1/*
2 * Copyright 2011 (c) Oracle Corp.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24 */
25
26/*
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 *   the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 *   when freed).
34 */
35
36#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37#define pr_fmt(fmt) "[TTM] " fmt
38
39#include <linux/dma-mapping.h>
40#include <linux/list.h>
41#include <linux/seq_file.h> /* for seq_printf */
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/highmem.h>
45#include <linux/mm_types.h>
46#include <linux/module.h>
47#include <linux/mm.h>
48#include <linux/atomic.h>
49#include <linux/device.h>
50#include <linux/kthread.h>
51#include <drm/ttm/ttm_bo_driver.h>
52#include <drm/ttm/ttm_page_alloc.h>
53#ifdef TTM_HAS_AGP
54#include <asm/agp.h>
55#endif
56
57#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
58#define SMALL_ALLOCATION		4
59#define FREE_ALL_PAGES			(~0U)
60/* times are in msecs */
61#define IS_UNDEFINED			(0)
62#define IS_WC				(1<<1)
63#define IS_UC				(1<<2)
64#define IS_CACHED			(1<<3)
65#define IS_DMA32			(1<<4)
66
67enum pool_type {
68	POOL_IS_UNDEFINED,
69	POOL_IS_WC = IS_WC,
70	POOL_IS_UC = IS_UC,
71	POOL_IS_CACHED = IS_CACHED,
72	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
73	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
74	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
75};
76/*
77 * The pool structure. There are usually six pools:
78 *  - generic (not restricted to DMA32):
79 *      - write combined, uncached, cached.
80 *  - dma32 (up to 2^32 - so up 4GB):
81 *      - write combined, uncached, cached.
82 * for each 'struct device'. The 'cached' is for pages that are actively used.
83 * The other ones can be shrunk by the shrinker API if neccessary.
84 * @pools: The 'struct device->dma_pools' link.
85 * @type: Type of the pool
86 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
87 * used with irqsave/irqrestore variants because pool allocator maybe called
88 * from delayed work.
89 * @inuse_list: Pool of pages that are in use. The order is very important and
90 *   it is in the order that the TTM pages that are put back are in.
91 * @free_list: Pool of pages that are free to be used. No order requirements.
92 * @dev: The device that is associated with these pools.
93 * @size: Size used during DMA allocation.
94 * @npages_free: Count of available pages for re-use.
95 * @npages_in_use: Count of pages that are in use.
96 * @nfrees: Stats when pool is shrinking.
97 * @nrefills: Stats when the pool is grown.
98 * @gfp_flags: Flags to pass for alloc_page.
99 * @name: Name of the pool.
100 * @dev_name: Name derieved from dev - similar to how dev_info works.
101 *   Used during shutdown as the dev_info during release is unavailable.
102 */
103struct dma_pool {
104	struct list_head pools; /* The 'struct device->dma_pools link */
105	enum pool_type type;
106	spinlock_t lock;
107	struct list_head inuse_list;
108	struct list_head free_list;
109	struct device *dev;
110	unsigned size;
111	unsigned npages_free;
112	unsigned npages_in_use;
113	unsigned long nfrees; /* Stats when shrunk. */
114	unsigned long nrefills; /* Stats when grown. */
115	gfp_t gfp_flags;
116	char name[13]; /* "cached dma32" */
117	char dev_name[64]; /* Constructed from dev */
118};
119
120/*
121 * The accounting page keeping track of the allocated page along with
122 * the DMA address.
123 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
124 * @vaddr: The virtual address of the page
125 * @dma: The bus address of the page. If the page is not allocated
126 *   via the DMA API, it will be -1.
127 */
128struct dma_page {
129	struct list_head page_list;
130	void *vaddr;
131	struct page *p;
132	dma_addr_t dma;
133};
134
135/*
136 * Limits for the pool. They are handled without locks because only place where
137 * they may change is in sysfs store. They won't have immediate effect anyway
138 * so forcing serialization to access them is pointless.
139 */
140
141struct ttm_pool_opts {
142	unsigned	alloc_size;
143	unsigned	max_size;
144	unsigned	small;
145};
146
147/*
148 * Contains the list of all of the 'struct device' and their corresponding
149 * DMA pools. Guarded by _mutex->lock.
150 * @pools: The link to 'struct ttm_pool_manager->pools'
151 * @dev: The 'struct device' associated with the 'pool'
152 * @pool: The 'struct dma_pool' associated with the 'dev'
153 */
154struct device_pools {
155	struct list_head pools;
156	struct device *dev;
157	struct dma_pool *pool;
158};
159
160/*
161 * struct ttm_pool_manager - Holds memory pools for fast allocation
162 *
163 * @lock: Lock used when adding/removing from pools
164 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
165 * @options: Limits for the pool.
166 * @npools: Total amount of pools in existence.
167 * @shrinker: The structure used by [un|]register_shrinker
168 */
169struct ttm_pool_manager {
170	struct mutex		lock;
171	struct list_head	pools;
172	struct ttm_pool_opts	options;
173	unsigned		npools;
174	struct shrinker		mm_shrink;
175	struct kobject		kobj;
176};
177
178static struct ttm_pool_manager *_manager;
179
180static struct attribute ttm_page_pool_max = {
181	.name = "pool_max_size",
182	.mode = S_IRUGO | S_IWUSR
183};
184static struct attribute ttm_page_pool_small = {
185	.name = "pool_small_allocation",
186	.mode = S_IRUGO | S_IWUSR
187};
188static struct attribute ttm_page_pool_alloc_size = {
189	.name = "pool_allocation_size",
190	.mode = S_IRUGO | S_IWUSR
191};
192
193static struct attribute *ttm_pool_attrs[] = {
194	&ttm_page_pool_max,
195	&ttm_page_pool_small,
196	&ttm_page_pool_alloc_size,
197	NULL
198};
199
200static void ttm_pool_kobj_release(struct kobject *kobj)
201{
202	struct ttm_pool_manager *m =
203		container_of(kobj, struct ttm_pool_manager, kobj);
204	kfree(m);
205}
206
207static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
208			      const char *buffer, size_t size)
209{
210	struct ttm_pool_manager *m =
211		container_of(kobj, struct ttm_pool_manager, kobj);
212	int chars;
213	unsigned val;
214	chars = sscanf(buffer, "%u", &val);
215	if (chars == 0)
216		return size;
217
218	/* Convert kb to number of pages */
219	val = val / (PAGE_SIZE >> 10);
220
221	if (attr == &ttm_page_pool_max)
222		m->options.max_size = val;
223	else if (attr == &ttm_page_pool_small)
224		m->options.small = val;
225	else if (attr == &ttm_page_pool_alloc_size) {
226		if (val > NUM_PAGES_TO_ALLOC*8) {
227			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230			return size;
231		} else if (val > NUM_PAGES_TO_ALLOC) {
232			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234		}
235		m->options.alloc_size = val;
236	}
237
238	return size;
239}
240
241static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242			     char *buffer)
243{
244	struct ttm_pool_manager *m =
245		container_of(kobj, struct ttm_pool_manager, kobj);
246	unsigned val = 0;
247
248	if (attr == &ttm_page_pool_max)
249		val = m->options.max_size;
250	else if (attr == &ttm_page_pool_small)
251		val = m->options.small;
252	else if (attr == &ttm_page_pool_alloc_size)
253		val = m->options.alloc_size;
254
255	val = val * (PAGE_SIZE >> 10);
256
257	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258}
259
260static const struct sysfs_ops ttm_pool_sysfs_ops = {
261	.show = &ttm_pool_show,
262	.store = &ttm_pool_store,
263};
264
265static struct kobj_type ttm_pool_kobj_type = {
266	.release = &ttm_pool_kobj_release,
267	.sysfs_ops = &ttm_pool_sysfs_ops,
268	.default_attrs = ttm_pool_attrs,
269};
270
271#ifndef CONFIG_X86
272static int set_pages_array_wb(struct page **pages, int addrinarray)
273{
274#ifdef TTM_HAS_AGP
275	int i;
276
277	for (i = 0; i < addrinarray; i++)
278		unmap_page_from_agp(pages[i]);
279#endif
280	return 0;
281}
282
283static int set_pages_array_wc(struct page **pages, int addrinarray)
284{
285#ifdef TTM_HAS_AGP
286	int i;
287
288	for (i = 0; i < addrinarray; i++)
289		map_page_into_agp(pages[i]);
290#endif
291	return 0;
292}
293
294static int set_pages_array_uc(struct page **pages, int addrinarray)
295{
296#ifdef TTM_HAS_AGP
297	int i;
298
299	for (i = 0; i < addrinarray; i++)
300		map_page_into_agp(pages[i]);
301#endif
302	return 0;
303}
304#endif /* for !CONFIG_X86 */
305
306static int ttm_set_pages_caching(struct dma_pool *pool,
307				 struct page **pages, unsigned cpages)
308{
309	int r = 0;
310	/* Set page caching */
311	if (pool->type & IS_UC) {
312		r = set_pages_array_uc(pages, cpages);
313		if (r)
314			pr_err("%s: Failed to set %d pages to uc!\n",
315			       pool->dev_name, cpages);
316	}
317	if (pool->type & IS_WC) {
318		r = set_pages_array_wc(pages, cpages);
319		if (r)
320			pr_err("%s: Failed to set %d pages to wc!\n",
321			       pool->dev_name, cpages);
322	}
323	return r;
324}
325
326static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327{
328	dma_addr_t dma = d_page->dma;
329	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
330
331	kfree(d_page);
332	d_page = NULL;
333}
334static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
335{
336	struct dma_page *d_page;
337
338	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
339	if (!d_page)
340		return NULL;
341
342	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
343					   &d_page->dma,
344					   pool->gfp_flags);
345	if (d_page->vaddr)
346		d_page->p = virt_to_page(d_page->vaddr);
347	else {
348		kfree(d_page);
349		d_page = NULL;
350	}
351	return d_page;
352}
353static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
354{
355	enum pool_type type = IS_UNDEFINED;
356
357	if (flags & TTM_PAGE_FLAG_DMA32)
358		type |= IS_DMA32;
359	if (cstate == tt_cached)
360		type |= IS_CACHED;
361	else if (cstate == tt_uncached)
362		type |= IS_UC;
363	else
364		type |= IS_WC;
365
366	return type;
367}
368
369static void ttm_pool_update_free_locked(struct dma_pool *pool,
370					unsigned freed_pages)
371{
372	pool->npages_free -= freed_pages;
373	pool->nfrees += freed_pages;
374
375}
376
377/* set memory back to wb and free the pages. */
378static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
379			      struct page *pages[], unsigned npages)
380{
381	struct dma_page *d_page, *tmp;
382
383	/* Don't set WB on WB page pool. */
384	if (npages && !(pool->type & IS_CACHED) &&
385	    set_pages_array_wb(pages, npages))
386		pr_err("%s: Failed to set %d pages to wb!\n",
387		       pool->dev_name, npages);
388
389	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
390		list_del(&d_page->page_list);
391		__ttm_dma_free_page(pool, d_page);
392	}
393}
394
395static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
396{
397	/* Don't set WB on WB page pool. */
398	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
399		pr_err("%s: Failed to set %d pages to wb!\n",
400		       pool->dev_name, 1);
401
402	list_del(&d_page->page_list);
403	__ttm_dma_free_page(pool, d_page);
404}
405
406/*
407 * Free pages from pool.
408 *
409 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
410 * number of pages in one go.
411 *
412 * @pool: to free the pages from
413 * @nr_free: If set to true will free all pages in pool
414 * @gfp: GFP flags.
415 **/
416static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
417				       gfp_t gfp)
418{
419	unsigned long irq_flags;
420	struct dma_page *dma_p, *tmp;
421	struct page **pages_to_free;
422	struct list_head d_pages;
423	unsigned freed_pages = 0,
424		 npages_to_free = nr_free;
425
426	if (NUM_PAGES_TO_ALLOC < nr_free)
427		npages_to_free = NUM_PAGES_TO_ALLOC;
428#if 0
429	if (nr_free > 1) {
430		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
431			 pool->dev_name, pool->name, current->pid,
432			 npages_to_free, nr_free);
433	}
434#endif
435	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *), gfp);
436
437	if (!pages_to_free) {
438		pr_err("%s: Failed to allocate memory for pool free operation\n",
439		       pool->dev_name);
440		return 0;
441	}
442	INIT_LIST_HEAD(&d_pages);
443restart:
444	spin_lock_irqsave(&pool->lock, irq_flags);
445
446	/* We picking the oldest ones off the list */
447	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
448					 page_list) {
449		if (freed_pages >= npages_to_free)
450			break;
451
452		/* Move the dma_page from one list to another. */
453		list_move(&dma_p->page_list, &d_pages);
454
455		pages_to_free[freed_pages++] = dma_p->p;
456		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
457		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
458
459			ttm_pool_update_free_locked(pool, freed_pages);
460			/**
461			 * Because changing page caching is costly
462			 * we unlock the pool to prevent stalling.
463			 */
464			spin_unlock_irqrestore(&pool->lock, irq_flags);
465
466			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
467					  freed_pages);
468
469			INIT_LIST_HEAD(&d_pages);
470
471			if (likely(nr_free != FREE_ALL_PAGES))
472				nr_free -= freed_pages;
473
474			if (NUM_PAGES_TO_ALLOC >= nr_free)
475				npages_to_free = nr_free;
476			else
477				npages_to_free = NUM_PAGES_TO_ALLOC;
478
479			freed_pages = 0;
480
481			/* free all so restart the processing */
482			if (nr_free)
483				goto restart;
484
485			/* Not allowed to fall through or break because
486			 * following context is inside spinlock while we are
487			 * outside here.
488			 */
489			goto out;
490
491		}
492	}
493
494	/* remove range of pages from the pool */
495	if (freed_pages) {
496		ttm_pool_update_free_locked(pool, freed_pages);
497		nr_free -= freed_pages;
498	}
499
500	spin_unlock_irqrestore(&pool->lock, irq_flags);
501
502	if (freed_pages)
503		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
504out:
505	kfree(pages_to_free);
506	return nr_free;
507}
508
509static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
510{
511	struct device_pools *p;
512	struct dma_pool *pool;
513
514	if (!dev)
515		return;
516
517	mutex_lock(&_manager->lock);
518	list_for_each_entry_reverse(p, &_manager->pools, pools) {
519		if (p->dev != dev)
520			continue;
521		pool = p->pool;
522		if (pool->type != type)
523			continue;
524
525		list_del(&p->pools);
526		kfree(p);
527		_manager->npools--;
528		break;
529	}
530	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
531		if (pool->type != type)
532			continue;
533		/* Takes a spinlock.. */
534		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, GFP_KERNEL);
535		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
536		/* This code path is called after _all_ references to the
537		 * struct device has been dropped - so nobody should be
538		 * touching it. In case somebody is trying to _add_ we are
539		 * guarded by the mutex. */
540		list_del(&pool->pools);
541		kfree(pool);
542		break;
543	}
544	mutex_unlock(&_manager->lock);
545}
546
547/*
548 * On free-ing of the 'struct device' this deconstructor is run.
549 * Albeit the pool might have already been freed earlier.
550 */
551static void ttm_dma_pool_release(struct device *dev, void *res)
552{
553	struct dma_pool *pool = *(struct dma_pool **)res;
554
555	if (pool)
556		ttm_dma_free_pool(dev, pool->type);
557}
558
559static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
560{
561	return *(struct dma_pool **)res == match_data;
562}
563
564static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
565					  enum pool_type type)
566{
567	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
568	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
569	struct device_pools *sec_pool = NULL;
570	struct dma_pool *pool = NULL, **ptr;
571	unsigned i;
572	int ret = -ENODEV;
573	char *p;
574
575	if (!dev)
576		return NULL;
577
578	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
579	if (!ptr)
580		return NULL;
581
582	ret = -ENOMEM;
583
584	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
585			    dev_to_node(dev));
586	if (!pool)
587		goto err_mem;
588
589	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
590				dev_to_node(dev));
591	if (!sec_pool)
592		goto err_mem;
593
594	INIT_LIST_HEAD(&sec_pool->pools);
595	sec_pool->dev = dev;
596	sec_pool->pool =  pool;
597
598	INIT_LIST_HEAD(&pool->free_list);
599	INIT_LIST_HEAD(&pool->inuse_list);
600	INIT_LIST_HEAD(&pool->pools);
601	spin_lock_init(&pool->lock);
602	pool->dev = dev;
603	pool->npages_free = pool->npages_in_use = 0;
604	pool->nfrees = 0;
605	pool->gfp_flags = flags;
606	pool->size = PAGE_SIZE;
607	pool->type = type;
608	pool->nrefills = 0;
609	p = pool->name;
610	for (i = 0; i < 5; i++) {
611		if (type & t[i]) {
612			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
613				      "%s", n[i]);
614		}
615	}
616	*p = 0;
617	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
618	 * - the kobj->name has already been deallocated.*/
619	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
620		 dev_driver_string(dev), dev_name(dev));
621	mutex_lock(&_manager->lock);
622	/* You can get the dma_pool from either the global: */
623	list_add(&sec_pool->pools, &_manager->pools);
624	_manager->npools++;
625	/* or from 'struct device': */
626	list_add(&pool->pools, &dev->dma_pools);
627	mutex_unlock(&_manager->lock);
628
629	*ptr = pool;
630	devres_add(dev, ptr);
631
632	return pool;
633err_mem:
634	devres_free(ptr);
635	kfree(sec_pool);
636	kfree(pool);
637	return ERR_PTR(ret);
638}
639
640static struct dma_pool *ttm_dma_find_pool(struct device *dev,
641					  enum pool_type type)
642{
643	struct dma_pool *pool, *tmp, *found = NULL;
644
645	if (type == IS_UNDEFINED)
646		return found;
647
648	/* NB: We iterate on the 'struct dev' which has no spinlock, but
649	 * it does have a kref which we have taken. The kref is taken during
650	 * graphic driver loading - in the drm_pci_init it calls either
651	 * pci_dev_get or pci_register_driver which both end up taking a kref
652	 * on 'struct device'.
653	 *
654	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
655	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
656	 * thing is at that point of time there are no pages associated with the
657	 * driver so this function will not be called.
658	 */
659	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
660		if (pool->type != type)
661			continue;
662		found = pool;
663		break;
664	}
665	return found;
666}
667
668/*
669 * Free pages the pages that failed to change the caching state. If there
670 * are pages that have changed their caching state already put them to the
671 * pool.
672 */
673static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
674						 struct list_head *d_pages,
675						 struct page **failed_pages,
676						 unsigned cpages)
677{
678	struct dma_page *d_page, *tmp;
679	struct page *p;
680	unsigned i = 0;
681
682	p = failed_pages[0];
683	if (!p)
684		return;
685	/* Find the failed page. */
686	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
687		if (d_page->p != p)
688			continue;
689		/* .. and then progress over the full list. */
690		list_del(&d_page->page_list);
691		__ttm_dma_free_page(pool, d_page);
692		if (++i < cpages)
693			p = failed_pages[i];
694		else
695			break;
696	}
697
698}
699
700/*
701 * Allocate 'count' pages, and put 'need' number of them on the
702 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
703 * The full list of pages should also be on 'd_pages'.
704 * We return zero for success, and negative numbers as errors.
705 */
706static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
707					struct list_head *d_pages,
708					unsigned count)
709{
710	struct page **caching_array;
711	struct dma_page *dma_p;
712	struct page *p;
713	int r = 0;
714	unsigned i, cpages;
715	unsigned max_cpages = min(count,
716			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
717
718	/* allocate array for page caching change */
719	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
720
721	if (!caching_array) {
722		pr_err("%s: Unable to allocate table for new pages\n",
723		       pool->dev_name);
724		return -ENOMEM;
725	}
726
727	if (count > 1) {
728		pr_debug("%s: (%s:%d) Getting %d pages\n",
729			 pool->dev_name, pool->name, current->pid, count);
730	}
731
732	for (i = 0, cpages = 0; i < count; ++i) {
733		dma_p = __ttm_dma_alloc_page(pool);
734		if (!dma_p) {
735			pr_err("%s: Unable to get page %u\n",
736			       pool->dev_name, i);
737
738			/* store already allocated pages in the pool after
739			 * setting the caching state */
740			if (cpages) {
741				r = ttm_set_pages_caching(pool, caching_array,
742							  cpages);
743				if (r)
744					ttm_dma_handle_caching_state_failure(
745						pool, d_pages, caching_array,
746						cpages);
747			}
748			r = -ENOMEM;
749			goto out;
750		}
751		p = dma_p->p;
752#ifdef CONFIG_HIGHMEM
753		/* gfp flags of highmem page should never be dma32 so we
754		 * we should be fine in such case
755		 */
756		if (!PageHighMem(p))
757#endif
758		{
759			caching_array[cpages++] = p;
760			if (cpages == max_cpages) {
761				/* Note: Cannot hold the spinlock */
762				r = ttm_set_pages_caching(pool, caching_array,
763						 cpages);
764				if (r) {
765					ttm_dma_handle_caching_state_failure(
766						pool, d_pages, caching_array,
767						cpages);
768					goto out;
769				}
770				cpages = 0;
771			}
772		}
773		list_add(&dma_p->page_list, d_pages);
774	}
775
776	if (cpages) {
777		r = ttm_set_pages_caching(pool, caching_array, cpages);
778		if (r)
779			ttm_dma_handle_caching_state_failure(pool, d_pages,
780					caching_array, cpages);
781	}
782out:
783	kfree(caching_array);
784	return r;
785}
786
787/*
788 * @return count of pages still required to fulfill the request.
789 */
790static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
791					 unsigned long *irq_flags)
792{
793	unsigned count = _manager->options.small;
794	int r = pool->npages_free;
795
796	if (count > pool->npages_free) {
797		struct list_head d_pages;
798
799		INIT_LIST_HEAD(&d_pages);
800
801		spin_unlock_irqrestore(&pool->lock, *irq_flags);
802
803		/* Returns how many more are neccessary to fulfill the
804		 * request. */
805		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
806
807		spin_lock_irqsave(&pool->lock, *irq_flags);
808		if (!r) {
809			/* Add the fresh to the end.. */
810			list_splice(&d_pages, &pool->free_list);
811			++pool->nrefills;
812			pool->npages_free += count;
813			r = count;
814		} else {
815			struct dma_page *d_page;
816			unsigned cpages = 0;
817
818			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
819			       pool->dev_name, pool->name, r);
820
821			list_for_each_entry(d_page, &d_pages, page_list) {
822				cpages++;
823			}
824			list_splice_tail(&d_pages, &pool->free_list);
825			pool->npages_free += cpages;
826			r = cpages;
827		}
828	}
829	return r;
830}
831
832/*
833 * @return count of pages still required to fulfill the request.
834 * The populate list is actually a stack (not that is matters as TTM
835 * allocates one page at a time.
836 */
837static int ttm_dma_pool_get_pages(struct dma_pool *pool,
838				  struct ttm_dma_tt *ttm_dma,
839				  unsigned index)
840{
841	struct dma_page *d_page;
842	struct ttm_tt *ttm = &ttm_dma->ttm;
843	unsigned long irq_flags;
844	int count, r = -ENOMEM;
845
846	spin_lock_irqsave(&pool->lock, irq_flags);
847	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
848	if (count) {
849		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
850		ttm->pages[index] = d_page->p;
851		ttm_dma->cpu_address[index] = d_page->vaddr;
852		ttm_dma->dma_address[index] = d_page->dma;
853		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
854		r = 0;
855		pool->npages_in_use += 1;
856		pool->npages_free -= 1;
857	}
858	spin_unlock_irqrestore(&pool->lock, irq_flags);
859	return r;
860}
861
862/*
863 * On success pages list will hold count number of correctly
864 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
865 */
866int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
867{
868	struct ttm_tt *ttm = &ttm_dma->ttm;
869	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
870	struct dma_pool *pool;
871	enum pool_type type;
872	unsigned i;
873	gfp_t gfp_flags;
874	int ret;
875
876	if (ttm->state != tt_unpopulated)
877		return 0;
878
879	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
880	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
881		gfp_flags = GFP_USER | GFP_DMA32;
882	else
883		gfp_flags = GFP_HIGHUSER;
884	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
885		gfp_flags |= __GFP_ZERO;
886
887	pool = ttm_dma_find_pool(dev, type);
888	if (!pool) {
889		pool = ttm_dma_pool_init(dev, gfp_flags, type);
890		if (IS_ERR_OR_NULL(pool)) {
891			return -ENOMEM;
892		}
893	}
894
895	INIT_LIST_HEAD(&ttm_dma->pages_list);
896	for (i = 0; i < ttm->num_pages; ++i) {
897		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
898		if (ret != 0) {
899			ttm_dma_unpopulate(ttm_dma, dev);
900			return -ENOMEM;
901		}
902
903		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
904						false, false);
905		if (unlikely(ret != 0)) {
906			ttm_dma_unpopulate(ttm_dma, dev);
907			return -ENOMEM;
908		}
909	}
910
911	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
912		ret = ttm_tt_swapin(ttm);
913		if (unlikely(ret != 0)) {
914			ttm_dma_unpopulate(ttm_dma, dev);
915			return ret;
916		}
917	}
918
919	ttm->state = tt_unbound;
920	return 0;
921}
922EXPORT_SYMBOL_GPL(ttm_dma_populate);
923
924/* Put all pages in pages list to correct pool to wait for reuse */
925void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
926{
927	struct ttm_tt *ttm = &ttm_dma->ttm;
928	struct dma_pool *pool;
929	struct dma_page *d_page, *next;
930	enum pool_type type;
931	bool is_cached = false;
932	unsigned count = 0, i, npages = 0;
933	unsigned long irq_flags;
934
935	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
936	pool = ttm_dma_find_pool(dev, type);
937	if (!pool)
938		return;
939
940	is_cached = (ttm_dma_find_pool(pool->dev,
941		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
942
943	/* make sure pages array match list and count number of pages */
944	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
945		ttm->pages[count] = d_page->p;
946		count++;
947	}
948
949	spin_lock_irqsave(&pool->lock, irq_flags);
950	pool->npages_in_use -= count;
951	if (is_cached) {
952		pool->nfrees += count;
953	} else {
954		pool->npages_free += count;
955		list_splice(&ttm_dma->pages_list, &pool->free_list);
956		npages = count;
957		if (pool->npages_free > _manager->options.max_size) {
958			npages = pool->npages_free - _manager->options.max_size;
959			/* free at least NUM_PAGES_TO_ALLOC number of pages
960			 * to reduce calls to set_memory_wb */
961			if (npages < NUM_PAGES_TO_ALLOC)
962				npages = NUM_PAGES_TO_ALLOC;
963		}
964	}
965	spin_unlock_irqrestore(&pool->lock, irq_flags);
966
967	if (is_cached) {
968		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
969			ttm_mem_global_free_page(ttm->glob->mem_glob,
970						 d_page->p);
971			ttm_dma_page_put(pool, d_page);
972		}
973	} else {
974		for (i = 0; i < count; i++) {
975			ttm_mem_global_free_page(ttm->glob->mem_glob,
976						 ttm->pages[i]);
977		}
978	}
979
980	INIT_LIST_HEAD(&ttm_dma->pages_list);
981	for (i = 0; i < ttm->num_pages; i++) {
982		ttm->pages[i] = NULL;
983		ttm_dma->cpu_address[i] = 0;
984		ttm_dma->dma_address[i] = 0;
985	}
986
987	/* shrink pool if necessary (only on !is_cached pools)*/
988	if (npages)
989		ttm_dma_page_pool_free(pool, npages, GFP_KERNEL);
990	ttm->state = tt_unpopulated;
991}
992EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
993
994/**
995 * Callback for mm to request pool to reduce number of page held.
996 *
997 * XXX: (dchinner) Deadlock warning!
998 *
999 * We need to pass sc->gfp_mask to ttm_dma_page_pool_free().
1000 *
1001 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1002 * shrinkers
1003 */
1004static unsigned long
1005ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1006{
1007	static unsigned start_pool;
1008	unsigned idx = 0;
1009	unsigned pool_offset;
1010	unsigned shrink_pages = sc->nr_to_scan;
1011	struct device_pools *p;
1012	unsigned long freed = 0;
1013
1014	if (list_empty(&_manager->pools))
1015		return SHRINK_STOP;
1016
1017	if (!mutex_trylock(&_manager->lock))
1018		return SHRINK_STOP;
1019	if (!_manager->npools)
1020		goto out;
1021	pool_offset = ++start_pool % _manager->npools;
1022	list_for_each_entry(p, &_manager->pools, pools) {
1023		unsigned nr_free;
1024
1025		if (!p->dev)
1026			continue;
1027		if (shrink_pages == 0)
1028			break;
1029		/* Do it in round-robin fashion. */
1030		if (++idx < pool_offset)
1031			continue;
1032		nr_free = shrink_pages;
1033		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free,
1034						      sc->gfp_mask);
1035		freed += nr_free - shrink_pages;
1036
1037		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1038			 p->pool->dev_name, p->pool->name, current->pid,
1039			 nr_free, shrink_pages);
1040	}
1041out:
1042	mutex_unlock(&_manager->lock);
1043	return freed;
1044}
1045
1046static unsigned long
1047ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1048{
1049	struct device_pools *p;
1050	unsigned long count = 0;
1051
1052	if (!mutex_trylock(&_manager->lock))
1053		return 0;
1054	list_for_each_entry(p, &_manager->pools, pools)
1055		count += p->pool->npages_free;
1056	mutex_unlock(&_manager->lock);
1057	return count;
1058}
1059
1060static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1061{
1062	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1063	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1064	manager->mm_shrink.seeks = 1;
1065	register_shrinker(&manager->mm_shrink);
1066}
1067
1068static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1069{
1070	unregister_shrinker(&manager->mm_shrink);
1071}
1072
1073int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1074{
1075	int ret = -ENOMEM;
1076
1077	WARN_ON(_manager);
1078
1079	pr_info("Initializing DMA pool allocator\n");
1080
1081	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1082	if (!_manager)
1083		goto err;
1084
1085	mutex_init(&_manager->lock);
1086	INIT_LIST_HEAD(&_manager->pools);
1087
1088	_manager->options.max_size = max_pages;
1089	_manager->options.small = SMALL_ALLOCATION;
1090	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1091
1092	/* This takes care of auto-freeing the _manager */
1093	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1094				   &glob->kobj, "dma_pool");
1095	if (unlikely(ret != 0)) {
1096		kobject_put(&_manager->kobj);
1097		goto err;
1098	}
1099	ttm_dma_pool_mm_shrink_init(_manager);
1100	return 0;
1101err:
1102	return ret;
1103}
1104
1105void ttm_dma_page_alloc_fini(void)
1106{
1107	struct device_pools *p, *t;
1108
1109	pr_info("Finalizing DMA pool allocator\n");
1110	ttm_dma_pool_mm_shrink_fini(_manager);
1111
1112	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1113		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1114			current->pid);
1115		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1116			ttm_dma_pool_match, p->pool));
1117		ttm_dma_free_pool(p->dev, p->pool->type);
1118	}
1119	kobject_put(&_manager->kobj);
1120	_manager = NULL;
1121}
1122
1123int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1124{
1125	struct device_pools *p;
1126	struct dma_pool *pool = NULL;
1127	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1128		     "name", "virt", "busaddr"};
1129
1130	if (!_manager) {
1131		seq_printf(m, "No pool allocator running.\n");
1132		return 0;
1133	}
1134	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1135		   h[0], h[1], h[2], h[3], h[4], h[5]);
1136	mutex_lock(&_manager->lock);
1137	list_for_each_entry(p, &_manager->pools, pools) {
1138		struct device *dev = p->dev;
1139		if (!dev)
1140			continue;
1141		pool = p->pool;
1142		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1143				pool->name, pool->nrefills,
1144				pool->nfrees, pool->npages_in_use,
1145				pool->npages_free,
1146				pool->dev_name);
1147	}
1148	mutex_unlock(&_manager->lock);
1149	return 0;
1150}
1151EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1152
1153#endif
1154