1/*
2 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 *
22 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23 *
24 */
25
26#define MHZ (1000 * 1000)
27
28#define MASK(w)	((1 << w) - 1)
29
30#define SYS_GPCPLL_CFG_BASE			0x00137000
31#define GPC_BCASE_GPCPLL_CFG_BASE		0x00132800
32
33#define GPCPLL_CFG		(SYS_GPCPLL_CFG_BASE + 0)
34#define GPCPLL_CFG_ENABLE	BIT(0)
35#define GPCPLL_CFG_IDDQ		BIT(1)
36#define GPCPLL_CFG_LOCK_DET_OFF	BIT(4)
37#define GPCPLL_CFG_LOCK		BIT(17)
38
39#define GPCPLL_COEFF		(SYS_GPCPLL_CFG_BASE + 4)
40#define GPCPLL_COEFF_M_SHIFT	0
41#define GPCPLL_COEFF_M_WIDTH	8
42#define GPCPLL_COEFF_N_SHIFT	8
43#define GPCPLL_COEFF_N_WIDTH	8
44#define GPCPLL_COEFF_P_SHIFT	16
45#define GPCPLL_COEFF_P_WIDTH	6
46
47#define GPCPLL_CFG2			(SYS_GPCPLL_CFG_BASE + 0xc)
48#define GPCPLL_CFG2_SETUP2_SHIFT	16
49#define GPCPLL_CFG2_PLL_STEPA_SHIFT	24
50
51#define GPCPLL_CFG3			(SYS_GPCPLL_CFG_BASE + 0x18)
52#define GPCPLL_CFG3_PLL_STEPB_SHIFT	16
53
54#define GPCPLL_NDIV_SLOWDOWN			(SYS_GPCPLL_CFG_BASE + 0x1c)
55#define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT	0
56#define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT	8
57#define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT	16
58#define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT	22
59#define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT	31
60
61#define SEL_VCO				(SYS_GPCPLL_CFG_BASE + 0x100)
62#define SEL_VCO_GPC2CLK_OUT_SHIFT	0
63
64#define GPC2CLK_OUT			(SYS_GPCPLL_CFG_BASE + 0x250)
65#define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH	1
66#define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT	31
67#define GPC2CLK_OUT_SDIV14_INDIV4_MODE	1
68#define GPC2CLK_OUT_VCODIV_WIDTH	6
69#define GPC2CLK_OUT_VCODIV_SHIFT	8
70#define GPC2CLK_OUT_VCODIV1		0
71#define GPC2CLK_OUT_VCODIV_MASK		(MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
72					GPC2CLK_OUT_VCODIV_SHIFT)
73#define	GPC2CLK_OUT_BYPDIV_WIDTH	6
74#define GPC2CLK_OUT_BYPDIV_SHIFT	0
75#define GPC2CLK_OUT_BYPDIV31		0x3c
76#define GPC2CLK_OUT_INIT_MASK	((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
77		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
78		| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
79		| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
80#define GPC2CLK_OUT_INIT_VAL	((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
81		GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
82		| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
83		| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
84
85#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG	(GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
86#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT	24
87#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
88	    (0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
89
90#include <subdev/clock.h>
91#include <subdev/timer.h>
92
93#ifdef __KERNEL__
94#include <nouveau_platform.h>
95#endif
96
97static const u8 pl_to_div[] = {
98/* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
99/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
100};
101
102/* All frequencies in Mhz */
103struct gk20a_clk_pllg_params {
104	u32 min_vco, max_vco;
105	u32 min_u, max_u;
106	u32 min_m, max_m;
107	u32 min_n, max_n;
108	u32 min_pl, max_pl;
109};
110
111static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
112	.min_vco = 1000, .max_vco = 1700,
113	.min_u = 12, .max_u = 38,
114	.min_m = 1, .max_m = 255,
115	.min_n = 8, .max_n = 255,
116	.min_pl = 1, .max_pl = 32,
117};
118
119struct gk20a_clock_priv {
120	struct nouveau_clock base;
121	const struct gk20a_clk_pllg_params *params;
122	u32 m, n, pl;
123	u32 parent_rate;
124};
125#define to_gk20a_clock(base) container_of(base, struct gk20a_clock_priv, base)
126
127static void
128gk20a_pllg_read_mnp(struct gk20a_clock_priv *priv)
129{
130	u32 val;
131
132	val = nv_rd32(priv, GPCPLL_COEFF);
133	priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
134	priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
135	priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
136}
137
138static u32
139gk20a_pllg_calc_rate(struct gk20a_clock_priv *priv)
140{
141	u32 rate;
142	u32 divider;
143
144	rate = priv->parent_rate * priv->n;
145	divider = priv->m * pl_to_div[priv->pl];
146	do_div(rate, divider);
147
148	return rate / 2;
149}
150
151static int
152gk20a_pllg_calc_mnp(struct gk20a_clock_priv *priv, unsigned long rate)
153{
154	u32 target_clk_f, ref_clk_f, target_freq;
155	u32 min_vco_f, max_vco_f;
156	u32 low_pl, high_pl, best_pl;
157	u32 target_vco_f, vco_f;
158	u32 best_m, best_n;
159	u32 u_f;
160	u32 m, n, n2;
161	u32 delta, lwv, best_delta = ~0;
162	u32 pl;
163
164	target_clk_f = rate * 2 / MHZ;
165	ref_clk_f = priv->parent_rate / MHZ;
166
167	max_vco_f = priv->params->max_vco;
168	min_vco_f = priv->params->min_vco;
169	best_m = priv->params->max_m;
170	best_n = priv->params->min_n;
171	best_pl = priv->params->min_pl;
172
173	target_vco_f = target_clk_f + target_clk_f / 50;
174	if (max_vco_f < target_vco_f)
175		max_vco_f = target_vco_f;
176
177	/* min_pl <= high_pl <= max_pl */
178	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
179	high_pl = min(high_pl, priv->params->max_pl);
180	high_pl = max(high_pl, priv->params->min_pl);
181
182	/* min_pl <= low_pl <= max_pl */
183	low_pl = min_vco_f / target_vco_f;
184	low_pl = min(low_pl, priv->params->max_pl);
185	low_pl = max(low_pl, priv->params->min_pl);
186
187	/* Find Indices of high_pl and low_pl */
188	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
189		if (pl_to_div[pl] >= low_pl) {
190			low_pl = pl;
191			break;
192		}
193	}
194	for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
195		if (pl_to_div[pl] >= high_pl) {
196			high_pl = pl;
197			break;
198		}
199	}
200
201	nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
202		 pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
203
204	/* Select lowest possible VCO */
205	for (pl = low_pl; pl <= high_pl; pl++) {
206		target_vco_f = target_clk_f * pl_to_div[pl];
207		for (m = priv->params->min_m; m <= priv->params->max_m; m++) {
208			u_f = ref_clk_f / m;
209
210			if (u_f < priv->params->min_u)
211				break;
212			if (u_f > priv->params->max_u)
213				continue;
214
215			n = (target_vco_f * m) / ref_clk_f;
216			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
217
218			if (n > priv->params->max_n)
219				break;
220
221			for (; n <= n2; n++) {
222				if (n < priv->params->min_n)
223					continue;
224				if (n > priv->params->max_n)
225					break;
226
227				vco_f = ref_clk_f * n / m;
228
229				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
230					lwv = (vco_f + (pl_to_div[pl] / 2))
231						/ pl_to_div[pl];
232					delta = abs(lwv - target_clk_f);
233
234					if (delta < best_delta) {
235						best_delta = delta;
236						best_m = m;
237						best_n = n;
238						best_pl = pl;
239
240						if (best_delta == 0)
241							goto found_match;
242					}
243				}
244			}
245		}
246	}
247
248found_match:
249	WARN_ON(best_delta == ~0);
250
251	if (best_delta != 0)
252		nv_debug(priv, "no best match for target @ %dMHz on gpc_pll",
253			 target_clk_f);
254
255	priv->m = best_m;
256	priv->n = best_n;
257	priv->pl = best_pl;
258
259	target_freq = gk20a_pllg_calc_rate(priv) / MHZ;
260
261	nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
262		 target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]);
263
264	return 0;
265}
266
267static int
268gk20a_pllg_slide(struct gk20a_clock_priv *priv, u32 n)
269{
270	u32 val;
271	int ramp_timeout;
272
273	/* get old coefficients */
274	val = nv_rd32(priv, GPCPLL_COEFF);
275	/* do nothing if NDIV is the same */
276	if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
277		return 0;
278
279	/* setup */
280	nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
281		0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
282	nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
283		0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
284
285	/* pll slowdown mode */
286	nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
287		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
288		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
289
290	/* new ndiv ready for ramp */
291	val = nv_rd32(priv, GPCPLL_COEFF);
292	val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
293	val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
294	udelay(1);
295	nv_wr32(priv, GPCPLL_COEFF, val);
296
297	/* dynamic ramp to new ndiv */
298	val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
299	val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
300	udelay(1);
301	nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val);
302
303	for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
304		udelay(1);
305		val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
306		if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
307			break;
308	}
309
310	/* exit slowdown mode */
311	nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
312		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
313		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
314	nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
315
316	if (ramp_timeout <= 0) {
317		nv_error(priv, "gpcpll dynamic ramp timeout\n");
318		return -ETIMEDOUT;
319	}
320
321	return 0;
322}
323
324static void
325_gk20a_pllg_enable(struct gk20a_clock_priv *priv)
326{
327	nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
328	nv_rd32(priv, GPCPLL_CFG);
329}
330
331static void
332_gk20a_pllg_disable(struct gk20a_clock_priv *priv)
333{
334	nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
335	nv_rd32(priv, GPCPLL_CFG);
336}
337
338static int
339_gk20a_pllg_program_mnp(struct gk20a_clock_priv *priv, bool allow_slide)
340{
341	u32 val, cfg;
342	u32 m_old, pl_old, n_lo;
343
344	/* get old coefficients */
345	val = nv_rd32(priv, GPCPLL_COEFF);
346	m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
347	pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
348
349	/* do NDIV slide if there is no change in M and PL */
350	cfg = nv_rd32(priv, GPCPLL_CFG);
351	if (allow_slide && priv->m == m_old && priv->pl == pl_old &&
352	    (cfg & GPCPLL_CFG_ENABLE)) {
353		return gk20a_pllg_slide(priv, priv->n);
354	}
355
356	/* slide down to NDIV_LO */
357	n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco,
358			    priv->parent_rate / MHZ);
359	if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
360		int ret = gk20a_pllg_slide(priv, n_lo);
361
362		if (ret)
363			return ret;
364	}
365
366	/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
367	nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
368		0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
369
370	/* put PLL in bypass before programming it */
371	val = nv_rd32(priv, SEL_VCO);
372	val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
373	udelay(2);
374	nv_wr32(priv, SEL_VCO, val);
375
376	/* get out from IDDQ */
377	val = nv_rd32(priv, GPCPLL_CFG);
378	if (val & GPCPLL_CFG_IDDQ) {
379		val &= ~GPCPLL_CFG_IDDQ;
380		nv_wr32(priv, GPCPLL_CFG, val);
381		nv_rd32(priv, GPCPLL_CFG);
382		udelay(2);
383	}
384
385	_gk20a_pllg_disable(priv);
386
387	nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n,
388		 priv->pl);
389
390	n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco,
391			    priv->parent_rate / MHZ);
392	val = priv->m << GPCPLL_COEFF_M_SHIFT;
393	val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT;
394	val |= priv->pl << GPCPLL_COEFF_P_SHIFT;
395	nv_wr32(priv, GPCPLL_COEFF, val);
396
397	_gk20a_pllg_enable(priv);
398
399	val = nv_rd32(priv, GPCPLL_CFG);
400	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
401		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
402		nv_wr32(priv, GPCPLL_CFG, val);
403	}
404
405	if (!nouveau_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
406				   GPCPLL_CFG_LOCK)) {
407		nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__);
408		return -ETIMEDOUT;
409	}
410
411	/* switch to VCO mode */
412	nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
413
414	/* restore out divider 1:1 */
415	val = nv_rd32(priv, GPC2CLK_OUT);
416	val &= ~GPC2CLK_OUT_VCODIV_MASK;
417	udelay(2);
418	nv_wr32(priv, GPC2CLK_OUT, val);
419
420	/* slide up to new NDIV */
421	return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0;
422}
423
424static int
425gk20a_pllg_program_mnp(struct gk20a_clock_priv *priv)
426{
427	int err;
428
429	err = _gk20a_pllg_program_mnp(priv, true);
430	if (err)
431		err = _gk20a_pllg_program_mnp(priv, false);
432
433	return err;
434}
435
436static void
437gk20a_pllg_disable(struct gk20a_clock_priv *priv)
438{
439	u32 val;
440
441	/* slide to VCO min */
442	val = nv_rd32(priv, GPCPLL_CFG);
443	if (val & GPCPLL_CFG_ENABLE) {
444		u32 coeff, m, n_lo;
445
446		coeff = nv_rd32(priv, GPCPLL_COEFF);
447		m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
448		n_lo = DIV_ROUND_UP(m * priv->params->min_vco,
449				    priv->parent_rate / MHZ);
450		gk20a_pllg_slide(priv, n_lo);
451	}
452
453	/* put PLL in bypass before disabling it */
454	nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
455
456	_gk20a_pllg_disable(priv);
457}
458
459#define GK20A_CLK_GPC_MDIV 1000
460
461static struct nouveau_clocks
462gk20a_domains[] = {
463	{ nv_clk_src_crystal, 0xff },
464	{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
465	{ nv_clk_src_max }
466};
467
468static struct nouveau_pstate
469gk20a_pstates[] = {
470	{
471		.base = {
472			.domain[nv_clk_src_gpc] = 72000,
473		},
474	},
475	{
476		.base = {
477			.domain[nv_clk_src_gpc] = 108000,
478		},
479	},
480	{
481		.base = {
482			.domain[nv_clk_src_gpc] = 180000,
483		},
484	},
485	{
486		.base = {
487			.domain[nv_clk_src_gpc] = 252000,
488		},
489	},
490	{
491		.base = {
492			.domain[nv_clk_src_gpc] = 324000,
493		},
494	},
495	{
496		.base = {
497			.domain[nv_clk_src_gpc] = 396000,
498		},
499	},
500	{
501		.base = {
502			.domain[nv_clk_src_gpc] = 468000,
503		},
504	},
505	{
506		.base = {
507			.domain[nv_clk_src_gpc] = 540000,
508		},
509	},
510	{
511		.base = {
512			.domain[nv_clk_src_gpc] = 612000,
513		},
514	},
515	{
516		.base = {
517			.domain[nv_clk_src_gpc] = 648000,
518		},
519	},
520	{
521		.base = {
522			.domain[nv_clk_src_gpc] = 684000,
523		},
524	},
525	{
526		.base = {
527			.domain[nv_clk_src_gpc] = 708000,
528		},
529	},
530	{
531		.base = {
532			.domain[nv_clk_src_gpc] = 756000,
533		},
534	},
535	{
536		.base = {
537			.domain[nv_clk_src_gpc] = 804000,
538		},
539	},
540	{
541		.base = {
542			.domain[nv_clk_src_gpc] = 852000,
543		},
544	},
545};
546
547static int
548gk20a_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
549{
550	struct gk20a_clock_priv *priv = (void *)clk;
551
552	switch (src) {
553	case nv_clk_src_crystal:
554		return nv_device(clk)->crystal;
555	case nv_clk_src_gpc:
556		gk20a_pllg_read_mnp(priv);
557		return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV;
558	default:
559		nv_error(clk, "invalid clock source %d\n", src);
560		return -EINVAL;
561	}
562}
563
564static int
565gk20a_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
566{
567	struct gk20a_clock_priv *priv = (void *)clk;
568
569	return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] *
570					 GK20A_CLK_GPC_MDIV);
571}
572
573static int
574gk20a_clock_prog(struct nouveau_clock *clk)
575{
576	struct gk20a_clock_priv *priv = (void *)clk;
577
578	return gk20a_pllg_program_mnp(priv);
579}
580
581static void
582gk20a_clock_tidy(struct nouveau_clock *clk)
583{
584}
585
586static int
587gk20a_clock_fini(struct nouveau_object *object, bool suspend)
588{
589	struct gk20a_clock_priv *priv = (void *)object;
590	int ret;
591
592	ret = nouveau_clock_fini(&priv->base, false);
593
594	gk20a_pllg_disable(priv);
595
596	return ret;
597}
598
599static int
600gk20a_clock_init(struct nouveau_object *object)
601{
602	struct gk20a_clock_priv *priv = (void *)object;
603	int ret;
604
605	nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
606
607	ret = nouveau_clock_init(&priv->base);
608	if (ret)
609		return ret;
610
611	ret = gk20a_clock_prog(&priv->base);
612	if (ret) {
613		nv_error(priv, "cannot initialize clock\n");
614		return ret;
615	}
616
617	return 0;
618}
619
620static int
621gk20a_clock_ctor(struct nouveau_object *parent,  struct nouveau_object *engine,
622		 struct nouveau_oclass *oclass, void *data, u32 size,
623		 struct nouveau_object **pobject)
624{
625	struct gk20a_clock_priv *priv;
626	struct nouveau_platform_device *plat;
627	int ret;
628	int i;
629
630	/* Finish initializing the pstates */
631	for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
632		INIT_LIST_HEAD(&gk20a_pstates[i].list);
633		gk20a_pstates[i].pstate = i + 1;
634	}
635
636	ret = nouveau_clock_create(parent, engine, oclass, gk20a_domains,
637			gk20a_pstates, ARRAY_SIZE(gk20a_pstates), true, &priv);
638	*pobject = nv_object(priv);
639	if (ret)
640		return ret;
641
642	priv->params = &gk20a_pllg_params;
643
644	plat = nv_device_to_platform(nv_device(parent));
645	priv->parent_rate = clk_get_rate(plat->gpu->clk);
646	nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ);
647
648	priv->base.read = gk20a_clock_read;
649	priv->base.calc = gk20a_clock_calc;
650	priv->base.prog = gk20a_clock_prog;
651	priv->base.tidy = gk20a_clock_tidy;
652
653	return 0;
654}
655
656struct nouveau_oclass
657gk20a_clock_oclass = {
658	.handle = NV_SUBDEV(CLOCK, 0xea),
659	.ofuncs = &(struct nouveau_ofuncs) {
660		.ctor = gk20a_clock_ctor,
661		.dtor = _nouveau_subdev_dtor,
662		.init = gk20a_clock_init,
663		.fini = gk20a_clock_fini,
664	},
665};
666