppc440spe_chan->lock);
1979	slot_cnt = slots_per_op = 1;
1980	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1981			slots_per_op);
1982	if (sw_desc) {
1983		group_start = sw_desc->group_head;
1984		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1985		group_start->unmap_len = 0;
1986		sw_desc->async_tx.flags = flags;
1987	}
1988	spin_unlock_bh(&ppc440spe_chan->lock);
1989
1990	return sw_desc ? &sw_desc->async_tx : NULL;
1991}
1992
1993/**
1994 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1995 */
1996static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1997		struct dma_chan *chan, dma_addr_t dma_dest,
1998		dma_addr_t dma_src, size_t len, unsigned long flags)
1999{
2000	struct ppc440spe_adma_chan *ppc440spe_chan;
2001	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2002	int slot_cnt, slots_per_op;
2003
2004	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2005
2006	if (unlikely(!len))
2007		return NULL;
2008
2009	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2010
2011	spin_lock_bh(&ppc440spe_chan->lock);
2012
2013	dev_dbg(ppc440spe_chan->device->common.dev,
2014		"ppc440spe adma%d: %s len: %u int_en %d\n",
2015		ppc440spe_chan->device->id, __func__, len,
2016		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2017	slot_cnt = slots_per_op = 1;
2018	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2019		slots_per_op);
2020	if (sw_desc) {
2021		group_start = sw_desc->group_head;
2022		ppc440spe_desc_init_memcpy(group_start, flags);
2023		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2024		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2025		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2026		sw_desc->unmap_len = len;
2027		sw_desc->async_tx.flags = flags;
2028	}
2029	spin_unlock_bh(&ppc440spe_chan->lock);
2030
2031	return sw_desc ? &sw_desc->async_tx : NULL;
2032}
2033
2034/**
2035 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2036 */
2037static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2038		struct dma_chan *chan, dma_addr_t dma_dest,
2039		dma_addr_t *dma_src, u32 src_cnt, size_t len,
2040		unsigned long flags)
2041{
2042	struct ppc440spe_adma_chan *ppc440spe_chan;
2043	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2044	int slot_cnt, slots_per_op;
2045
2046	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2047
2048	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2049				     dma_dest, dma_src, src_cnt));
2050	if (unlikely(!len))
2051		return NULL;
2052	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2053
2054	dev_dbg(ppc440spe_chan->device->common.dev,
2055		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2056		ppc440spe_chan->device->id, __func__, src_cnt, len,
2057		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2058
2059	spin_lock_bh(&ppc440spe_chan->lock);
2060	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2061	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2062			slots_per_op);
2063	if (sw_desc) {
2064		group_start = sw_desc->group_head;
2065		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2066		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2067		while (src_cnt--)
2068			ppc440spe_adma_memcpy_xor_set_src(group_start,
2069				dma_src[src_cnt], src_cnt);
2070		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2071		sw_desc->unmap_len = len;
2072		sw_desc->async_tx.flags = flags;
2073	}
2074	spin_unlock_bh(&ppc440spe_chan->lock);
2075
2076	return sw_desc ? &sw_desc->async_tx : NULL;
2077}
2078
2079static inline void
2080ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2081				int src_cnt);
2082static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2083
2084/**
2085 * ppc440spe_adma_init_dma2rxor_slot -
2086 */
2087static void ppc440spe_adma_init_dma2rxor_slot(
2088		struct ppc440spe_adma_desc_slot *desc,
2089		dma_addr_t *src, int src_cnt)
2090{
2091	int i;
2092
2093	/* initialize CDB */
2094	for (i = 0; i < src_cnt; i++) {
2095		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2096						 desc->src_cnt, (u32)src[i]);
2097	}
2098}
2099
2100/**
2101 * ppc440spe_dma01_prep_mult -
2102 * for Q operation where destination is also the source
2103 */
2104static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2105		struct ppc440spe_adma_chan *ppc440spe_chan,
2106		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2107		const unsigned char *scf, size_t len, unsigned long flags)
2108{
2109	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2110	unsigned long op = 0;
2111	int slot_cnt;
2112
2113	set_bit(PPC440SPE_DESC_WXOR, &op);
2114	slot_cnt = 2;
2115
2116	spin_lock_bh(&ppc440spe_chan->lock);
2117
2118	/* use WXOR, each descriptor occupies one slot */
2119	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2120	if (sw_desc) {
2121		struct ppc440spe_adma_chan *chan;
2122		struct ppc440spe_adma_desc_slot *iter;
2123		struct dma_cdb *hw_desc;
2124
2125		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2126		set_bits(op, &sw_desc->flags);
2127		sw_desc->src_cnt = src_cnt;
2128		sw_desc->dst_cnt = dst_cnt;
2129		/* First descriptor, zero data in the destination and copy it
2130		 * to q page using MULTICAST transfer.
2131		 */
2132		iter = list_first_entry(&sw_desc->group_list,
2133					struct ppc440spe_adma_desc_slot,
2134					chain_node);
2135		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2136		/* set 'next' pointer */
2137		iter->hw_next = list_entry(iter->chain_node.next,
2138					   struct ppc440spe_adma_desc_slot,
2139					   chain_node);
2140		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2141		hw_desc = iter->hw_desc;
2142		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2143
2144		ppc440spe_desc_set_dest_addr(iter, chan,
2145					     DMA_CUED_XOR_BASE, dst[0], 0);
2146		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2147		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2148					    src[0]);
2149		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2150		iter->unmap_len = len;
2151
2152		/*
2153		 * Second descriptor, multiply data from the q page
2154		 * and store the result in real destination.
2155		 */
2156		iter = list_first_entry(&iter->chain_node,
2157					struct ppc440spe_adma_desc_slot,
2158					chain_node);
2159		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2160		iter->hw_next = NULL;
2161		if (flags & DMA_PREP_INTERRUPT)
2162			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2163		else
2164			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2165
2166		hw_desc = iter->hw_desc;
2167		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2168		ppc440spe_desc_set_src_addr(iter, chan, 0,
2169					    DMA_CUED_XOR_HB, dst[1]);
2170		ppc440spe_desc_set_dest_addr(iter, chan,
2171					     DMA_CUED_XOR_BASE, dst[0], 0);
2172
2173		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2174					    DMA_CDB_SG_DST1, scf[0]);
2175		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2176		iter->unmap_len = len;
2177		sw_desc->async_tx.flags = flags;
2178	}
2179
2180	spin_unlock_bh(&ppc440spe_chan->lock);
2181
2182	return sw_desc;
2183}
2184
2185/**
2186 * ppc440spe_dma01_prep_sum_product -
2187 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2188 * the source.
2189 */
2190static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2191		struct ppc440spe_adma_chan *ppc440spe_chan,
2192		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2193		const unsigned char *scf, size_t len, unsigned long flags)
2194{
2195	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2196	unsigned long op = 0;
2197	int slot_cnt;
2198
2199	set_bit(PPC440SPE_DESC_WXOR, &op);
2200	slot_cnt = 3;
2201
2202	spin_lock_bh(&ppc440spe_chan->lock);
2203
2204	/* WXOR, each descriptor occupies one slot */
2205	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2206	if (sw_desc) {
2207		struct ppc440spe_adma_chan *chan;
2208		struct ppc440spe_adma_desc_slot *iter;
2209		struct dma_cdb *hw_desc;
2210
2211		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2212		set_bits(op, &sw_desc->flags);
2213		sw_desc->src_cnt = src_cnt;
2214		sw_desc->dst_cnt = 1;
2215		/* 1st descriptor, src[1] data to q page and zero destination */
2216		iter = list_first_entry(&sw_desc->group_list,
2217					struct ppc440spe_adma_desc_slot,
2218					chain_node);
2219		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2220		iter->hw_next = list_entry(iter->chain_node.next,
2221					   struct ppc440spe_adma_desc_slot,
2222					   chain_node);
2223		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2224		hw_desc = iter->hw_desc;
2225		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2226
2227		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2228					     *dst, 0);
2229		ppc440spe_desc_set_dest_addr(iter, chan, 0,
2230					     ppc440spe_chan->qdest, 1);
2231		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2232					    src[1]);
2233		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2234		iter->unmap_len = len;
2235
2236		/* 2nd descriptor, multiply src[1] data and store the
2237		 * result in destination */
2238		iter = list_first_entry(&iter->chain_node,
2239					struct ppc440spe_adma_desc_slot,
2240					chain_node);
2241		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2242		/* set 'next' pointer */
2243		iter->hw_next = list_entry(iter->chain_node.next,
2244					   struct ppc440spe_adma_desc_slot,
2245					   chain_node);
2246		if (flags & DMA_PREP_INTERRUPT)
2247			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2248		else
2249			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2250
2251		hw_desc = iter->hw_desc;
2252		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2253		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2254					    ppc440spe_chan->qdest);
2255		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2256					     *dst, 0);
2257		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
2258					    DMA_CDB_SG_DST1, scf[1]);
2259		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2260		iter->unmap_len = len;
2261
2262		/*
2263		 * 3rd descriptor, multiply src[0] data and xor it
2264		 * with destination
2265		 */
2266		iter = list_first_entry(&iter->chain_node,
2267					struct ppc440spe_adma_desc_slot,
2268					chain_node);
2269		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2270		iter->hw_next = NULL;
2271		if (flags & DMA_PREP_INTERRUPT)
2272			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2273		else
2274			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2275
2276		hw_desc = iter->hw_desc;
2277		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2278		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2279					    src[0]);
2280		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2281					     *dst, 0);
2282		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2283					    DMA_CDB_SG_DST1, scf[0]);
2284		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2285		iter->unmap_len = len;
2286		sw_desc->async_tx.flags = flags;
2287	}
2288
2289	spin_unlock_bh(&ppc440spe_chan->lock);
2290
2291	return sw_desc;
2292}
2293
2294static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2295		struct ppc440spe_adma_chan *ppc440spe_chan,
2296		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2297		const unsigned char *scf, size_t len, unsigned long flags)
2298{
2299	int slot_cnt;
2300	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2301	unsigned long op = 0;
2302	unsigned char mult = 1;
2303
2304	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2305		 __func__, dst_cnt, src_cnt, len);
2306	/*  select operations WXOR/RXOR depending on the
2307	 * source addresses of operators and the number
2308	 * of destinations (RXOR support only Q-parity calculations)
2309	 */
2310	set_bit(PPC440SPE_DESC_WXOR, &op);
2311	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2312		/* no active RXOR;
2313		 * do RXOR if:
2314		 * - there are more than 1 source,
2315		 * - len is aligned on 512-byte boundary,
2316		 * - source addresses fit to one of 4 possible regions.
2317		 */
2318		if (src_cnt > 1 &&
2319		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2320		    (src[0] + len) == src[1]) {
2321			/* may do RXOR R1 R2 */
2322			set_bit(PPC440SPE_DESC_RXOR, &op);
2323			if (src_cnt != 2) {
2324				/* may try to enhance region of RXOR */
2325				if ((src[1] + len) == src[2]) {
2326					/* do RXOR R1 R2 R3 */
2327					set_bit(PPC440SPE_DESC_RXOR123,
2328						&op);
2329				} else if ((src[1] + len * 2) == src[2]) {
2330					/* do RXOR R1 R2 R4 */
2331					set_bit(PPC440SPE_DESC_RXOR124, &op);
2332				} else if ((src[1] + len * 3) == src[2]) {
2333					/* do RXOR R1 R2 R5 */
2334					set_bit(PPC440SPE_DESC_RXOR125,
2335						&op);
2336				} else {
2337					/* do RXOR R1 R2 */
2338					set_bit(PPC440SPE_DESC_RXOR12,
2339						&op);
2340				}
2341			} else {
2342				/* do RXOR R1 R2 */
2343				set_bit(PPC440SPE_DESC_RXOR12, &op);
2344			}
2345		}
2346
2347		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2348			/* can not do this operation with RXOR */
2349			clear_bit(PPC440SPE_RXOR_RUN,
2350				&ppc440spe_rxor_state);
2351		} else {
2352			/* can do; set block size right now */
2353			ppc440spe_desc_set_rxor_block_size(len);
2354		}
2355	}
2356
2357	/* Number of necessary slots depends on operation type selected */
2358	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2359		/*  This is a WXOR only chain. Need descriptors for each
2360		 * source to GF-XOR them with WXOR, and need descriptors
2361		 * for each destination to zero them with WXOR
2362		 */
2363		slot_cnt = src_cnt;
2364
2365		if (flags & DMA_PREP_ZERO_P) {
2366			slot_cnt++;
2367			set_bit(PPC440SPE_ZERO_P, &op);
2368		}
2369		if (flags & DMA_PREP_ZERO_Q) {
2370			slot_cnt++;
2371			set_bit(PPC440SPE_ZERO_Q, &op);
2372		}
2373	} else {
2374		/*  Need 1/2 descriptor for RXOR operation, and
2375		 * need (src_cnt - (2 or 3)) for WXOR of sources
2376		 * remained (if any)
2377		 */
2378		slot_cnt = dst_cnt;
2379
2380		if (flags & DMA_PREP_ZERO_P)
2381			set_bit(PPC440SPE_ZERO_P, &op);
2382		if (flags & DMA_PREP_ZERO_Q)
2383			set_bit(PPC440SPE_ZERO_Q, &op);
2384
2385		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2386			slot_cnt += src_cnt - 2;
2387		else
2388			slot_cnt += src_cnt - 3;
2389
2390		/*  Thus we have either RXOR only chain or
2391		 * mixed RXOR/WXOR
2392		 */
2393		if (slot_cnt == dst_cnt)
2394			/* RXOR only chain */
2395			clear_bit(PPC440SPE_DESC_WXOR, &op);
2396	}
2397
2398	spin_lock_bh(&ppc440spe_chan->lock);
2399	/* for both RXOR/WXOR each descriptor occupies one slot */
2400	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2401	if (sw_desc) {
2402		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2403				flags, op);
2404
2405		/* setup dst/src/mult */
2406		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2407			 __func__, dst[0], dst[1]);
2408		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2409		while (src_cnt--) {
2410			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2411						  src_cnt);
2412
2413			/* NOTE: "Multi = 0 is equivalent to = 1" as it
2414			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2415			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2416			 * leads to zeroing source data after RXOR.
2417			 * So, for P case set-up mult=1 explicitly.
2418			 */
2419			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2420				mult = scf[src_cnt];
2421			ppc440spe_adma_pq_set_src_mult(sw_desc,
2422				mult, src_cnt,  dst_cnt - 1);
2423		}
2424
2425		/* Setup byte count foreach slot just allocated */
2426		sw_desc->async_tx.flags = flags;
2427		list_for_each_entry(iter, &sw_desc->group_list,
2428				chain_node) {
2429			ppc440spe_desc_set_byte_count(iter,
2430				ppc440spe_chan, len);
2431			iter->unmap_len = len;
2432		}
2433	}
2434	spin_unlock_bh(&ppc440spe_chan->lock);
2435
2436	return sw_desc;
2437}
2438
2439static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2440		struct ppc440spe_adma_chan *ppc440spe_chan,
2441		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2442		const unsigned char *scf, size_t len, unsigned long flags)
2443{
2444	int slot_cnt, descs_per_op;
2445	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2446	unsigned long op = 0;
2447	unsigned char mult = 1;
2448
2449	BUG_ON(!dst_cnt);
2450	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2451		 __func__, dst_cnt, src_cnt, len);*/
2452
2453	spin_lock_bh(&ppc440spe_chan->lock);
2454	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2455	if (descs_per_op < 0) {
2456		spin_unlock_bh(&ppc440spe_chan->lock);
2457		return NULL;
2458	}
2459
2460	/* depending on number of sources we have 1 or 2 RXOR chains */
2461	slot_cnt = descs_per_op * dst_cnt;
2462
2463	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2464	if (sw_desc) {
2465		op = slot_cnt;
2466		sw_desc->async_tx.flags = flags;
2467		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2468			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2469				--op ? 0 : flags);
2470			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2471				len);
2472			iter->unmap_len = len;
2473
2474			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2475			iter->rxor_cursor.len = len;
2476			iter->descs_per_op = descs_per_op;
2477		}
2478		op = 0;
2479		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2480			op++;
2481			if (op % descs_per_op == 0)
2482				ppc440spe_adma_init_dma2rxor_slot(iter, src,
2483								  src_cnt);
2484			if (likely(!list_is_last(&iter->chain_node,
2485						 &sw_desc->group_list))) {
2486				/* set 'next' pointer */
2487				iter->hw_next =
2488					list_entry(iter->chain_node.next,
2489						struct ppc440spe_adma_desc_slot,
2490						chain_node);
2491				ppc440spe_xor_set_link(iter, iter->hw_next);
2492			} else {
2493				/* this is the last descriptor. */
2494				iter->hw_next = NULL;
2495			}
2496		}
2497
2498		/* fixup head descriptor */
2499		sw_desc->dst_cnt = dst_cnt;
2500		if (flags & DMA_PREP_ZERO_P)
2501			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2502		if (flags & DMA_PREP_ZERO_Q)
2503			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2504
2505		/* setup dst/src/mult */
2506		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2507
2508		while (src_cnt--) {
2509			/* handle descriptors (if dst_cnt == 2) inside
2510			 * the ppc440spe_adma_pq_set_srcxxx() functions
2511			 */
2512			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2513						  src_cnt);
2514			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2515				mult = scf[src_cnt];
2516			ppc440spe_adma_pq_set_src_mult(sw_desc,
2517					mult, src_cnt, dst_cnt - 1);
2518		}
2519	}
2520	spin_unlock_bh(&ppc440spe_chan->lock);
2521	ppc440spe_desc_set_rxor_block_size(len);
2522	return sw_desc;
2523}
2524
2525/**
2526 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2527 */
2528static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2529		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2530		unsigned int src_cnt, const unsigned char *scf,
2531		size_t len, unsigned long flags)
2532{
2533	struct ppc440spe_adma_chan *ppc440spe_chan;
2534	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2535	int dst_cnt = 0;
2536
2537	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2538
2539	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2540				    dst, src, src_cnt));
2541	BUG_ON(!len);
2542	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2543	BUG_ON(!src_cnt);
2544
2545	if (src_cnt == 1 && dst[1] == src[0]) {
2546		dma_addr_t dest[2];
2547
2548		/* dst[1] is real destination (Q) */
2549		dest[0] = dst[1];
2550		/* this is the page to multicast source data to */
2551		dest[1] = ppc440spe_chan->qdest;
2552		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2553				dest, 2, src, src_cnt, scf, len, flags);
2554		return sw_desc ? &sw_desc->async_tx : NULL;
2555	}
2556
2557	if (src_cnt == 2 && dst[1] == src[1]) {
2558		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2559					&dst[1], src, 2, scf, len, flags);
2560		return sw_desc ? &sw_desc->async_tx : NULL;
2561	}
2562
2563	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2564		BUG_ON(!dst[0]);
2565		dst_cnt++;
2566		flags |= DMA_PREP_ZERO_P;
2567	}
2568
2569	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2570		BUG_ON(!dst[1]);
2571		dst_cnt++;
2572		flags |= DMA_PREP_ZERO_Q;
2573	}
2574
2575	BUG_ON(!dst_cnt);
2576
2577	dev_dbg(ppc440spe_chan->device->common.dev,
2578		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2579		ppc440spe_chan->device->id, __func__, src_cnt, len,
2580		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2581
2582	switch (ppc440spe_chan->device->id) {
2583	case PPC440SPE_DMA0_ID:
2584	case PPC440SPE_DMA1_ID:
2585		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2586				dst, dst_cnt, src, src_cnt, scf,
2587				len, flags);
2588		break;
2589
2590	case PPC440SPE_XOR_ID:
2591		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2592				dst, dst_cnt, src, src_cnt, scf,
2593				len, flags);
2594		break;
2595	}
2596
2597	return sw_desc ? &sw_desc->async_tx : NULL;
2598}
2599
2600/**
2601 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2602 * a PQ_ZERO_SUM operation
2603 */
2604static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2605		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2606		unsigned int src_cnt, const unsigned char *scf, size_t len,
2607		enum sum_check_flags *pqres, unsigned long flags)
2608{
2609	struct ppc440spe_adma_chan *ppc440spe_chan;
2610	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2611	dma_addr_t pdest, qdest;
2612	int slot_cnt, slots_per_op, idst, dst_cnt;
2613
2614	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2615
2616	if (flags & DMA_PREP_PQ_DISABLE_P)
2617		pdest = 0;
2618	else
2619		pdest = pq[0];
2620
2621	if (flags & DMA_PREP_PQ_DISABLE_Q)
2622		qdest = 0;
2623	else
2624		qdest = pq[1];
2625
2626	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2627					    src, src_cnt, scf));
2628
2629	/* Always use WXOR for P/Q calculations (two destinations).
2630	 * Need 1 or 2 extra slots to verify results are zero.
2631	 */
2632	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2633
2634	/* One additional slot per destination to clone P/Q
2635	 * before calculation (we have to preserve destinations).
2636	 */
2637	slot_cnt = src_cnt + dst_cnt * 2;
2638	slots_per_op = 1;
2639
2640	spin_lock_bh(&ppc440spe_chan->lock);
2641	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2642					     slots_per_op);
2643	if (sw_desc) {
2644		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2645
2646		/* Setup byte count for each slot just allocated */
2647		sw_desc->async_tx.flags = flags;
2648		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2649			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2650						      len);
2651			iter->unmap_len = len;
2652		}
2653
2654		if (pdest) {
2655			struct dma_cdb *hw_desc;
2656			struct ppc440spe_adma_chan *chan;
2657
2658			iter = sw_desc->group_head;
2659			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2660			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2661			iter->hw_next = list_entry(iter->chain_node.next,
2662						struct ppc440spe_adma_desc_slot,
2663						chain_node);
2664			hw_desc = iter->hw_desc;
2665			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2666			iter->src_cnt = 0;
2667			iter->dst_cnt = 0;
2668			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2669						     ppc440spe_chan->pdest, 0);
2670			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2671			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2672						      len);
2673			iter->unmap_len = 0;
2674			/* override pdest to preserve original P */
2675			pdest = ppc440spe_chan->pdest;
2676		}
2677		if (qdest) {
2678			struct dma_cdb *hw_desc;
2679			struct ppc440spe_adma_chan *chan;
2680
2681			iter = list_first_entry(&sw_desc->group_list,
2682						struct ppc440spe_adma_desc_slot,
2683						chain_node);
2684			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2685
2686			if (pdest) {
2687				iter = list_entry(iter->chain_node.next,
2688						struct ppc440spe_adma_desc_slot,
2689						chain_node);
2690			}
2691
2692			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2693			iter->hw_next = list_entry(iter->chain_node.next,
2694						struct ppc440spe_adma_desc_slot,
2695						chain_node);
2696			hw_desc = iter->hw_desc;
2697			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2698			iter->src_cnt = 0;
2699			iter->dst_cnt = 0;
2700			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2701						     ppc440spe_chan->qdest, 0);
2702			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2703			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2704						      len);
2705			iter->unmap_len = 0;
2706			/* override qdest to preserve original Q */
2707			qdest = ppc440spe_chan->qdest;
2708		}
2709
2710		/* Setup destinations for P/Q ops */
2711		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2712
2713		/* Setup zero QWORDs into DCHECK CDBs */
2714		idst = dst_cnt;
2715		list_for_each_entry_reverse(iter, &sw_desc->group_list,
2716					    chain_node) {
2717			/*
2718			 * The last CDB corresponds to Q-parity check,
2719			 * the one before last CDB corresponds
2720			 * P-parity check
2721			 */
2722			if (idst == DMA_DEST_MAX_NUM) {
2723				if (idst == dst_cnt) {
2724					set_bit(PPC440SPE_DESC_QCHECK,
2725						&iter->flags);
2726				} else {
2727					set_bit(PPC440SPE_DESC_PCHECK,
2728						&iter->flags);
2729				}
2730			} else {
2731				if (qdest) {
2732					set_bit(PPC440SPE_DESC_QCHECK,
2733						&iter->flags);
2734				} else {
2735					set_bit(PPC440SPE_DESC_PCHECK,
2736						&iter->flags);
2737				}
2738			}
2739			iter->xor_check_result = pqres;
2740
2741			/*
2742			 * set it to zero, if check fail then result will
2743			 * be updated
2744			 */
2745			*iter->xor_check_result = 0;
2746			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2747				ppc440spe_qword);
2748
2749			if (!(--dst_cnt))
2750				break;
2751		}
2752
2753		/* Setup sources and mults for P/Q ops */
2754		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2755						     chain_node) {
2756			struct ppc440spe_adma_chan *chan;
2757			u32 mult_dst;
2758
2759			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2760			ppc440spe_desc_set_src_addr(iter, chan, 0,
2761						    DMA_CUED_XOR_HB,
2762						    src[src_cnt - 1]);
2763			if (qdest) {
2764				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2765							   DMA_CDB_SG_DST1;
2766				ppc440spe_desc_set_src_mult(iter, chan,
2767							    DMA_CUED_MULT1_OFF,
2768							    mult_dst,
2769							    scf[src_cnt - 1]);
2770			}
2771			if (!(--src_cnt))
2772				break;
2773		}
2774	}
2775	spin_unlock_bh(&ppc440spe_chan->lock);
2776	return sw_desc ? &sw_desc->async_tx : NULL;
2777}
2778
2779/**
2780 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2781 * XOR ZERO_SUM operation
2782 */
2783static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2784		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2785		size_t len, enum sum_check_flags *result, unsigned long flags)
2786{
2787	struct dma_async_tx_descriptor *tx;
2788	dma_addr_t pq[2];
2789
2790	/* validate P, disable Q */
2791	pq[0] = src[0];
2792	pq[1] = 0;
2793	flags |= DMA_PREP_PQ_DISABLE_Q;
2794
2795	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2796						src_cnt - 1, 0, len,
2797						result, flags);
2798	return tx;
2799}
2800
2801/**
2802 * ppc440spe_adma_set_dest - set destination address into descriptor
2803 */
2804static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2805		dma_addr_t addr, int index)
2806{
2807	struct ppc440spe_adma_chan *chan;
2808
2809	BUG_ON(index >= sw_desc->dst_cnt);
2810
2811	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2812
2813	switch (chan->device->id) {
2814	case PPC440SPE_DMA0_ID:
2815	case PPC440SPE_DMA1_ID:
2816		/* to do: support transfers lengths >
2817		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2818		 */
2819		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2820			chan, 0, addr, index);
2821		break;
2822	case PPC440SPE_XOR_ID:
2823		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2824		ppc440spe_desc_set_dest_addr(sw_desc,
2825			chan, 0, addr, index);
2826		break;
2827	}
2828}
2829
2830static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2831		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2832{
2833	/*  To clear destinations update the descriptor
2834	 * (P or Q depending on index) as follows:
2835	 * addr is destination (0 corresponds to SG2):
2836	 */
2837	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2838
2839	/* ... and the addr is source: */
2840	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2841
2842	/* addr is always SG2 then the mult is always DST1 */
2843	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2844				    DMA_CDB_SG_DST1, 1);
2845}
2846
2847/**
2848 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2849 * for the PQXOR operation
2850 */
2851static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2852		dma_addr_t *addrs, unsigned long flags)
2853{
2854	struct ppc440spe_adma_desc_slot *iter;
2855	struct ppc440spe_adma_chan *chan;
2856	dma_addr_t paddr, qaddr;
2857	dma_addr_t addr = 0, ppath, qpath;
2858	int index = 0, i;
2859
2860	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2861
2862	if (flags & DMA_PREP_PQ_DISABLE_P)
2863		paddr = 0;
2864	else
2865		paddr = addrs[0];
2866
2867	if (flags & DMA_PREP_PQ_DISABLE_Q)
2868		qaddr = 0;
2869	else
2870		qaddr = addrs[1];
2871
2872	if (!paddr || !qaddr)
2873		addr = paddr ? paddr : qaddr;
2874
2875	switch (chan->device->id) {
2876	case PPC440SPE_DMA0_ID:
2877	case PPC440SPE_DMA1_ID:
2878		/* walk through the WXOR source list and set P/Q-destinations
2879		 * for each slot:
2880		 */
2881		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2882			/* This is WXOR-only chain; may have 1/2 zero descs */
2883			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2884				index++;
2885			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2886				index++;
2887
2888			iter = ppc440spe_get_group_entry(sw_desc, index);
2889			if (addr) {
2890				/* one destination */
2891				list_for_each_entry_from(iter,
2892					&sw_desc->group_list, chain_node)
2893					ppc440spe_desc_set_dest_addr(iter, chan,
2894						DMA_CUED_XOR_BASE, addr, 0);
2895			} else {
2896				/* two destinations */
2897				list_for_each_entry_from(iter,
2898					&sw_desc->group_list, chain_node) {
2899					ppc440spe_desc_set_dest_addr(iter, chan,
2900						DMA_CUED_XOR_BASE, paddr, 0);
2901					ppc440spe_desc_set_dest_addr(iter, chan,
2902						DMA_CUED_XOR_BASE, qaddr, 1);
2903				}
2904			}
2905
2906			if (index) {
2907				/*  To clear destinations update the descriptor
2908				 * (1st,2nd, or both depending on flags)
2909				 */
2910				index = 0;
2911				if (test_bit(PPC440SPE_ZERO_P,
2912						&sw_desc->flags)) {
2913					iter = ppc440spe_get_group_entry(
2914							sw_desc, index++);
2915					ppc440spe_adma_pq_zero_op(iter, chan,
2916							paddr);
2917				}
2918
2919				if (test_bit(PPC440SPE_ZERO_Q,
2920						&sw_desc->flags)) {
2921					iter = ppc440spe_get_group_entry(
2922							sw_desc, index++);
2923					ppc440spe_adma_pq_zero_op(iter, chan,
2924							qaddr);
2925				}
2926
2927				return;
2928			}
2929		} else {
2930			/* This is RXOR-only or RXOR/WXOR mixed chain */
2931
2932			/* If we want to include destination into calculations,
2933			 * then make dest addresses cued with mult=1 (XOR).
2934			 */
2935			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2936					DMA_CUED_XOR_HB :
2937					DMA_CUED_XOR_BASE |
2938						(1 << DMA_CUED_MULT1_OFF);
2939			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2940					DMA_CUED_XOR_HB :
2941					DMA_CUED_XOR_BASE |
2942						(1 << DMA_CUED_MULT1_OFF);
2943
2944			/* Setup destination(s) in RXOR slot(s) */
2945			iter = ppc440spe_get_group_entry(sw_desc, index++);
2946			ppc440spe_desc_set_dest_addr(iter, chan,
2947						paddr ? ppath : qpath,
2948						paddr ? paddr : qaddr, 0);
2949			if (!addr) {
2950				/* two destinations */
2951				iter = ppc440spe_get_group_entry(sw_desc,
2952								 index++);
2953				ppc440spe_desc_set_dest_addr(iter, chan,
2954						qpath, qaddr, 0);
2955			}
2956
2957			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2958				/* Setup destination(s) in remaining WXOR
2959				 * slots
2960				 */
2961				iter = ppc440spe_get_group_entry(sw_desc,
2962								 index);
2963				if (addr) {
2964					/* one destination */
2965					list_for_each_entry_from(iter,
2966					    &sw_desc->group_list,
2967					    chain_node)
2968						ppc440spe_desc_set_dest_addr(
2969							iter, chan,
2970							DMA_CUED_XOR_BASE,
2971							addr, 0);
2972
2973				} else {
2974					/* two destinations */
2975					list_for_each_entry_from(iter,
2976					    &sw_desc->group_list,
2977					    chain_node) {
2978						ppc440spe_desc_set_dest_addr(
2979							iter, chan,
2980							DMA_CUED_XOR_BASE,
2981							paddr, 0);
2982						ppc440spe_desc_set_dest_addr(
2983							iter, chan,
2984							DMA_CUED_XOR_BASE,
2985							qaddr, 1);
2986					}
2987				}
2988			}
2989
2990		}
2991		break;
2992
2993	case PPC440SPE_XOR_ID:
2994		/* DMA2 descriptors have only 1 destination, so there are
2995		 * two chains - one for each dest.
2996		 * If we want to include destination into calculations,
2997		 * then make dest addresses cued with mult=1 (XOR).
2998		 */
2999		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3000				DMA_CUED_XOR_HB :
3001				DMA_CUED_XOR_BASE |
3002					(1 << DMA_CUED_MULT1_OFF);
3003
3004		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3005				DMA_CUED_XOR_HB :
3006				DMA_CUED_XOR_BASE |
3007					(1 << DMA_CUED_MULT1_OFF);
3008
3009		iter = ppc440spe_get_group_entry(sw_desc, 0);
3010		for (i = 0; i < sw_desc->descs_per_op; i++) {
3011			ppc440spe_desc_set_dest_addr(iter, chan,
3012				paddr ? ppath : qpath,
3013				paddr ? paddr : qaddr, 0);
3014			iter = list_entry(iter->chain_node.next,
3015					  struct ppc440spe_adma_desc_slot,
3016					  chain_node);
3017		}
3018
3019		if (!addr) {
3020			/* Two destinations; setup Q here */
3021			iter = ppc440spe_get_group_entry(sw_desc,
3022				sw_desc->descs_per_op);
3023			for (i = 0; i < sw_desc->descs_per_op; i++) {
3024				ppc440spe_desc_set_dest_addr(iter,
3025					chan, qpath, qaddr, 0);
3026				iter = list_entry(iter->chain_node.next,
3027						struct ppc440spe_adma_desc_slot,
3028						chain_node);
3029			}
3030		}
3031
3032		break;
3033	}
3034}
3035
3036/**
3037 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3038 * for the PQ_ZERO_SUM operation
3039 */
3040static void ppc440spe_adma_pqzero_sum_set_dest(
3041		struct ppc440spe_adma_desc_slot *sw_desc,
3042		dma_addr_t paddr, dma_addr_t qaddr)
3043{
3044	struct ppc440spe_adma_desc_slot *iter, *end;
3045	struct ppc440spe_adma_chan *chan;
3046	dma_addr_t addr = 0;
3047	int idx;
3048
3049	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3050
3051	/* walk through the WXOR source list and set P/Q-destinations
3052	 * for each slot
3053	 */
3054	idx = (paddr && qaddr) ? 2 : 1;
3055	/* set end */
3056	list_for_each_entry_reverse(end, &sw_desc->group_list,
3057				    chain_node) {
3058		if (!(--idx))
3059			break;
3060	}
3061	/* set start */
3062	idx = (paddr && qaddr) ? 2 : 1;
3063	iter = ppc440spe_get_group_entry(sw_desc, idx);
3064
3065	if (paddr && qaddr) {
3066		/* two destinations */
3067		list_for_each_entry_from(iter, &sw_desc->group_list,
3068					 chain_node) {
3069			if (unlikely(iter == end))
3070				break;
3071			ppc440spe_desc_set_dest_addr(iter, chan,
3072						DMA_CUED_XOR_BASE, paddr, 0);
3073			ppc440spe_desc_set_dest_addr(iter, chan,
3074						DMA_CUED_XOR_BASE, qaddr, 1);
3075		}
3076	} else {
3077		/* one destination */
3078		addr = paddr ? paddr : qaddr;
3079		list_for_each_entry_from(iter, &sw_desc->group_list,
3080					 chain_node) {
3081			if (unlikely(iter == end))
3082				break;
3083			ppc440spe_desc_set_dest_addr(iter, chan,
3084						DMA_CUED_XOR_BASE, addr, 0);
3085		}
3086	}
3087
3088	/*  The remaining descriptors are DATACHECK. These have no need in
3089	 * destination. Actually, these destinations are used there
3090	 * as sources for check operation. So, set addr as source.
3091	 */
3092	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3093
3094	if (!addr) {
3095		end = list_entry(end->chain_node.next,
3096				 struct ppc440spe_adma_desc_slot, chain_node);
3097		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3098	}
3099}
3100
3101/**
3102 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3103 */
3104static inline void ppc440spe_desc_set_xor_src_cnt(
3105			struct ppc440spe_adma_desc_slot *desc,
3106			int src_cnt)
3107{
3108	struct xor_cb *hw_desc = desc->hw_desc;
3109
3110	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3111	hw_desc->cbc |= src_cnt;
3112}
3113
3114/**
3115 * ppc440spe_adma_pq_set_src - set source address into descriptor
3116 */
3117static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3118		dma_addr_t addr, int index)
3119{
3120	struct ppc440spe_adma_chan *chan;
3121	dma_addr_t haddr = 0;
3122	struct ppc440spe_adma_desc_slot *iter = NULL;
3123
3124	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3125
3126	switch (chan->device->id) {
3127	case PPC440SPE_DMA0_ID:
3128	case PPC440SPE_DMA1_ID:
3129		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3130		 */
3131		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3132			/* RXOR-only or RXOR/WXOR operation */
3133			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3134				&sw_desc->flags) ?  2 : 3;
3135
3136			if (index == 0) {
3137				/* 1st slot (RXOR) */
3138				/* setup sources region (R1-2-3, R1-2-4,
3139				 * or R1-2-5)
3140				 */
3141				if (test_bit(PPC440SPE_DESC_RXOR12,
3142						&sw_desc->flags))
3143					haddr = DMA_RXOR12 <<
3144						DMA_CUED_REGION_OFF;
3145				else if (test_bit(PPC440SPE_DESC_RXOR123,
3146				    &sw_desc->flags))
3147					haddr = DMA_RXOR123 <<
3148						DMA_CUED_REGION_OFF;
3149				else if (test_bit(PPC440SPE_DESC_RXOR124,
3150				    &sw_desc->flags))
3151					haddr = DMA_RXOR124 <<
3152						DMA_CUED_REGION_OFF;
3153				else if (test_bit(PPC440SPE_DESC_RXOR125,
3154				    &sw_desc->flags))
3155					haddr = DMA_RXOR125 <<
3156						DMA_CUED_REGION_OFF;
3157				else
3158					BUG();
3159				haddr |= DMA_CUED_XOR_BASE;
3160				iter = ppc440spe_get_group_entry(sw_desc, 0);
3161			} else if (index < iskip) {
3162				/* 1st slot (RXOR)
3163				 * shall actually set source address only once
3164				 * instead of first <iskip>
3165				 */
3166				iter = NULL;
3167			} else {
3168				/* 2nd/3d and next slots (WXOR);
3169				 * skip first slot with RXOR
3170				 */
3171				haddr = DMA_CUED_XOR_HB;
3172				iter = ppc440spe_get_group_entry(sw_desc,
3173				    index - iskip + sw_desc->dst_cnt);
3174			}
3175		} else {
3176			int znum = 0;
3177
3178			/* WXOR-only operation; skip first slots with
3179			 * zeroing destinations
3180			 */
3181			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3182				znum++;
3183			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3184				znum++;
3185
3186			haddr = DMA_CUED_XOR_HB;
3187			iter = ppc440spe_get_group_entry(sw_desc,
3188					index + znum);
3189		}
3190
3191		if (likely(iter)) {
3192			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3193
3194			if (!index &&
3195			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3196			    sw_desc->dst_cnt == 2) {
3197				/* if we have two destinations for RXOR, then
3198				 * setup source in the second descr too
3199				 */
3200				iter = ppc440spe_get_group_entry(sw_desc, 1);
3201				ppc440spe_desc_set_src_addr(iter, chan, 0,
3202					haddr, addr);
3203			}
3204		}
3205		break;
3206
3207	case PPC440SPE_XOR_ID:
3208		/* DMA2 may do Biskup */
3209		iter = sw_desc->group_head;
3210		if (iter->dst_cnt == 2) {
3211			/* both P & Q calculations required; set P src here */
3212			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3213
3214			/* this is for Q */
3215			iter = ppc440spe_get_group_entry(sw_desc,
3216				sw_desc->descs_per_op);
3217		}
3218		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3219		break;
3220	}
3221}
3222
3223/**
3224 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3225 */
3226static void ppc440spe_adma_memcpy_xor_set_src(
3227		struct ppc440spe_adma_desc_slot *sw_desc,
3228		dma_addr_t addr, int index)
3229{
3230	struct ppc440spe_adma_chan *chan;
3231
3232	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3233	sw_desc = sw_desc->group_head;
3234
3235	if (likely(sw_desc))
3236		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3237}
3238
3239/**
3240 * ppc440spe_adma_dma2rxor_inc_addr  -
3241 */
3242static void ppc440spe_adma_dma2rxor_inc_addr(
3243		struct ppc440spe_adma_desc_slot *desc,
3244		struct ppc440spe_rxor *cursor, int index, int src_cnt)
3245{
3246	cursor->addr_count++;
3247	if (index == src_cnt - 1) {
3248		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3249	} else if (cursor->addr_count == XOR_MAX_OPS) {
3250		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3251		cursor->addr_count = 0;
3252		cursor->desc_count++;
3253	}
3254}
3255
3256/**
3257 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3258 */
3259static int ppc440spe_adma_dma2rxor_prep_src(
3260		struct ppc440spe_adma_desc_slot *hdesc,
3261		struct ppc440spe_rxor *cursor, int index,
3262		int src_cnt, u32 addr)
3263{
3264	int rval = 0;
3265	u32 sign;
3266	struct ppc440spe_adma_desc_slot *desc = hdesc;
3267	int i;
3268
3269	for (i = 0; i < cursor->desc_count; i++) {
3270		desc = list_entry(hdesc->chain_node.next,
3271				  struct ppc440spe_adma_desc_slot,
3272				  chain_node);
3273	}
3274
3275	switch (cursor->state) {
3276	case 0:
3277		if (addr == cursor->addrl + cursor->len) {
3278			/* direct RXOR */
3279			cursor->state = 1;
3280			cursor->xor_count++;
3281			if (index == src_cnt-1) {
3282				ppc440spe_rxor_set_region(desc,
3283					cursor->addr_count,
3284					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3285				ppc440spe_adma_dma2rxor_inc_addr(
3286					desc, cursor, index, src_cnt);
3287			}
3288		} else if (cursor->addrl == addr + cursor->len) {
3289			/* reverse RXOR */
3290			cursor->state = 1;
3291			cursor->xor_count++;
3292			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3293			if (index == src_cnt-1) {
3294				ppc440spe_rxor_set_region(desc,
3295					cursor->addr_count,
3296					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3297				ppc440spe_adma_dma2rxor_inc_addr(
3298					desc, cursor, index, src_cnt);
3299			}
3300		} else {
3301			printk(KERN_ERR "Cannot build "
3302				"DMA2 RXOR command block.\n");
3303			BUG();
3304		}
3305		break;
3306	case 1:
3307		sign = test_bit(cursor->addr_count,
3308				desc->reverse_flags)
3309			? -1 : 1;
3310		if (index == src_cnt-2 || (sign == -1
3311			&& addr != cursor->addrl - 2*cursor->len)) {
3312			cursor->state = 0;
3313			cursor->xor_count = 1;
3314			cursor->addrl = addr;
3315			ppc440spe_rxor_set_region(desc,
3316				cursor->addr_count,
3317				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3318			ppc440spe_adma_dma2rxor_inc_addr(
3319				desc, cursor, index, src_cnt);
3320		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
3321			cursor->state = 2;
3322			cursor->xor_count = 0;
3323			ppc440spe_rxor_set_region(desc,
3324				cursor->addr_count,
3325				DMA_RXOR123 << DMA_CUED_REGION_OFF);
3326			if (index == src_cnt-1) {
3327				ppc440spe_adma_dma2rxor_inc_addr(
3328					desc, cursor, index, src_cnt);
3329			}
3330		} else if (addr == cursor->addrl + 3*cursor->len) {
3331			cursor->state = 2;
3332			cursor->xor_count = 0;
3333			ppc440spe_rxor_set_region(desc,
3334				cursor->addr_count,
3335				DMA_RXOR124 << DMA_CUED_REGION_OFF);
3336			if (index == src_cnt-1) {
3337				ppc440spe_adma_dma2rxor_inc_addr(
3338					desc, cursor, index, src_cnt);
3339			}
3340		} else if (addr == cursor->addrl + 4*cursor->len) {
3341			cursor->state = 2;
3342			cursor->xor_count = 0;
3343			ppc440spe_rxor_set_region(desc,
3344				cursor->addr_count,
3345				DMA_RXOR125 << DMA_CUED_REGION_OFF);
3346			if (index == src_cnt-1) {
3347				ppc440spe_adma_dma2rxor_inc_addr(
3348					desc, cursor, index, src_cnt);
3349			}
3350		} else {
3351			cursor->state = 0;
3352			cursor->xor_count = 1;
3353			cursor->addrl = addr;
3354			ppc440spe_rxor_set_region(desc,
3355				cursor->addr_count,
3356				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3357			ppc440spe_adma_dma2rxor_inc_addr(
3358				desc, cursor, index, src_cnt);
3359		}
3360		break;
3361	case 2:
3362		cursor->state = 0;
3363		cursor->addrl = addr;
3364		cursor->xor_count++;
3365		if (index) {
3366			ppc440spe_adma_dma2rxor_inc_addr(
3367				desc, cursor, index, src_cnt);
3368		}
3369		break;
3370	}
3371
3372	return rval;
3373}
3374
3375/**
3376 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3377 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3378 */
3379static void ppc440spe_adma_dma2rxor_set_src(
3380		struct ppc440spe_adma_desc_slot *desc,
3381		int index, dma_addr_t addr)
3382{
3383	struct xor_cb *xcb = desc->hw_desc;
3384	int k = 0, op = 0, lop = 0;
3385
3386	/* get the RXOR operand which corresponds to index addr */
3387	while (op <= index) {
3388		lop = op;
3389		if (k == XOR_MAX_OPS) {
3390			k = 0;
3391			desc = list_entry(desc->chain_node.next,
3392				struct ppc440spe_adma_desc_slot, chain_node);
3393			xcb = desc->hw_desc;
3394
3395		}
3396		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3397		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3398			op += 2;
3399		else
3400			op += 3;
3401	}
3402
3403	BUG_ON(k < 1);
3404
3405	if (test_bit(k-1, desc->reverse_flags)) {
3406		/* reverse operand order; put last op in RXOR group */
3407		if (index == op - 1)
3408			ppc440spe_rxor_set_src(desc, k - 1, addr);
3409	} else {
3410		/* direct operand order; put first op in RXOR group */
3411		if (index == lop)
3412			ppc440spe_rxor_set_src(desc, k - 1, addr);
3413	}
3414}
3415
3416/**
3417 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3418 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3419 */
3420static void ppc440spe_adma_dma2rxor_set_mult(
3421		struct ppc440spe_adma_desc_slot *desc,
3422		int index, u8 mult)
3423{
3424	struct xor_cb *xcb = desc->hw_desc;
3425	int k = 0, op = 0, lop = 0;
3426
3427	/* get the RXOR operand which corresponds to index mult */
3428	while (op <= index) {
3429		lop = op;
3430		if (k == XOR_MAX_OPS) {
3431			k = 0;
3432			desc = list_entry(desc->chain_node.next,
3433					  struct ppc440spe_adma_desc_slot,
3434					  chain_node);
3435			xcb = desc->hw_desc;
3436
3437		}
3438		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3439		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3440			op += 2;
3441		else
3442			op += 3;
3443	}
3444
3445	BUG_ON(k < 1);
3446	if (test_bit(k-1, desc->reverse_flags)) {
3447		/* reverse order */
3448		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3449	} else {
3450		/* direct order */
3451		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3452	}
3453}
3454
3455/**
3456 * ppc440spe_init_rxor_cursor -
3457 */
3458static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3459{
3460	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3461	cursor->state = 2;
3462}
3463
3464/**
3465 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3466 * descriptor for the PQXOR operation
3467 */
3468static void ppc440spe_adma_pq_set_src_mult(
3469		struct ppc440spe_adma_desc_slot *sw_desc,
3470		unsigned char mult, int index, int dst_pos)
3471{
3472	struct ppc440spe_adma_chan *chan;
3473	u32 mult_idx, mult_dst;
3474	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3475
3476	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3477
3478	switch (chan->device->id) {
3479	case PPC440SPE_DMA0_ID:
3480	case PPC440SPE_DMA1_ID:
3481		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3482			int region = test_bit(PPC440SPE_DESC_RXOR12,
3483					&sw_desc->flags) ? 2 : 3;
3484
3485			if (index < region) {
3486				/* RXOR multipliers */
3487				iter = ppc440spe_get_group_entry(sw_desc,
3488					sw_desc->dst_cnt - 1);
3489				if (sw_desc->dst_cnt == 2)
3490					iter1 = ppc440spe_get_group_entry(
3491							sw_desc, 0);
3492
3493				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3494				mult_dst = DMA_CDB_SG_SRC;
3495			} else {
3496				/* WXOR multiplier */
3497				iter = ppc440spe_get_group_entry(sw_desc,
3498							index - region +
3499							sw_desc->dst_cnt);
3500				mult_idx = DMA_CUED_MULT1_OFF;
3501				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3502						     DMA_CDB_SG_DST1;
3503			}
3504		} else {
3505			int znum = 0;
3506
3507			/* WXOR-only;
3508			 * skip first slots with destinations (if ZERO_DST has
3509			 * place)
3510			 */
3511			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3512				znum++;
3513			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3514				znum++;
3515
3516			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3517			mult_idx = DMA_CUED_MULT1_OFF;
3518			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3519		}
3520
3521		if (likely(iter)) {
3522			ppc440spe_desc_set_src_mult(iter, chan,
3523				mult_idx, mult_dst, mult);
3524
3525			if (unlikely(iter1)) {
3526				/* if we have two destinations for RXOR, then
3527				 * we've just set Q mult. Set-up P now.
3528				 */
3529				ppc440spe_desc_set_src_mult(iter1, chan,
3530					mult_idx, mult_dst, 1);
3531			}
3532
3533		}
3534		break;
3535
3536	case PPC440SPE_XOR_ID:
3537		iter = sw_desc->group_head;
3538		if (sw_desc->dst_cnt == 2) {
3539			/* both P & Q calculations required; set P mult here */
3540			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3541
3542			/* and then set Q mult */
3543			iter = ppc440spe_get_group_entry(sw_desc,
3544			       sw_desc->descs_per_op);
3545		}
3546		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3547		break;
3548	}
3549}
3550
3551/**
3552 * ppc440spe_adma_free_chan_resources - free the resources allocated
3553 */
3554static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3555{
3556	struct ppc440spe_adma_chan *ppc440spe_chan;
3557	struct ppc440spe_adma_desc_slot *iter, *_iter;
3558	int in_use_descs = 0;
3559
3560	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3561	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3562
3563	spin_lock_bh(&ppc440spe_chan->lock);
3564	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3565					chain_node) {
3566		in_use_descs++;
3567		list_del(&iter->chain_node);
3568	}
3569	list_for_each_entry_safe_reverse(iter, _iter,
3570			&ppc440spe_chan->all_slots, slot_node) {
3571		list_del(&iter->slot_node);
3572		kfree(iter);
3573		ppc440spe_chan->slots_allocated--;
3574	}
3575	ppc440spe_chan->last_used = NULL;
3576
3577	dev_dbg(ppc440spe_chan->device->common.dev,
3578		"ppc440spe adma%d %s slots_allocated %d\n",
3579		ppc440spe_chan->device->id,
3580		__func__, ppc440spe_chan->slots_allocated);
3581	spin_unlock_bh(&ppc440spe_chan->lock);
3582
3583	/* one is ok since we left it on there on purpose */
3584	if (in_use_descs > 1)
3585		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3586			in_use_descs - 1);
3587}
3588
3589/**
3590 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3591 * @chan: ADMA channel handle
3592 * @cookie: ADMA transaction identifier
3593 * @txstate: a holder for the current state of the channel
3594 */
3595static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3596			dma_cookie_t cookie, struct dma_tx_state *txstate)
3597{
3598	struct ppc440spe_adma_chan *ppc440spe_chan;
3599	enum dma_status ret;
3600
3601	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3602	ret = dma_cookie_status(chan, cookie, txstate);
3603	if (ret == DMA_COMPLETE)
3604		return ret;
3605
3606	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3607
3608	return dma_cookie_status(chan, cookie, txstate);
3609}
3610
3611/**
3612 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3613 */
3614static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3615{
3616	struct ppc440spe_adma_chan *chan = data;
3617
3618	dev_dbg(chan->device->common.dev,
3619		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3620
3621	tasklet_schedule(&chan->irq_tasklet);
3622	ppc440spe_adma_device_clear_eot_status(chan);
3623
3624	return IRQ_HANDLED;
3625}
3626
3627/**
3628 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3629 *	do the same things as a eot handler
3630 */
3631static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3632{
3633	struct ppc440spe_adma_chan *chan = data;
3634
3635	dev_dbg(chan->device->common.dev,
3636		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3637
3638	tasklet_schedule(&chan->irq_tasklet);
3639	ppc440spe_adma_device_clear_eot_status(chan);
3640
3641	return IRQ_HANDLED;
3642}
3643
3644/**
3645 * ppc440spe_test_callback - called when test operation has been done
3646 */
3647static void ppc440spe_test_callback(void *unused)
3648{
3649	complete(&ppc440spe_r6_test_comp);
3650}
3651
3652/**
3653 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3654 */
3655static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3656{
3657	struct ppc440spe_adma_chan *ppc440spe_chan;
3658
3659	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3660	dev_dbg(ppc440spe_chan->device->common.dev,
3661		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3662		__func__, ppc440spe_chan->pending);
3663
3664	if (ppc440spe_chan->pending) {
3665		ppc440spe_chan->pending = 0;
3666		ppc440spe_chan_append(ppc440spe_chan);
3667	}
3668}
3669
3670/**
3671 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3672 *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
3673 *	specific operation)
3674 */
3675static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3676{
3677	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3678	dma_cookie_t cookie;
3679	int slot_cnt, slots_per_op;
3680
3681	dev_dbg(chan->device->common.dev,
3682		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3683
3684	spin_lock_bh(&chan->lock);
3685	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3686	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3687	if (sw_desc) {
3688		group_start = sw_desc->group_head;
3689		list_splice_init(&sw_desc->group_list, &chan->chain);
3690		async_tx_ack(&sw_desc->async_tx);
3691		ppc440spe_desc_init_null_xor(group_start);
3692
3693		cookie = dma_cookie_assign(&sw_desc->async_tx);
3694
3695		/* initialize the completed cookie to be less than
3696		 * the most recently used cookie
3697		 */
3698		chan->common.completed_cookie = cookie - 1;
3699
3700		/* channel should not be busy */
3701		BUG_ON(ppc440spe_chan_is_busy(chan));
3702
3703		/* set the descriptor address */
3704		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3705
3706		/* run the descriptor */
3707		ppc440spe_chan_run(chan);
3708	} else
3709		printk(KERN_ERR "ppc440spe adma%d"
3710			" failed to allocate null descriptor\n",
3711			chan->device->id);
3712	spin_unlock_bh(&chan->lock);
3713}
3714
3715/**
3716 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3717 *	For this we just perform one WXOR operation with the same source
3718 *	and destination addresses, the GF-multiplier is 1; so if RAID-6
3719 *	capabilities are enabled then we'll get src/dst filled with zero.
3720 */
3721static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3722{
3723	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3724	struct page *pg;
3725	char *a;
3726	dma_addr_t dma_addr, addrs[2];
3727	unsigned long op = 0;
3728	int rval = 0;
3729
3730	set_bit(PPC440SPE_DESC_WXOR, &op);
3731
3732	pg = alloc_page(GFP_KERNEL);
3733	if (!pg)
3734		return -ENOMEM;
3735
3736	spin_lock_bh(&chan->lock);
3737	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3738	if (sw_desc) {
3739		/* 1 src, 1 dsr, int_ena, WXOR */
3740		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3741		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3742			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3743			iter->unmap_len = PAGE_SIZE;
3744		}
3745	} else {
3746		rval = -EFAULT;
3747		spin_unlock_bh(&chan->lock);
3748		goto exit;
3749	}
3750	spin_unlock_bh(&chan->lock);
3751
3752	/* Fill the test page with ones */
3753	memset(page_address(pg), 0xFF, PAGE_SIZE);
3754	dma_addr = dma_map_page(chan->device->dev, pg, 0,
3755				PAGE_SIZE, DMA_BIDIRECTIONAL);
3756
3757	/* Setup addresses */
3758	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3759	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3760	addrs[0] = dma_addr;
3761	addrs[1] = 0;
3762	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3763
3764	async_tx_ack(&sw_desc->async_tx);
3765	sw_desc->async_tx.callback = ppc440spe_test_callback;
3766	sw_desc->async_tx.callback_param = NULL;
3767
3768	init_completion(&ppc440spe_r6_test_comp);
3769
3770	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3771	ppc440spe_adma_issue_pending(&chan->common);
3772
3773	wait_for_completion(&ppc440spe_r6_test_comp);
3774
3775	/* Now check if the test page is zeroed */
3776	a = page_address(pg);
3777	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3778		/* page is zero - RAID-6 enabled */
3779		rval = 0;
3780	} else {
3781		/* RAID-6 was not enabled */
3782		rval = -EINVAL;
3783	}
3784exit:
3785	__free_page(pg);
3786	return rval;
3787}
3788
3789static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3790{
3791	switch (adev->id) {
3792	case PPC440SPE_DMA0_ID:
3793	case PPC440SPE_DMA1_ID:
3794		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3795		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3796		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3797		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3798		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3799		break;
3800	case PPC440SPE_XOR_ID:
3801		dma_cap_set(DMA_XOR, adev->common.cap_mask);
3802		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3803		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3804		adev->common.cap_mask = adev->common.cap_mask;
3805		break;
3806	}
3807
3808	/* Set base routines */
3809	adev->common.device_alloc_chan_resources =
3810				ppc440spe_adma_alloc_chan_resources;
3811	adev->common.device_free_chan_resources =
3812				ppc440spe_adma_free_chan_resources;
3813	adev->common.device_tx_status = ppc440spe_adma_tx_status;
3814	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3815
3816	/* Set prep routines based on capability */
3817	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3818		adev->common.device_prep_dma_memcpy =
3819			ppc440spe_adma_prep_dma_memcpy;
3820	}
3821	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3822		adev->common.max_xor = XOR_MAX_OPS;
3823		adev->common.device_prep_dma_xor =
3824			ppc440spe_adma_prep_dma_xor;
3825	}
3826	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3827		switch (adev->id) {
3828		case PPC440SPE_DMA0_ID:
3829			dma_set_maxpq(&adev->common,
3830				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3831			break;
3832		case PPC440SPE_DMA1_ID:
3833			dma_set_maxpq(&adev->common,
3834				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3835			break;
3836		case PPC440SPE_XOR_ID:
3837			adev->common.max_pq = XOR_MAX_OPS * 3;
3838			break;
3839		}
3840		adev->common.device_prep_dma_pq =
3841			ppc440spe_adma_prep_dma_pq;
3842	}
3843	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3844		switch (adev->id) {
3845		case PPC440SPE_DMA0_ID:
3846			adev->common.max_pq = DMA0_FIFO_SIZE /
3847						sizeof(struct dma_cdb);
3848			break;
3849		case PPC440SPE_DMA1_ID:
3850			adev->common.max_pq = DMA1_FIFO_SIZE /
3851						sizeof(struct dma_cdb);
3852			break;
3853		}
3854		adev->common.device_prep_dma_pq_val =
3855			ppc440spe_adma_prep_dma_pqzero_sum;
3856	}
3857	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3858		switch (adev->id) {
3859		case PPC440SPE_DMA0_ID:
3860			adev->common.max_xor = DMA0_FIFO_SIZE /
3861						sizeof(struct dma_cdb);
3862			break;
3863		case PPC440SPE_DMA1_ID:
3864			adev->common.max_xor = DMA1_FIFO_SIZE /
3865						sizeof(struct dma_cdb);
3866			break;
3867		}
3868		adev->common.device_prep_dma_xor_val =
3869			ppc440spe_adma_prep_dma_xor_zero_sum;
3870	}
3871	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3872		adev->common.device_prep_dma_interrupt =
3873			ppc440spe_adma_prep_dma_interrupt;
3874	}
3875	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3876	  "( %s%s%s%s%s%s)\n",
3877	  dev_name(adev->dev),
3878	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3879	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3880	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3881	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3882	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3883	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3884}
3885
3886static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3887				     struct ppc440spe_adma_chan *chan,
3888				     int *initcode)
3889{
3890	struct platform_device *ofdev;
3891	struct device_node *np;
3892	int ret;
3893
3894	ofdev = container_of(adev->dev, struct platform_device, dev);
3895	np = ofdev->dev.of_node;
3896	if (adev->id != PPC440SPE_XOR_ID) {
3897		adev->err_irq = irq_of_parse_and_map(np, 1);
3898		if (adev->err_irq == NO_IRQ) {
3899			dev_warn(adev->dev, "no err irq resource?\n");
3900			*initcode = PPC_ADMA_INIT_IRQ2;
3901			adev->err_irq = -ENXIO;
3902		} else
3903			atomic_inc(&ppc440spe_adma_err_irq_ref);
3904	} else {
3905		adev->err_irq = -ENXIO;
3906	}
3907
3908	adev->irq = irq_of_parse_and_map(np, 0);
3909	if (adev->irq == NO_IRQ) {
3910		dev_err(adev->dev, "no irq resource\n");
3911		*initcode = PPC_ADMA_INIT_IRQ1;
3912		ret = -ENXIO;
3913		goto err_irq_map;
3914	}
3915	dev_dbg(adev->dev, "irq %d, err irq %d\n",
3916		adev->irq, adev->err_irq);
3917
3918	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3919			  0, dev_driver_string(adev->dev), chan);
3920	if (ret) {
3921		dev_err(adev->dev, "can't request irq %d\n",
3922			adev->irq);
3923		*initcode = PPC_ADMA_INIT_IRQ1;
3924		ret = -EIO;
3925		goto err_req1;
3926	}
3927
3928	/* only DMA engines have a separate error IRQ
3929	 * so it's Ok if err_irq < 0 in XOR engine case.
3930	 */
3931	if (adev->err_irq > 0) {
3932		/* both DMA engines share common error IRQ */
3933		ret = request_irq(adev->err_irq,
3934				  ppc440spe_adma_err_handler,
3935				  IRQF_SHARED,
3936				  dev_driver_string(adev->dev),
3937				  chan);
3938		if (ret) {
3939			dev_err(adev->dev, "can't request irq %d\n",
3940				adev->err_irq);
3941			*initcode = PPC_ADMA_INIT_IRQ2;
3942			ret = -EIO;
3943			goto err_req2;
3944		}
3945	}
3946
3947	if (adev->id == PPC440SPE_XOR_ID) {
3948		/* enable XOR engine interrupts */
3949		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3950			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3951			    &adev->xor_reg->ier);
3952	} else {
3953		u32 mask, enable;
3954
3955		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3956		if (!np) {
3957			pr_err("%s: can't find I2O device tree node\n",
3958				__func__);
3959			ret = -ENODEV;
3960			goto err_req2;
3961		}
3962		adev->i2o_reg = of_iomap(np, 0);
3963		if (!adev->i2o_reg) {
3964			pr_err("%s: failed to map I2O registers\n", __func__);
3965			of_node_put(np);
3966			ret = -EINVAL;
3967			goto err_req2;
3968		}
3969		of_node_put(np);
3970		/* Unmask 'CS FIFO Attention' interrupts and
3971		 * enable generating interrupts on errors
3972		 */
3973		enable = (adev->id == PPC440SPE_DMA0_ID) ?
3974			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3975			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3976		mask = ioread32(&adev->i2o_reg->iopim) & enable;
3977		iowrite32(mask, &adev->i2o_reg->iopim);
3978	}
3979	return 0;
3980
3981err_req2:
3982	free_irq(adev->irq, chan);
3983err_req1:
3984	irq_dispose_mapping(adev->irq);
3985err_irq_map:
3986	if (adev->err_irq > 0) {
3987		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3988			irq_dispose_mapping(adev->err_irq);
3989	}
3990	return ret;
3991}
3992
3993static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3994					struct ppc440spe_adma_chan *chan)
3995{
3996	u32 mask, disable;
3997
3998	if (adev->id == PPC440SPE_XOR_ID) {
3999		/* disable XOR engine interrupts */
4000		mask = ioread32be(&adev->xor_reg->ier);
4001		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4002			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4003		iowrite32be(mask, &adev->xor_reg->ier);
4004	} else {
4005		/* disable DMAx engine interrupts */
4006		disable = (adev->id == PPC440SPE_DMA0_ID) ?
4007			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4008			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4009		mask = ioread32(&adev->i2o_reg->iopim) | disable;
4010		iowrite32(mask, &adev->i2o_reg->iopim);
4011	}
4012	free_irq(adev->irq, chan);
4013	irq_dispose_mapping(adev->irq);
4014	if (adev->err_irq > 0) {
4015		free_irq(adev->err_irq, chan);
4016		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4017			irq_dispose_mapping(adev->err_irq);
4018			iounmap(adev->i2o_reg);
4019		}
4020	}
4021}
4022
4023/**
4024 * ppc440spe_adma_probe - probe the asynch device
4025 */
4026static int ppc440spe_adma_probe(struct platform_device *ofdev)
4027{
4028	struct device_node *np = ofdev->dev.of_node;
4029	struct resource res;
4030	struct ppc440spe_adma_device *adev;
4031	struct ppc440spe_adma_chan *chan;
4032	struct ppc_dma_chan_ref *ref, *_ref;
4033	int ret = 0, initcode = PPC_ADMA_INIT_OK;
4034	const u32 *idx;
4035	int len;
4036	void *regs;
4037	u32 id, pool_size;
4038
4039	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4040		id = PPC440SPE_XOR_ID;
4041		/* As far as the XOR engine is concerned, it does not
4042		 * use FIFOs but uses linked list. So there is no dependency
4043		 * between pool size to allocate and the engine configuration.
4044		 */
4045		pool_size = PAGE_SIZE << 1;
4046	} else {
4047		/* it is DMA0 or DMA1 */
4048		idx = of_get_property(np, "cell-index", &len);
4049		if (!idx || (len != sizeof(u32))) {
4050			dev_err(&ofdev->dev, "Device node %s has missing "
4051				"or invalid cell-index property\n",
4052				np->full_name);
4053			return -EINVAL;
4054		}
4055		id = *idx;
4056		/* DMA0,1 engines use FIFO to maintain CDBs, so we
4057		 * should allocate the pool accordingly to size of this
4058		 * FIFO. Thus, the pool size depends on the FIFO depth:
4059		 * how much CDBs pointers the FIFO may contain then so
4060		 * much CDBs we should provide in the pool.
4061		 * That is
4062		 *   CDB size = 32B;
4063		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4064		 *   Pool size = CDBs number * CDB size =
4065		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4066		 */
4067		pool_size = (id == PPC440SPE_DMA0_ID) ?
4068			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4069		pool_size <<= 2;
4070	}
4071
4072	if (of_address_to_resource(np, 0, &res)) {
4073		dev_err(&ofdev->dev, "failed to get memory resource\n");
4074		initcode = PPC_ADMA_INIT_MEMRES;
4075		ret = -ENODEV;
4076		goto out;
4077	}
4078
4079	if (!request_mem_region(res.start, resource_size(&res),
4080				dev_driver_string(&ofdev->dev))) {
4081		dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4082			&res);
4083		initcode = PPC_ADMA_INIT_MEMREG;
4084		ret = -EBUSY;
4085		goto out;
4086	}
4087
4088	/* create a device */
4089	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4090	if (!adev) {
4091		dev_err(&ofdev->dev, "failed to allocate device\n");
4092		initcode = PPC_ADMA_INIT_ALLOC;
4093		ret = -ENOMEM;
4094		goto err_adev_alloc;
4095	}
4096
4097	adev->id = id;
4098	adev->pool_size = pool_size;
4099	/* allocate coherent memory for hardware descriptors */
4100	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4101					adev->pool_size, &adev->dma_desc_pool,
4102					GFP_KERNEL);
4103	if (adev->dma_desc_pool_virt == NULL) {
4104		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4105			"memory for hardware descriptors\n",
4106			adev->pool_size);
4107		initcode = PPC_ADMA_INIT_COHERENT;
4108		ret = -ENOMEM;
4109		goto err_dma_alloc;
4110	}
4111	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4112		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4113
4114	regs = ioremap(res.start, resource_size(&res));
4115	if (!regs) {
4116		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4117		ret = -ENOMEM;
4118		goto err_regs_alloc;
4119	}
4120
4121	if (adev->id == PPC440SPE_XOR_ID) {
4122		adev->xor_reg = regs;
4123		/* Reset XOR */
4124		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4125		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4126	} else {
4127		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4128				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4129		adev->dma_reg = regs;
4130		/* DMAx_FIFO_SIZE is defined in bytes,
4131		 * <fsiz> - is defined in number of CDB pointers (8byte).
4132		 * DMA FIFO Length = CSlength + CPlength, where
4133		 * CSlength = CPlength = (fsiz + 1) * 8.
4134		 */
4135		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4136			  &adev->dma_reg->fsiz);
4137		/* Configure DMA engine */
4138		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4139			  &adev->dma_reg->cfg);
4140		/* Clear Status */
4141		iowrite32(~0, &adev->dma_reg->dsts);
4142	}
4143
4144	adev->dev = &ofdev->dev;
4145	adev->common.dev = &ofdev->dev;
4146	INIT_LIST_HEAD(&adev->common.channels);
4147	platform_set_drvdata(ofdev, adev);
4148
4149	/* create a channel */
4150	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4151	if (!chan) {
4152		dev_err(&ofdev->dev, "can't allocate channel structure\n");
4153		initcode = PPC_ADMA_INIT_CHANNEL;
4154		ret = -ENOMEM;
4155		goto err_chan_alloc;
4156	}
4157
4158	spin_lock_init(&chan->lock);
4159	INIT_LIST_HEAD(&chan->chain);
4160	INIT_LIST_HEAD(&chan->all_slots);
4161	chan->device = adev;
4162	chan->common.device = &adev->common;
4163	dma_cookie_init(&chan->common);
4164	list_add_tail(&chan->common.device_node, &adev->common.channels);
4165	tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4166		     (unsigned long)chan);
4167
4168	/* allocate and map helper pages for async validation or
4169	 * async_mult/async_sum_product operations on DMA0/1.
4170	 */
4171	if (adev->id != PPC440SPE_XOR_ID) {
4172		chan->pdest_page = alloc_page(GFP_KERNEL);
4173		chan->qdest_page = alloc_page(GFP_KERNEL);
4174		if (!chan->pdest_page ||
4175		    !chan->qdest_page) {
4176			if (chan->pdest_page)
4177				__free_page(chan->pdest_page);
4178			if (chan->qdest_page)
4179				__free_page(chan->qdest_page);
4180			ret = -ENOMEM;
4181			goto err_page_alloc;
4182		}
4183		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4184					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4185		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4186					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4187	}
4188
4189	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4190	if (ref) {
4191		ref->chan = &chan->common;
4192		INIT_LIST_HEAD(&ref->node);
4193		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4194	} else {
4195		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4196		ret = -ENOMEM;
4197		goto err_ref_alloc;
4198	}
4199
4200	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4201	if (ret)
4202		goto err_irq;
4203
4204	ppc440spe_adma_init_capabilities(adev);
4205
4206	ret = dma_async_device_register(&adev->common);
4207	if (ret) {
4208		initcode = PPC_ADMA_INIT_REGISTER;
4209		dev_err(&ofdev->dev, "failed to register dma device\n");
4210		goto err_dev_reg;
4211	}
4212
4213	goto out;
4214
4215err_dev_reg:
4216	ppc440spe_adma_release_irqs(adev, chan);
4217err_irq:
4218	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4219		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4220			list_del(&ref->node);
4221			kfree(ref);
4222		}
4223	}
4224err_ref_alloc:
4225	if (adev->id != PPC440SPE_XOR_ID) {
4226		dma_unmap_page(&ofdev->dev, chan->pdest,
4227			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4228		dma_unmap_page(&ofdev->dev, chan->qdest,
4229			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4230		__free_page(chan->pdest_page);
4231		__free_page(chan->qdest_page);
4232	}
4233err_page_alloc:
4234	kfree(chan);
4235err_chan_alloc:
4236	if (adev->id == PPC440SPE_XOR_ID)
4237		iounmap(adev->xor_reg);
4238	else
4239		iounmap(adev->dma_reg);
4240err_regs_alloc:
4241	dma_free_coherent(adev->dev, adev->pool_size,
4242			  adev->dma_desc_pool_virt,
4243			  adev->dma_desc_pool);
4244err_dma_alloc:
4245	kfree(adev);
4246err_adev_alloc:
4247	release_mem_region(res.start, resource_size(&res));
4248out:
4249	if (id < PPC440SPE_ADMA_ENGINES_NUM)
4250		ppc440spe_adma_devices[id] = initcode;
4251
4252	return ret;
4253}
4254
4255/**
4256 * ppc440spe_adma_remove - remove the asynch device
4257 */
4258static int ppc440spe_adma_remove(struct platform_device *ofdev)
4259{
4260	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4261	struct device_node *np = ofdev->dev.of_node;
4262	struct resource res;
4263	struct dma_chan *chan, *_chan;
4264	struct ppc_dma_chan_ref *ref, *_ref;
4265	struct ppc440spe_adma_chan *ppc440spe_chan;
4266
4267	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4268		ppc440spe_adma_devices[adev->id] = -1;
4269
4270	dma_async_device_unregister(&adev->common);
4271
4272	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4273				 device_node) {
4274		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4275		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4276		tasklet_kill(&ppc440spe_chan->irq_tasklet);
4277		if (adev->id != PPC440SPE_XOR_ID) {
4278			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4279					PAGE_SIZE, DMA_BIDIRECTIONAL);
4280			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4281					PAGE_SIZE, DMA_BIDIRECTIONAL);
4282			__free_page(ppc440spe_chan->pdest_page);
4283			__free_page(ppc440spe_chan->qdest_page);
4284		}
4285		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4286					 node) {
4287			if (ppc440spe_chan ==
4288			    to_ppc440spe_adma_chan(ref->chan)) {
4289				list_del(&ref->node);
4290				kfree(ref);
4291			}
4292		}
4293		list_del(&chan->device_node);
4294		kfree(ppc440spe_chan);
4295	}
4296
4297	dma_free_coherent(adev->dev, adev->pool_size,
4298			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
4299	if (adev->id == PPC440SPE_XOR_ID)
4300		iounmap(adev->xor_reg);
4301	else
4302		iounmap(adev->dma_reg);
4303	of_address_to_resource(np, 0, &res);
4304	release_mem_region(res.start, resource_size(&res));
4305	kfree(adev);
4306	return 0;
4307}
4308
4309/*
4310 * /sys driver interface to enable h/w RAID-6 capabilities
4311 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4312 * directory are "devices", "enable" and "poly".
4313 * "devices" shows available engines.
4314 * "enable" is used to enable RAID-6 capabilities or to check
4315 * whether these has been activated.
4316 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4317 */
4318
4319static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4320{
4321	ssize_t size = 0;
4322	int i;
4323
4324	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4325		if (ppc440spe_adma_devices[i] == -1)
4326			continue;
4327		size += snprintf(buf + size, PAGE_SIZE - size,
4328				 "PPC440SP(E)-ADMA.%d: %s\n", i,
4329				 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4330	}
4331	return size;
4332}
4333
4334static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4335{
4336	return snprintf(buf, PAGE_SIZE,
4337			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4338			ppc440spe_r6_enabled ? "EN" : "DIS");
4339}
4340
4341static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4342					const char *buf, size_t count)
4343{
4344	unsigned long val;
4345
4346	if (!count || count > 11)
4347		return -EINVAL;
4348
4349	if (!ppc440spe_r6_tchan)
4350		return -EFAULT;
4351
4352	/* Write a key */
4353	sscanf(buf, "%lx", &val);
4354	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4355	isync();
4356
4357	/* Verify whether it really works now */
4358	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4359		pr_info("PPC440SP(e) RAID-6 has been activated "
4360			"successfully\n");
4361		ppc440spe_r6_enabled = 1;
4362	} else {
4363		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4364			" Error key ?\n");
4365		ppc440spe_r6_enabled = 0;
4366	}
4367	return count;
4368}
4369
4370static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4371{
4372	ssize_t size = 0;
4373	u32 reg;
4374
4375#ifdef CONFIG_440SP
4376	/* 440SP has fixed polynomial */
4377	reg = 0x4d;
4378#else
4379	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4380	reg >>= MQ0_CFBHL_POLY;
4381	reg &= 0xFF;
4382#endif
4383
4384	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4385			"uses 0x1%02x polynomial.\n", reg);
4386	return size;
4387}
4388
4389static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4390				      const char *buf, size_t count)
4391{
4392	unsigned long reg, val;
4393
4394#ifdef CONFIG_440SP
4395	/* 440SP uses default 0x14D polynomial only */
4396	return -EINVAL;
4397#endif
4398
4399	if (!count || count > 6)
4400		return -EINVAL;
4401
4402	/* e.g., 0x14D or 0x11D */
4403	sscanf(buf, "%lx", &val);
4404
4405	if (val & ~0x1FF)
4406		return -EINVAL;
4407
4408	val &= 0xFF;
4409	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4410	reg &= ~(0xFF << MQ0_CFBHL_POLY);
4411	reg |= val << MQ0_CFBHL_POLY;
4412	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4413
4414	return count;
4415}
4416
4417static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4418static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4419		   store_ppc440spe_r6enable);
4420static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4421		   store_ppc440spe_r6poly);
4422
4423/*
4424 * Common initialisation for RAID engines; allocate memory for
4425 * DMAx FIFOs, perform configuration common for all DMA engines.
4426 * Further DMA engine specific configuration is done at probe time.
4427 */
4428static int ppc440spe_configure_raid_devices(void)
4429{
4430	struct device_node *np;
4431	struct resource i2o_res;
4432	struct i2o_regs __iomem *i2o_reg;
4433	dcr_host_t i2o_dcr_host;
4434	unsigned int dcr_base, dcr_len;
4435	int i, ret;
4436
4437	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4438	if (!np) {
4439		pr_err("%s: can't find I2O device tree node\n",
4440			__func__);
4441		return -ENODEV;
4442	}
4443
4444	if (of_address_to_resource(np, 0, &i2o_res)) {
4445		of_node_put(np);
4446		return -EINVAL;
4447	}
4448
4449	i2o_reg = of_iomap(np, 0);
4450	if (!i2o_reg) {
4451		pr_err("%s: failed to map I2O registers\n", __func__);
4452		of_node_put(np);
4453		return -EINVAL;
4454	}
4455
4456	/* Get I2O DCRs base */
4457	dcr_base = dcr_resource_start(np, 0);
4458	dcr_len = dcr_resource_len(np, 0);
4459	if (!dcr_base && !dcr_len) {
4460		pr_err("%s: can't get DCR registers base/len!\n",
4461			np->full_name);
4462		of_node_put(np);
4463		iounmap(i2o_reg);
4464		return -ENODEV;
4465	}
4466
4467	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4468	if (!DCR_MAP_OK(i2o_dcr_host)) {
4469		pr_err("%s: failed to map DCRs!\n", np->full_name);
4470		of_node_put(np);
4471		iounmap(i2o_reg);
4472		return -ENODEV;
4473	}
4474	of_node_put(np);
4475
4476	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4477	 * the base address of FIFO memory space.
4478	 * Actually we need twice more physical memory than programmed in the
4479	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4480	 */
4481	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4482					 GFP_KERNEL);
4483	if (!ppc440spe_dma_fifo_buf) {
4484		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4485		iounmap(i2o_reg);
4486		dcr_unmap(i2o_dcr_host, dcr_len);
4487		return -ENOMEM;
4488	}
4489
4490	/*
4491	 * Configure h/w
4492	 */
4493	/* Reset I2O/DMA */
4494	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4495	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4496
4497	/* Setup the base address of mmaped registers */
4498	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4499	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4500						I2O_REG_ENABLE);
4501	dcr_unmap(i2o_dcr_host, dcr_len);
4502
4503	/* Setup FIFO memory space base address */
4504	iowrite32(0, &i2o_reg->ifbah);
4505	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4506
4507	/* set zero FIFO size for I2O, so the whole
4508	 * ppc440spe_dma_fifo_buf is used by DMAs.
4509	 * DMAx_FIFOs will be configured while probe.
4510	 */
4511	iowrite32(0, &i2o_reg->ifsiz);
4512	iounmap(i2o_reg);
4513
4514	/* To prepare WXOR/RXOR functionality we need access to
4515	 * Memory Queue Module DCRs (finally it will be enabled
4516	 * via /sys interface of the ppc440spe ADMA driver).
4517	 */
4518	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4519	if (!np) {
4520		pr_err("%s: can't find MQ device tree node\n",
4521			__func__);
4522		ret = -ENODEV;
4523		goto out_free;
4524	}
4525
4526	/* Get MQ DCRs base */
4527	dcr_base = dcr_resource_start(np, 0);
4528	dcr_len = dcr_resource_len(np, 0);
4529	if (!dcr_base && !dcr_len) {
4530		pr_err("%s: can't get DCR registers base/len!\n",
4531			np->full_name);
4532		ret = -ENODEV;
4533		goto out_mq;
4534	}
4535
4536	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4537	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4538		pr_err("%s: failed to map DCRs!\n", np->full_name);
4539		ret = -ENODEV;
4540		goto out_mq;
4541	}
4542	of_node_put(np);
4543	ppc440spe_mq_dcr_len = dcr_len;
4544
4545	/* Set HB alias */
4546	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4547
4548	/* Set:
4549	 * - LL transaction passing limit to 1;
4550	 * - Memory controller cycle limit to 1;
4551	 * - Galois Polynomial to 0x14d (default)
4552	 */
4553	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4554		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4555		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4556
4557	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4558	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4559		ppc440spe_adma_devices[i] = -1;
4560
4561	return 0;
4562
4563out_mq:
4564	of_node_put(np);
4565out_free:
4566	kfree(ppc440spe_dma_fifo_buf);
4567	return ret;
4568}
4569
4570static const struct of_device_id ppc440spe_adma_of_match[] = {
4571	{ .compatible	= "ibm,dma-440spe", },
4572	{ .compatible	= "amcc,xor-accelerator", },
4573	{},
4574};
4575MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4576
4577static struct platform_driver ppc440spe_adma_driver = {
4578	.probe = ppc440spe_adma_probe,
4579	.remove = ppc440spe_adma_remove,
4580	.driver = {
4581		.name = "PPC440SP(E)-ADMA",
4582		.owner = THIS_MODULE,
4583		.of_match_table = ppc440spe_adma_of_match,
4584	},
4585};
4586
4587static __init int ppc440spe_adma_init(void)
4588{
4589	int ret;
4590
4591	ret = ppc440spe_configure_raid_devices();
4592	if (ret)
4593		return ret;
4594
4595	ret = platform_driver_register(&ppc440spe_adma_driver);
4596	if (ret) {
4597		pr_err("%s: failed to register platform driver\n",
4598			__func__);
4599		goto out_reg;
4600	}
4601
4602	/* Initialization status */
4603	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4604				 &driver_attr_devices);
4605	if (ret)
4606		goto out_dev;
4607
4608	/* RAID-6 h/w enable entry */
4609	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4610				 &driver_attr_enable);
4611	if (ret)
4612		goto out_en;
4613
4614	/* GF polynomial to use */
4615	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4616				 &driver_attr_poly);
4617	if (!ret)
4618		return ret;
4619
4620	driver_remove_file(&ppc440spe_adma_driver.driver,
4621			   &driver_attr_enable);
4622out_en:
4623	driver_remove_file(&ppc440spe_adma_driver.driver,
4624			   &driver_attr_devices);
4625out_dev:
4626	/* User will not be able to enable h/w RAID-6 */
4627	pr_err("%s: failed to create RAID-6 driver interface\n",
4628		__func__);
4629	platform_driver_unregister(&ppc440spe_adma_driver);
4630out_reg:
4631	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4632	kfree(ppc440spe_dma_fifo_buf);
4633	return ret;
4634}
4635
4636static void __exit ppc440spe_adma_exit(void)
4637{
4638	driver_remove_file(&ppc440spe_adma_driver.driver,
4639			   &driver_attr_poly);
4640	driver_remove_file(&ppc440spe_adma_driver.driver,
4641			   &driver_attr_enable);
4642	driver_remove_file(&ppc440spe_adma_driver.driver,
4643			   &driver_attr_devices);
4644	platform_driver_unregister(&ppc440spe_adma_driver);
4645	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4646	kfree(ppc440spe_dma_fifo_buf);
4647}
4648
4649arch_initcall(ppc440spe_adma_init);
4650module_exit(ppc440spe_adma_exit);
4651
4652MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4653MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4654MODULE_LICENSE("GPL");
4655